Add Basic Lighting exercises to repo.

This commit is contained in:
Joey de Vries
2020-05-17 18:04:36 +02:00
parent ceff4a43f5
commit 45f4f469d0
3 changed files with 162 additions and 0 deletions

View File

@@ -0,0 +1,30 @@
int main()
{
[...]
// render loop
while(!glfwWindowShouldClose(window))
{
// per-frame time logic
float currentFrame = glfwGetTime();
deltaTime = currentFrame - lastFrame;
lastFrame = currentFrame;
// input
processInput(window);
// clear the colorbuffer
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// change the light's position values over time (can be done anywhere in the render loop actually, but try to do it at least before using the light source positions)
lightPos.x = 1.0f + sin(glfwGetTime()) * 2.0f;
lightPos.y = sin(glfwGetTime() / 2.0f) * 1.0f;
// set uniforms, draw objects
[...]
// glfw: swap buffers and poll IO events
glfwSwapBuffers(window);
glfwPollEvents();
}
}

View File

@@ -0,0 +1,59 @@
// Vertex shader:
// ================
#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;
out vec3 FragPos;
out vec3 Normal;
out vec3 LightPos;
uniform vec3 lightPos; // we now define the uniform in the vertex shader and pass the 'view space' lightpos to the fragment shader. lightPos is currently in world space.
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
void main()
{
gl_Position = projection * view * model * vec4(aPos, 1.0);
FragPos = vec3(view * model * vec4(aPos, 1.0));
Normal = mat3(transpose(inverse(view * model))) * aNormal;
LightPos = vec3(view * vec4(lightPos, 1.0)); // Transform world-space light position to view-space light position
}
// Fragment shader:
// ================
#version 330 core
out vec4 FragColor;
in vec3 FragPos;
in vec3 Normal;
in vec3 LightPos; // extra in variable, since we need the light position in view space we calculate this in the vertex shader
uniform vec3 lightColor;
uniform vec3 objectColor;
void main()
{
// ambient
float ambientStrength = 0.1;
vec3 ambient = ambientStrength * lightColor;
// diffuse
vec3 norm = normalize(Normal);
vec3 lightDir = normalize(LightPos - FragPos);
float diff = max(dot(norm, lightDir), 0.0);
vec3 diffuse = diff * lightColor;
// specular
float specularStrength = 0.5;
vec3 viewDir = normalize(-FragPos); // the viewer is always at (0,0,0) in view-space, so viewDir is (0,0,0) - Position => -Position
vec3 reflectDir = reflect(-lightDir, norm);
float spec = pow(max(dot(viewDir, reflectDir), 0.0), 32);
vec3 specular = specularStrength * spec * lightColor;
vec3 result = (ambient + diffuse + specular) * objectColor;
FragColor = vec4(result, 1.0);
}

View File

@@ -0,0 +1,73 @@
// Vertex shader:
// ================
#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;
out vec3 LightingColor; // resulting color from lighting calculations
uniform vec3 lightPos;
uniform vec3 viewPos;
uniform vec3 lightColor;
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
void main()
{
gl_Position = projection * view * model * vec4(aPos, 1.0);
// gouraud shading
// ------------------------
vec3 Position = vec3(model * vec4(aPos, 1.0));
vec3 Normal = mat3(transpose(inverse(model))) * aNormal;
// ambient
float ambientStrength = 0.1;
vec3 ambient = ambientStrength * lightColor;
// diffuse
vec3 norm = normalize(Normal);
vec3 lightDir = normalize(lightPos - Position);
float diff = max(dot(norm, lightDir), 0.0);
vec3 diffuse = diff * lightColor;
// specular
float specularStrength = 1.0; // this is set higher to better show the effect of Gouraud shading
vec3 viewDir = normalize(viewPos - Position);
vec3 reflectDir = reflect(-lightDir, norm);
float spec = pow(max(dot(viewDir, reflectDir), 0.0), 32);
vec3 specular = specularStrength * spec * lightColor;
LightingColor = ambient + diffuse + specular;
}
// Fragment shader:
// ================
#version 330 core
out vec4 FragColor;
in vec3 LightingColor;
uniform vec3 objectColor;
void main()
{
FragColor = vec4(LightingColor * objectColor, 1.0);
}
/*
So what do we see?
You can see (for yourself or in the provided image) the clear distinction of the two triangles at the front of the
cube. This 'stripe' is visible because of fragment interpolation. From the example image we can see that the top-right
vertex of the cube's front face is lit with specular highlights. Since the top-right vertex of the bottom-right triangle is
lit and the other 2 vertices of the triangle are not, the bright values interpolates to the other 2 vertices. The same
happens for the upper-left triangle. Since the intermediate fragment colors are not directly from the light source
but are the result of interpolation, the lighting is incorrect at the intermediate fragments and the top-left and
bottom-right triangle collide in their brightness resulting in a visible stripe between both triangles.
This effect will become more apparent when using more complicated shapes.
*/