Updated GLM version w/ now standard radians as angles.

This commit is contained in:
J. de Vries
2016-05-11 20:04:52 +02:00
parent 336df22af5
commit a4c2bb2498
321 changed files with 42426 additions and 35972 deletions

View File

@@ -1,10 +1,33 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2013 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2005-12-24
// Updated : 2011-10-13
// Licence : This source is under MIT License
// File : glm/gtx/integer.inl
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_integer
/// @file glm/gtx/integer.inl
/// @date 2005-12-24 / 2011-10-13
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
@@ -38,7 +61,7 @@ namespace glm
}
// Henry Gordon Dietz: http://aggregate.org/MAGIC/
namespace _detail
namespace detail
{
GLM_FUNC_QUALIFIER unsigned int ones32(unsigned int x)
{
@@ -53,22 +76,7 @@ namespace _detail
x += (x >> 16);
return(x & 0x0000003f);
}
template <>
struct _compute_log2<detail::float_or_int_value::GLM_INT>
{
template <typename T>
GLM_FUNC_QUALIFIER T operator() (T const & Value) const
{
#if(GLM_COMPILER & (GLM_COMPILER_VC | GLM_COMPILER_GCC))
return Value <= T(1) ? T(0) : T(32) - nlz(Value - T(1));
#else
return T(32) - nlz(Value - T(1));
#endif
}
};
}//namespace _detail
}//namespace detail
// Henry Gordon Dietz: http://aggregate.org/MAGIC/
/*
@@ -100,30 +108,30 @@ namespace _detail
return Result;
}
template <typename valType>
GLM_FUNC_QUALIFIER detail::tvec2<valType> factorial(
detail::tvec2<valType> const & x)
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec2<T, P> factorial(
tvec2<T, P> const & x)
{
return detail::tvec2<valType>(
return tvec2<T, P>(
factorial(x.x),
factorial(x.y));
}
template <typename valType>
GLM_FUNC_QUALIFIER detail::tvec3<valType> factorial(
detail::tvec3<valType> const & x)
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec3<T, P> factorial(
tvec3<T, P> const & x)
{
return detail::tvec3<valType>(
return tvec3<T, P>(
factorial(x.x),
factorial(x.y),
factorial(x.z));
}
template <typename valType>
GLM_FUNC_QUALIFIER detail::tvec4<valType> factorial(
detail::tvec4<valType> const & x)
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec4<T, P> factorial(
tvec4<T, P> const & x)
{
return detail::tvec4<valType>(
return tvec4<T, P>(
factorial(x.x),
factorial(x.y),
factorial(x.z),
@@ -171,31 +179,31 @@ namespace _detail
// Hackers Delight: http://www.hackersdelight.org/HDcode/nlz.c.txt
GLM_FUNC_QUALIFIER unsigned int nlz(unsigned int x)
{
int y, m, n;
int y, m, n;
y = -int(x >> 16); // If left half of x is 0,
m = (y >> 16) & 16; // set n = 16. If left half
n = 16 - m; // is nonzero, set n = 0 and
x = x >> m; // shift x right 16.
y = -int(x >> 16); // If left half of x is 0,
m = (y >> 16) & 16; // set n = 16. If left half
n = 16 - m; // is nonzero, set n = 0 and
x = x >> m; // shift x right 16.
// Now x is of the form 0000xxxx.
y = x - 0x100; // If positions 8-15 are 0,
m = (y >> 16) & 8; // add 8 to n and shift x left 8.
n = n + m;
x = x << m;
y = x - 0x100; // If positions 8-15 are 0,
m = (y >> 16) & 8; // add 8 to n and shift x left 8.
n = n + m;
x = x << m;
y = x - 0x1000; // If positions 12-15 are 0,
m = (y >> 16) & 4; // add 4 to n and shift x left 4.
n = n + m;
x = x << m;
y = x - 0x1000; // If positions 12-15 are 0,
m = (y >> 16) & 4; // add 4 to n and shift x left 4.
n = n + m;
x = x << m;
y = x - 0x4000; // If positions 14-15 are 0,
m = (y >> 16) & 2; // add 2 to n and shift x left 2.
n = n + m;
x = x << m;
y = x - 0x4000; // If positions 14-15 are 0,
m = (y >> 16) & 2; // add 2 to n and shift x left 2.
n = n + m;
x = x << m;
y = x >> 14; // Set y = 0, 1, 2, or 3.
m = y & ~(y >> 1); // Set m = 0, 1, 2, or 2 resp.
return unsigned(n + 2 - m);
y = x >> 14; // Set y = 0, 1, 2, or 3.
m = y & ~(y >> 1); // Set m = 0, 1, 2, or 2 resp.
return unsigned(n + 2 - m);
}
#endif//(GLM_COMPILER)