Initial commit for area lights guest article

This commit is contained in:
alexpanter
2022-10-20 12:29:22 +02:00
parent efc34c9437
commit a9e0ea22ea
6 changed files with 9072 additions and 0 deletions

View File

@@ -184,6 +184,7 @@ set(GUEST_ARTICLES
8.guest/2021/4.dsa 8.guest/2021/4.dsa
8.guest/2022/5.computeshader_helloworld 8.guest/2022/5.computeshader_helloworld
8.guest/2022/6.physically_based_bloom 8.guest/2022/6.physically_based_bloom
8.guest/2022/7.area_lights
) )
configure_file(configuration/root_directory.h.in configuration/root_directory.h) configure_file(configuration/root_directory.h.in configuration/root_directory.h)

Binary file not shown.

After

Width:  |  Height:  |  Size: 101 KiB

View File

@@ -0,0 +1,178 @@
#version 330 core
out vec4 fragColor;
in vec3 worldPosition;
in vec3 worldNormal;
in vec2 texcoord;
struct Light
{
float intensity;
vec3 color;
vec3 points[4];
bool twoSided;
};
uniform Light areaLight;
uniform vec3 areaLightTranslate;
struct Material
{
sampler2D diffuse;
vec4 albedoRoughness; // (x,y,z) = color, w = roughness
};
uniform Material material;
uniform vec3 viewPosition;
uniform sampler2D LTC1; // for inverse M
uniform sampler2D LTC2; // GGX norm, fresnel, 0(unused), sphere
const float LUT_SIZE = 64.0; // ltc_texture size
const float LUT_SCALE = (LUT_SIZE - 1.0)/LUT_SIZE;
const float LUT_BIAS = 0.5/LUT_SIZE;
// Vector form without project to the plane (dot with the normal)
// Use for proxy sphere clipping
vec3 IntegrateEdgeVec(vec3 v1, vec3 v2)
{
// Using built-in acos() function will result flaws
// Using fitting result for calculating acos()
float x = dot(v1, v2);
float y = abs(x);
float a = 0.8543985 + (0.4965155 + 0.0145206*y)*y;
float b = 3.4175940 + (4.1616724 + y)*y;
float v = a / b;
float theta_sintheta = (x > 0.0) ? v : 0.5*inversesqrt(max(1.0 - x*x, 1e-7)) - v;
return cross(v1, v2)*theta_sintheta;
}
float IntegrateEdge(vec3 v1, vec3 v2)
{
return IntegrateEdgeVec(v1, v2).z;
}
// P is fragPos in world space (LTC distribution)
vec3 LTC_Evaluate(vec3 N, vec3 V, vec3 P, mat3 Minv, vec3 points[4], bool twoSided)
{
// construct orthonormal basis around N
vec3 T1, T2;
T1 = normalize(V - N * dot(V, N));
T2 = cross(N, T1);
// rotate area light in (T1, T2, N) basis
Minv = Minv * transpose(mat3(T1, T2, N));
// polygon (allocate 4 vertices for clipping)
vec3 L[4];
// transform polygon from LTC back to origin Do (cosine weighted)
L[0] = Minv * (points[0] - P);
L[1] = Minv * (points[1] - P);
L[2] = Minv * (points[2] - P);
L[3] = Minv * (points[3] - P);
// use tabulated horizon-clipped sphere
// check if the shading point is behind the light
vec3 dir = points[0] - P; // LTC space
vec3 lightNormal = cross(points[1] - points[0], points[3] - points[0]);
bool behind = (dot(dir, lightNormal) < 0.0);
// cos weighted space
L[0] = normalize(L[0]);
L[1] = normalize(L[1]);
L[2] = normalize(L[2]);
L[3] = normalize(L[3]);
// integrate
vec3 vsum = vec3(0.0);
vsum += IntegrateEdgeVec(L[0], L[1]);
vsum += IntegrateEdgeVec(L[1], L[2]);
vsum += IntegrateEdgeVec(L[2], L[3]);
vsum += IntegrateEdgeVec(L[3], L[0]);
// form factor of the polygon in direction vsum
float len = length(vsum);
float z = vsum.z/len;
if (behind)
z = -z;
vec2 uv = vec2(z*0.5f + 0.5f, len); // range [0, 1]
uv = uv*LUT_SCALE + LUT_BIAS;
// Fetch the form factor for horizon clipping
float scale = texture(LTC2, uv).w;
float sum = len*scale;
if (!behind && !twoSided)
sum = 0.0;
// Outgoing radiance (solid angle) for the entire polygon
vec3 Lo_i = vec3(sum, sum, sum);
return Lo_i;
}
// PBR-maps for roughness (and metallic) are usually stored in non-linear
// color space (sRGB), so we use these functions to convert into linear RGB.
vec3 PowVec3(vec3 v, float p)
{
return vec3(pow(v.x, p), pow(v.y, p), pow(v.z, p));
}
const float gamma = 2.2;
vec3 ToLinear(vec3 v) { return PowVec3(v, gamma); }
vec3 ToSRGB(vec3 v) { return PowVec3(v, 1.0/gamma); }
void main()
{
// gamma correction
vec3 mDiffuse = texture(material.diffuse, texcoord).xyz;// * vec3(0.7f, 0.8f, 0.96f);
vec3 mSpecular = ToLinear(vec3(0.23f, 0.23f, 0.23f)); // mDiffuse
vec3 result = vec3(0.0f);
vec3 N = normalize(worldNormal);
vec3 V = normalize(viewPosition - worldPosition);
vec3 P = worldPosition;
float dotNV = clamp(dot(N, V), 0.0f, 1.0f);
// use roughness and sqrt(1-cos_theta) to sample M_texture
vec2 uv = vec2(material.albedoRoughness.w, sqrt(1.0f - dotNV));
uv = uv*LUT_SCALE + LUT_BIAS;
// get 4 parameters for inverse_M
vec4 t1 = texture(LTC1, uv);
// Get 2 parameters for Fresnel calculation
vec4 t2 = texture(LTC2, uv);
mat3 Minv = mat3(
vec3(t1.x, 0, t1.y),
vec3( 0, 1, 0),
vec3(t1.z, 0, t1.w)
);
// translate light source for testing
vec3 translatedPoints[4];
translatedPoints[0] = areaLight.points[0] + areaLightTranslate;
translatedPoints[1] = areaLight.points[1] + areaLightTranslate;
translatedPoints[2] = areaLight.points[2] + areaLightTranslate;
translatedPoints[3] = areaLight.points[3] + areaLightTranslate;
// Evaluate LTC shading
vec3 diffuse = LTC_Evaluate(N, V, P, mat3(1), translatedPoints, areaLight.twoSided);
vec3 specular = LTC_Evaluate(N, V, P, Minv, translatedPoints, areaLight.twoSided);
// GGX BRDF shadowing and Fresnel
// t2.x: shadowedF90 ??? (F90 normally it should be 1.0)
// t2.y: Smith function for Geometric Attenuation Term, it is dot(V or L, H).
specular *= mSpecular*t2.x + (1.0f - mSpecular) * t2.y;
result = areaLight.color * areaLight.intensity * (specular + mDiffuse * diffuse);
fragColor = vec4(ToSRGB(result), 1.0f);
}

View File

@@ -0,0 +1,24 @@
#version 330 core
layout (location = 0) in vec3 aPosition;
layout (location = 1) in vec3 aNormal;
layout (location = 2) in vec2 aTexcoord;
uniform mat4 model;
uniform mat3 normalMatrix;
uniform mat4 view;
uniform mat4 projection;
out vec3 worldPosition;
out vec3 worldNormal;
out vec2 texcoord;
void main()
{
vec4 worldpos = model * vec4(aPosition, 1.0f);
worldPosition = worldpos.xyz;
worldNormal = normalMatrix * aNormal;
texcoord = aTexcoord;
gl_Position = projection * view * worldpos;
}

View File

@@ -0,0 +1,666 @@
// GLAD, GLFW, STB-IMAGE
#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <stb_image.h>
// GLM
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
// LEARNOPENGL
#include <learnopengl/filesystem.h>
#include <learnopengl/shader.h>
#include <learnopengl/camera.h>
#include <learnopengl/model.h>
// STANDARD
#include <iostream>
#include <vector>
// CUSTOM
#include "ltc_matrix.hpp"
// FUNCTION PROTOTYPES
void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void processInput(GLFWwindow *window);
unsigned int loadTexture(const char *path, bool gammaCorrection);
void renderQuad();
void renderCube();
// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;
bool bloom = true;
float exposure = 1.0f;
int programChoice = 1;
float bloomFilterRadius = 0.005f;
// camera
Camera camera(glm::vec3(0.0f, 0.0f, 5.0f));
float lastX = (float)SCR_WIDTH / 2.0;
float lastY = (float)SCR_HEIGHT / 2.0;
bool firstMouse = true;
// timing
float deltaTime = 0.0f;
float lastFrame = 0.0f;
//
// 2---3-5
// | / /|
// | / / |
// |/ / |
// 1-4---6
//
struct Vertex {
glm::vec3 position;
glm::vec3 normal;
glm::vec2 texcoord;
};
const GLfloat size = 10.0f;
Vertex planeVertices[6] = {
{ {-size, 0.0f, -size}, {0.0f, 1.0f, 0.0f}, {0.0f, 0.0f} },
{ {-size, 0.0f, size}, {0.0f, 1.0f, 0.0f}, {0.0f, 1.0f} },
{ { size, 0.0f, size}, {0.0f, 1.0f, 0.0f}, {1.0f, 1.0f} },
{ {-size, 0.0f, -size}, {0.0f, 1.0f, 0.0f}, {0.0f, 0.0f} },
{ { size, 0.0f, size}, {0.0f, 1.0f, 0.0f}, {1.0f, 1.0f} },
{ { size, 0.0f, -size}, {0.0f, 1.0f, 0.0f}, {1.0f, 0.0f} }
};
Vertex areaLightVertices[6] = {
{ {-8.0f, 2.4f, -1.0f}, {1.0f, 0.0f, 0.0f}, {0.0f, 0.0f} }, // 0 1 5 4
{ {-8.0f, 2.4f, 1.0f}, {1.0f, 0.0f, 0.0f}, {0.0f, 1.0f} },
{ {-8.0f, 0.4f, 1.0f}, {1.0f, 0.0f, 0.0f}, {1.0f, 1.0f} },
{ {-8.0f, 2.4f, -1.0f}, {1.0f, 0.0f, 0.0f}, {0.0f, 0.0f} },
{ {-8.0f, 0.4f, 1.0f}, {1.0f, 0.0f, 0.0f}, {1.0f, 1.0f} },
{ {-8.0f, 0.4f, -1.0f}, {1.0f, 0.0f, 0.0f}, {1.0f, 0.0f} }
};
GLuint planeVBO, planeVAO;
GLuint areaLightVBO, areaLightVAO;
void configureMockupData()
{
// PLANE
glGenVertexArrays(1, &planeVAO);
glGenBuffers(1, &planeVBO);
glBindVertexArray(planeVAO);
glBindBuffer(GL_ARRAY_BUFFER, planeVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(planeVertices), planeVertices, GL_STATIC_DRAW);
// position
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat),
(GLvoid*)0);
glEnableVertexAttribArray(0);
// normal
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat),
(GLvoid*)(3 * sizeof(GLfloat)));
glEnableVertexAttribArray(1);
// texcoord
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat),
(GLvoid*)(6 * sizeof(GLfloat)));
glEnableVertexAttribArray(2);
glBindVertexArray(0);
// AREA LIGHT
glGenVertexArrays(1, &areaLightVAO);
glBindVertexArray(areaLightVAO);
glGenBuffers(1, &areaLightVBO);
glBindBuffer(GL_ARRAY_BUFFER, areaLightVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(areaLightVertices), areaLightVertices, GL_STATIC_DRAW);
// position
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat),
(GLvoid*)0);
glEnableVertexAttribArray(0);
// normal
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat),
(GLvoid*)(3 * sizeof(GLfloat)));
glEnableVertexAttribArray(1);
// texcoord
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat),
(GLvoid*)(6 * sizeof(GLfloat)));
glEnableVertexAttribArray(2);
glBindVertexArray(0);
glBindVertexArray(0);
}
void renderPlane()
{
glBindVertexArray(planeVAO);
glDrawArrays(GL_TRIANGLES, 0, 6);
glBindVertexArray(0);
}
void renderAreaLight()
{
glBindVertexArray(areaLightVAO);
glDrawArrays(GL_TRIANGLES, 0, 6);
glBindVertexArray(0);
}
struct LTC_matrices {
GLuint mat1;
GLuint mat2;
};
GLuint loadMTexture()
{
GLuint texture = 0;
glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_2D, texture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 64, 64,
0, GL_RGBA, GL_FLOAT, LTC1);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glBindTexture(GL_TEXTURE_2D, 0);
return texture;
}
GLuint loadLUTTexture()
{
GLuint texture = 0;
glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_2D, texture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 64, 64,
0, GL_RGBA, GL_FLOAT, LTC2);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glBindTexture(GL_TEXTURE_2D, 0);
return texture;
}
void incrementRoughness(float step)
{
static glm::vec3 color = Color::SlateGray;
static float roughness = 0.5f;
roughness += step;
roughness = glm::clamp(roughness, 0.0f, 1.0f);
//std::cout << "roughness: " << roughness << '\n';
lightingShader->Activate();
lightingShader->SetUniformVec4("material.albedoRoughness", glm::vec4(color, roughness));
lightingShader->Deactivate();
}
void incrementLightIntensity(float step)
{
static float intensity = 4.0f;
intensity += step;
intensity = glm::clamp(intensity, 0.0f, 10.0f);
//std::cout << "intensity: " << intensity << '\n';
lightingShader->Activate();
lightingShader->SetUniformFloat("areaLight.intensity", intensity);
lightingShader->Deactivate();
}
void switchTwoSided(bool doSwitch)
{
static bool twoSided = true;
if (doSwitch) twoSided = !twoSided;
//std::cout << "twoSided: " << std::boolalpha << twoSided << '\n';
lightingShader->Activate();
lightingShader->SetUniformBool("areaLight.twoSided", twoSided);
lightingShader->Deactivate();
}
int main()
{
// glfw: initialize and configure
// ------------------------------
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
#ifdef __APPLE__
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif
// glfw window creation
// --------------------
GLFWwindow* window = glfwCreateWindow(
SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL: Area Lights", NULL, NULL);
if (window == NULL)
{
std::cout << "Failed to create GLFW window" << std::endl;
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window);
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
glfwSetCursorPosCallback(window, mouse_callback);
glfwSetScrollCallback(window, scroll_callback);
glfwSetKeyCallback(window, key_callback);
// tell GLFW to capture our mouse
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
// glad: load all OpenGL function pointers
// ---------------------------------------
if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
{
std::cout << "Failed to initialize GLAD" << std::endl;
return -1;
}
// configure global opengl state
// -----------------------------
glEnable(GL_DEPTH_TEST);
// build and compile shaders
// -------------------------
Shader shaderLTC("7.area_light.vs", "7.area_light.fs");
// Shader shaderLight("6.bloom.vs", "6.light_box.fs");
// Shader shaderBlur("6.old_blur.vs", "6.old_blur.fs");
// Shader shaderBloomFinal("6.bloom_final.vs", "6.bloom_final.fs");
// load textures
// -------------
unsigned int concreteTexture = loadTexture(FileSystem::getPath("resources/textures/concreteTexture.jpg").c_str(), true);
// shader configuration
// --------------------
shaderLTC.use();
shaderLTC.setVec3("areaLight.points[0]", areaLightVertices[0].position);
shaderLTC.setVec3("areaLight.points[1]", areaLightVertices[1].position);
shaderLTC.setVec3("areaLight.points[2]", areaLightVertices[4].position);
shaderLTC.setVec3("areaLight.points[3]", areaLightVertices[5].position);
shaderLTC.setVec3("areaLight.color", Color::White);
shaderLTC.setInt("LTC1", 0);
shaderLTC.setInt("LTC2", 1);
shaderLTC.setInt("material.diffuse", 2);
incrementRoughness(0.0f);
incrementLightIntensity(0.0f);
switchTwoSided(false);
glUseProgram(0);
// shader.setInt("diffuseTexture", 0);
// shaderBlur.use();
// shaderBlur.setInt("image", 0);
// shaderBloomFinal.use();
// shaderBloomFinal.setInt("scene", 0);
// shaderBloomFinal.setInt("bloomBlur", 1);
// render loop
// -----------
while (!glfwWindowShouldClose(window))
{
// per-frame time logic
// --------------------
float currentFrame = static_cast<float>(glfwGetTime());
deltaTime = currentFrame - lastFrame;
lastFrame = currentFrame;
// input
// -----
processInput(window);
// render
// ------
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// 1. render scene into floating point framebuffer
// -----------------------------------------------
glBindFramebuffer(GL_FRAMEBUFFER, hdrFBO);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
glm::mat4 view = camera.GetViewMatrix();
glm::mat4 model = glm::mat4(1.0f);
shader.use();
shader.setMat4("projection", projection);
shader.setMat4("view", view);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, woodTexture);
// set lighting uniforms
for (unsigned int i = 0; i < lightPositions.size(); i++)
{
shader.setVec3("lights[" + std::to_string(i) + "].Position", lightPositions[i]);
shader.setVec3("lights[" + std::to_string(i) + "].Color", lightColors[i]);
}
shader.setVec3("viewPos", camera.Position);
// create one large cube that acts as the floor
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(0.0f, -1.0f, 0.0));
model = glm::scale(model, glm::vec3(12.5f, 0.5f, 12.5f));
shader.setMat4("model", model);
renderCube();
// then create multiple cubes as the scenery
glBindTexture(GL_TEXTURE_2D, containerTexture);
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(0.0f, 1.5f, 0.0));
model = glm::scale(model, glm::vec3(0.5f));
shader.setMat4("model", model);
renderCube();
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(2.0f, 0.0f, 1.0));
model = glm::scale(model, glm::vec3(0.5f));
shader.setMat4("model", model);
renderCube();
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(-1.0f, -1.0f, 2.0));
model = glm::rotate(model, glm::radians(60.0f), glm::normalize(glm::vec3(1.0, 0.0, 1.0)));
shader.setMat4("model", model);
renderCube();
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(0.0f, 2.7f, 4.0));
model = glm::rotate(model, glm::radians(23.0f), glm::normalize(glm::vec3(1.0, 0.0, 1.0)));
model = glm::scale(model, glm::vec3(1.25));
shader.setMat4("model", model);
renderCube();
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(-2.0f, 1.0f, -3.0));
model = glm::rotate(model, glm::radians(124.0f), glm::normalize(glm::vec3(1.0, 0.0, 1.0)));
shader.setMat4("model", model);
renderCube();
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(-3.0f, 0.0f, 0.0));
model = glm::scale(model, glm::vec3(0.5f));
shader.setMat4("model", model);
renderCube();
// finally show all the light sources as bright cubes
shaderLight.use();
shaderLight.setMat4("projection", projection);
shaderLight.setMat4("view", view);
for (unsigned int i = 0; i < lightPositions.size(); i++)
{
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(lightPositions[i]));
model = glm::scale(model, glm::vec3(0.25f));
shaderLight.setMat4("model", model);
shaderLight.setVec3("lightColor", lightColors[i]);
renderCube();
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
if (programChoice < 1 || programChoice > 3) { programChoice = 1; }
bloom = (programChoice == 1) ? false : true;
bool horizontal = true;
// 2.A) bloom is disabled
// ----------------------
if (programChoice == 1)
{
}
// 2.B) blur bright fragments with two-pass Gaussian Blur
// ------------------------------------------------------
else if (programChoice == 2)
{
bool first_iteration = true;
unsigned int amount = 10;
shaderBlur.use();
for (unsigned int i = 0; i < amount; i++)
{
glBindFramebuffer(GL_FRAMEBUFFER, pingpongFBO[horizontal]);
shaderBlur.setInt("horizontal", horizontal);
glBindTexture(GL_TEXTURE_2D, first_iteration ? colorBuffers[1] : pingpongColorbuffers[!horizontal]); // bind texture of other framebuffer (or scene if first iteration)
renderQuad();
horizontal = !horizontal;
if (first_iteration)
first_iteration = false;
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
}
// 2.C) use unthresholded bloom with progressive downsample/upsampling
// -------------------------------------------------------------------
else if (programChoice == 3)
{
bloomRenderer.RenderBloomTexture(colorBuffers[1], bloomFilterRadius);
}
// 3. now render floating point color buffer to 2D quad and tonemap HDR colors to default framebuffer's (clamped) color range
// --------------------------------------------------------------------------------------------------------------------------
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
shaderBloomFinal.use();
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, colorBuffers[0]);
glActiveTexture(GL_TEXTURE1);
if (programChoice == 1) {
glBindTexture(GL_TEXTURE_2D, 0); // trick to bind invalid texture "0", we don't care either way!
}
if (programChoice == 2) {
glBindTexture(GL_TEXTURE_2D, pingpongColorbuffers[!horizontal]);
}
else if (programChoice == 3) {
glBindTexture(GL_TEXTURE_2D, bloomRenderer.BloomTexture());
}
shaderBloomFinal.setInt("programChoice", programChoice);
shaderBloomFinal.setFloat("exposure", exposure);
renderQuad();
//std::cout << "bloom: " << (bloom ? "on" : "off") << "| exposure: " << exposure << std::endl;
// glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
// -------------------------------------------------------------------------------
glfwSwapBuffers(window);
glfwPollEvents();
}
bloomRenderer.Destroy();
glfwTerminate();
return 0;
}
// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
void do_movement(GLfloat deltaTime)
{
GLfloat cameraSpeed = 10.0f * deltaTime;
if(keys[GLFW_KEY_W]) {
cam->MoveForwards(cameraSpeed);
}
else if(keys[GLFW_KEY_S]) {
cam->MoveBackwards(cameraSpeed);
}
if(keys[GLFW_KEY_A]) {
cam->StrafeLeft(cameraSpeed);
}
else if(keys[GLFW_KEY_D]) {
cam->StrafeRight(cameraSpeed);
}
if (keys[GLFW_KEY_Z]) {
if (keys[GLFW_KEY_LEFT_SHIFT]) cam->MoveDown(cameraSpeed);
else cam->MoveUp(cameraSpeed);
}
if (keys[GLFW_KEY_R]) {
if (keys[GLFW_KEY_LEFT_SHIFT]) incrementRoughness(0.01f);
else incrementRoughness(-0.01f);
}
if (keys[GLFW_KEY_I]) {
if (keys[GLFW_KEY_LEFT_SHIFT]) incrementLightIntensity(0.025f);
else incrementLightIntensity(-0.025f);
}
if (keys[GLFW_KEY_LEFT]) {
areaLightTranslate.z += 0.01f;
}
if (keys[GLFW_KEY_RIGHT]) {
areaLightTranslate.z -= 0.01f;
}
if (keys[GLFW_KEY_UP]) {
areaLightTranslate.y += 0.01f;
}
if (keys[GLFW_KEY_DOWN]) {
areaLightTranslate.y -= 0.01f;
}
}
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode)
{
static unsigned short wireframe = 0;
if(action == GLFW_PRESS)
{
switch(key)
{
case GLFW_KEY_ESCAPE:
glfwSetWindowShouldClose(window, GL_TRUE);
return;
case GLFW_KEY_L:
screen_lock = !screen_lock;
break;
case GLFW_KEY_C:
lightingShader = new Shaders::ShaderWrapper(shadername, Shaders::SHADERS_VF);
recompileShader = true;
break;
case GLFW_KEY_B:
switchTwoSided(true);
break;
default:
keys[key] = true;
break;
}
}
if(action == GLFW_RELEASE)
{
if(key == GLFW_KEY_SPACE) {
switch(wireframe)
{
case 0:
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
wireframe = 1;
break;
default:
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
wireframe = 0;
break;
}
}
else {
keys[key] = false;
}
}
}
// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
// make sure the viewport matches the new window dimensions; note that width and
// height will be significantly larger than specified on retina displays.
glViewport(0, 0, width, height);
}
// glfw: whenever the mouse moves, this callback is called
// -------------------------------------------------------
void mouse_callback(GLFWwindow* window, double xposIn, double yposIn)
{
float xpos = static_cast<float>(xposIn);
float ypos = static_cast<float>(yposIn);
if (firstMouse)
{
lastX = xpos;
lastY = ypos;
firstMouse = false;
}
float xoffset = xpos - lastX;
float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top
lastX = xpos;
lastY = ypos;
camera.ProcessMouseMovement(xoffset, yoffset);
}
// glfw: whenever the mouse scroll wheel scrolls, this callback is called
// ----------------------------------------------------------------------
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
camera.ProcessMouseScroll(static_cast<float>(yoffset));
}
// utility function for loading a 2D texture from file
// ---------------------------------------------------
unsigned int loadTexture(char const * path, bool gammaCorrection)
{
unsigned int textureID;
glGenTextures(1, &textureID);
int width, height, nrComponents;
unsigned char *data = stbi_load(path, &width, &height, &nrComponents, 0);
if (data)
{
GLenum internalFormat;
GLenum dataFormat;
if (nrComponents == 1)
{
internalFormat = dataFormat = GL_RED;
}
else if (nrComponents == 3)
{
internalFormat = gammaCorrection ? GL_SRGB : GL_RGB;
dataFormat = GL_RGB;
}
else if (nrComponents == 4)
{
internalFormat = gammaCorrection ? GL_SRGB_ALPHA : GL_RGBA;
dataFormat = GL_RGBA;
}
glBindTexture(GL_TEXTURE_2D, textureID);
glTexImage2D(GL_TEXTURE_2D, 0, internalFormat, width, height, 0, dataFormat, GL_UNSIGNED_BYTE, data);
glGenerateMipmap(GL_TEXTURE_2D);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
stbi_image_free(data);
}
else
{
std::cout << "Texture failed to load at path: " << path << std::endl;
stbi_image_free(data);
}
return textureID;
}

File diff suppressed because it is too large Load Diff