mirror of
https://github.com/JoeyDeVries/LearnOpenGL.git
synced 2026-01-30 20:13:22 +08:00
Tutorial spacing fix.
This commit is contained in:
@@ -22,78 +22,78 @@ const float PI = 3.14159265359;
|
|||||||
// ----------------------------------------------------------------------------
|
// ----------------------------------------------------------------------------
|
||||||
float DistributionGGX(vec3 N, vec3 H, float roughness)
|
float DistributionGGX(vec3 N, vec3 H, float roughness)
|
||||||
{
|
{
|
||||||
float a = roughness*roughness;
|
float a = roughness*roughness;
|
||||||
float a2 = a*a;
|
float a2 = a*a;
|
||||||
float NdotH = max(dot(N, H), 0.0);
|
float NdotH = max(dot(N, H), 0.0);
|
||||||
float NdotH2 = NdotH*NdotH;
|
float NdotH2 = NdotH*NdotH;
|
||||||
|
|
||||||
float nom = a2;
|
float nom = a2;
|
||||||
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
|
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
|
||||||
denom = PI * denom * denom;
|
denom = PI * denom * denom;
|
||||||
|
|
||||||
return nom / denom;
|
return nom / denom;
|
||||||
}
|
}
|
||||||
// ----------------------------------------------------------------------------
|
// ----------------------------------------------------------------------------
|
||||||
float GeometrySchlickGGX(float NdotV, float roughness)
|
float GeometrySchlickGGX(float NdotV, float roughness)
|
||||||
{
|
{
|
||||||
float r = (roughness + 1.0);
|
float r = (roughness + 1.0);
|
||||||
float k = (r*r) / 8.0;
|
float k = (r*r) / 8.0;
|
||||||
|
|
||||||
float nom = NdotV;
|
float nom = NdotV;
|
||||||
float denom = NdotV * (1.0 - k) + k;
|
float denom = NdotV * (1.0 - k) + k;
|
||||||
|
|
||||||
return nom / denom;
|
return nom / denom;
|
||||||
}
|
}
|
||||||
// ----------------------------------------------------------------------------
|
// ----------------------------------------------------------------------------
|
||||||
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
|
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
|
||||||
{
|
{
|
||||||
float NdotV = max(dot(N, V), 0.0);
|
float NdotV = max(dot(N, V), 0.0);
|
||||||
float NdotL = max(dot(N, L), 0.0);
|
float NdotL = max(dot(N, L), 0.0);
|
||||||
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
|
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
|
||||||
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
|
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
|
||||||
|
|
||||||
return ggx1 * ggx2;
|
return ggx1 * ggx2;
|
||||||
}
|
}
|
||||||
// ----------------------------------------------------------------------------
|
// ----------------------------------------------------------------------------
|
||||||
vec3 fresnelSchlick(float cosTheta, vec3 F0)
|
vec3 fresnelSchlick(float cosTheta, vec3 F0)
|
||||||
{
|
{
|
||||||
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
|
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
|
||||||
}
|
}
|
||||||
// ----------------------------------------------------------------------------
|
// ----------------------------------------------------------------------------
|
||||||
vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness)
|
vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness)
|
||||||
{
|
{
|
||||||
return F0 + (max(vec3(1.0 - roughness), F0) - F0) * pow(1.0 - cosTheta, 5.0);
|
return F0 + (max(vec3(1.0 - roughness), F0) - F0) * pow(1.0 - cosTheta, 5.0);
|
||||||
}
|
}
|
||||||
// ----------------------------------------------------------------------------
|
// ----------------------------------------------------------------------------
|
||||||
void main()
|
void main()
|
||||||
{
|
{
|
||||||
vec3 N = normalize(Normal);
|
vec3 N = normalize(Normal);
|
||||||
vec3 V = normalize(camPos - WorldPos);
|
vec3 V = normalize(camPos - WorldPos);
|
||||||
vec3 R = reflect(-V, N);
|
vec3 R = reflect(-V, N);
|
||||||
|
|
||||||
// calculate reflectance at normal incidence; if dia-electric (like plastic) use F0
|
// calculate reflectance at normal incidence; if dia-electric (like plastic) use F0
|
||||||
// of 0.04 and if it's a metal, use their albedo color as F0 (metallic workflow)
|
// of 0.04 and if it's a metal, use their albedo color as F0 (metallic workflow)
|
||||||
vec3 F0 = vec3(0.04);
|
vec3 F0 = vec3(0.04);
|
||||||
F0 = mix(F0, albedo, metallic);
|
F0 = mix(F0, albedo, metallic);
|
||||||
vec3 F = fresnelSchlickRoughness(max(dot(N, V), 0.0), F0, roughness); // use modified Fresnel-Schlick approximation to take roughness into account
|
vec3 F = fresnelSchlickRoughness(max(dot(N, V), 0.0), F0, roughness); // use modified Fresnel-Schlick approximation to take roughness into account
|
||||||
|
|
||||||
// kS is equal to Fresnel
|
// kS is equal to Fresnel
|
||||||
vec3 kS = F;
|
vec3 kS = F;
|
||||||
// for energy conservation, the diffuse and specular light can't
|
// for energy conservation, the diffuse and specular light can't
|
||||||
// be above 1.0 (unless the surface emits light); to preserve this
|
// be above 1.0 (unless the surface emits light); to preserve this
|
||||||
// relationship the diffuse component (kD) should equal 1.0 - kS.
|
// relationship the diffuse component (kD) should equal 1.0 - kS.
|
||||||
vec3 kD = vec3(1.0) - kS;
|
vec3 kD = vec3(1.0) - kS;
|
||||||
// multiply kD by the inverse metalness such that only non-metals
|
// multiply kD by the inverse metalness such that only non-metals
|
||||||
// have diffuse lighting, or a linear blend if partly metal (pure metals
|
// have diffuse lighting, or a linear blend if partly metal (pure metals
|
||||||
// have no diffuse light).
|
// have no diffuse light).
|
||||||
kD *= 1.0 - metallic;
|
kD *= 1.0 - metallic;
|
||||||
|
|
||||||
// first do ambient lighting (note that the next IBL tutorial will replace
|
// first do ambient lighting (note that the next IBL tutorial will replace
|
||||||
// this ambient lighting with environment lighting).
|
// this ambient lighting with environment lighting).
|
||||||
vec3 ambient = vec3(0.01) * albedo * ao;
|
vec3 ambient = vec3(0.01) * albedo * ao;
|
||||||
|
|
||||||
// reflectance equation
|
// reflectance equation
|
||||||
vec3 Lo = vec3(0.0);
|
vec3 Lo = vec3(0.0);
|
||||||
for(int i = 0; i < 4; ++i)
|
for(int i = 0; i < 4; ++i)
|
||||||
{
|
{
|
||||||
// calculate per-light radiance
|
// calculate per-light radiance
|
||||||
@@ -102,15 +102,15 @@ void main()
|
|||||||
float distance = length(lightPositions[i] - WorldPos);
|
float distance = length(lightPositions[i] - WorldPos);
|
||||||
float attenuation = 1.0 / distance * distance;
|
float attenuation = 1.0 / distance * distance;
|
||||||
vec3 radiance = lightColors[i] * attenuation;
|
vec3 radiance = lightColors[i] * attenuation;
|
||||||
|
|
||||||
// Cook-Torrance BRDF
|
// Cook-Torrance BRDF
|
||||||
float NDF = DistributionGGX(N, H, roughness);
|
float NDF = DistributionGGX(N, H, roughness);
|
||||||
float G = GeometrySmith(N, V, L, roughness);
|
float G = GeometrySmith(N, V, L, roughness);
|
||||||
|
|
||||||
vec3 nominator = NDF * G * F;
|
vec3 nominator = NDF * G * F;
|
||||||
float denominator = 4 * max(dot(V, N), 0.0) * max(dot(L, N), 0.0) + 0.001; // 0.001 to prevent divide by zero.
|
float denominator = 4 * max(dot(V, N), 0.0) * max(dot(L, N), 0.0) + 0.001; // 0.001 to prevent divide by zero.
|
||||||
vec3 brdf = nominator / denominator;
|
vec3 brdf = nominator / denominator;
|
||||||
|
|
||||||
// scale light by NdotL
|
// scale light by NdotL
|
||||||
float NdotL = max(dot(N, L), 0.0);
|
float NdotL = max(dot(N, L), 0.0);
|
||||||
|
|
||||||
@@ -118,11 +118,11 @@ void main()
|
|||||||
Lo += (kD * albedo / PI + kS * brdf) * radiance * NdotL;
|
Lo += (kD * albedo / PI + kS * brdf) * radiance * NdotL;
|
||||||
}
|
}
|
||||||
vec3 color = ambient + Lo;
|
vec3 color = ambient + Lo;
|
||||||
|
|
||||||
// HDR tonemapping
|
// HDR tonemapping
|
||||||
color = color / (color + vec3(1.0));
|
color = color / (color + vec3(1.0));
|
||||||
// gamma correct
|
// gamma correct
|
||||||
color = pow(color, vec3(1.0/2.2));
|
color = pow(color, vec3(1.0/2.2));
|
||||||
|
|
||||||
FragColor = vec4(color, 1.0);
|
FragColor = vec4(color, 1.0);
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -13,9 +13,9 @@ uniform mat4 model;
|
|||||||
|
|
||||||
void main()
|
void main()
|
||||||
{
|
{
|
||||||
TexCoords = texCoords;
|
TexCoords = texCoords;
|
||||||
WorldPos = vec3(model * vec4(pos, 1.0f));
|
WorldPos = vec3(model * vec4(pos, 1.0f));
|
||||||
Normal = mat3(model) * normal;
|
Normal = mat3(model) * normal;
|
||||||
|
|
||||||
gl_Position = projection * view * vec4(WorldPos, 1.0);
|
gl_Position = projection * view * vec4(WorldPos, 1.0);
|
||||||
}
|
}
|
||||||
@@ -28,7 +28,7 @@ const float PI = 3.14159265359;
|
|||||||
vec3 getNormal()
|
vec3 getNormal()
|
||||||
{
|
{
|
||||||
vec3 tangentNormal = texture(normalMap, TexCoords).xyz * 2.0 - 1.0;
|
vec3 tangentNormal = texture(normalMap, TexCoords).xyz * 2.0 - 1.0;
|
||||||
|
|
||||||
vec3 Q1 = dFdx(WorldPos);
|
vec3 Q1 = dFdx(WorldPos);
|
||||||
vec3 Q2 = dFdy(WorldPos);
|
vec3 Q2 = dFdy(WorldPos);
|
||||||
vec2 st1 = dFdx(TexCoords);
|
vec2 st1 = dFdx(TexCoords);
|
||||||
@@ -44,83 +44,83 @@ vec3 getNormal()
|
|||||||
// ----------------------------------------------------------------------------
|
// ----------------------------------------------------------------------------
|
||||||
float DistributionGGX(vec3 N, vec3 H, float roughness)
|
float DistributionGGX(vec3 N, vec3 H, float roughness)
|
||||||
{
|
{
|
||||||
float a = roughness*roughness;
|
float a = roughness*roughness;
|
||||||
float a2 = a*a;
|
float a2 = a*a;
|
||||||
float NdotH = max(dot(N, H), 0.0);
|
float NdotH = max(dot(N, H), 0.0);
|
||||||
float NdotH2 = NdotH*NdotH;
|
float NdotH2 = NdotH*NdotH;
|
||||||
|
|
||||||
float nom = a2;
|
float nom = a2;
|
||||||
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
|
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
|
||||||
denom = PI * denom * denom;
|
denom = PI * denom * denom;
|
||||||
|
|
||||||
return nom / denom;
|
return nom / denom;
|
||||||
}
|
}
|
||||||
// ----------------------------------------------------------------------------
|
// ----------------------------------------------------------------------------
|
||||||
float GeometrySchlickGGX(float NdotV, float roughness)
|
float GeometrySchlickGGX(float NdotV, float roughness)
|
||||||
{
|
{
|
||||||
float r = (roughness + 1.0);
|
float r = (roughness + 1.0);
|
||||||
float k = (r*r) / 8.0;
|
float k = (r*r) / 8.0;
|
||||||
|
|
||||||
float nom = NdotV;
|
float nom = NdotV;
|
||||||
float denom = NdotV * (1.0 - k) + k;
|
float denom = NdotV * (1.0 - k) + k;
|
||||||
|
|
||||||
return nom / denom;
|
return nom / denom;
|
||||||
}
|
}
|
||||||
// ----------------------------------------------------------------------------
|
// ----------------------------------------------------------------------------
|
||||||
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
|
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
|
||||||
{
|
{
|
||||||
float NdotV = max(dot(N, V), 0.0);
|
float NdotV = max(dot(N, V), 0.0);
|
||||||
float NdotL = max(dot(N, L), 0.0);
|
float NdotL = max(dot(N, L), 0.0);
|
||||||
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
|
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
|
||||||
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
|
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
|
||||||
|
|
||||||
return ggx1 * ggx2;
|
return ggx1 * ggx2;
|
||||||
}
|
}
|
||||||
// ----------------------------------------------------------------------------
|
// ----------------------------------------------------------------------------
|
||||||
vec3 fresnelSchlick(float cosTheta, vec3 F0)
|
vec3 fresnelSchlick(float cosTheta, vec3 F0)
|
||||||
{
|
{
|
||||||
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
|
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
|
||||||
}
|
}
|
||||||
// ----------------------------------------------------------------------------
|
// ----------------------------------------------------------------------------
|
||||||
vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness)
|
vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness)
|
||||||
{
|
{
|
||||||
return F0 + (max(vec3(1.0 - roughness), F0) - F0) * pow(1.0 - cosTheta, 5.0);
|
return F0 + (max(vec3(1.0 - roughness), F0) - F0) * pow(1.0 - cosTheta, 5.0);
|
||||||
}
|
}
|
||||||
// ----------------------------------------------------------------------------
|
// ----------------------------------------------------------------------------
|
||||||
void main()
|
void main()
|
||||||
{
|
{
|
||||||
vec3 albedo = pow(texture(albedoMap, TexCoords).rgb, vec3(2.2));
|
vec3 albedo = pow(texture(albedoMap, TexCoords).rgb, vec3(2.2));
|
||||||
float metallic = texture(metallicMap, TexCoords).r;
|
float metallic = texture(metallicMap, TexCoords).r;
|
||||||
float roughness = texture(roughnessMap, TexCoords).r;
|
float roughness = texture(roughnessMap, TexCoords).r;
|
||||||
float ao = texture(aoMap, TexCoords).r;
|
float ao = texture(aoMap, TexCoords).r;
|
||||||
|
|
||||||
vec3 N = getNormal();
|
vec3 N = getNormal();
|
||||||
vec3 V = normalize(camPos - WorldPos);
|
vec3 V = normalize(camPos - WorldPos);
|
||||||
vec3 R = reflect(-V, N);
|
vec3 R = reflect(-V, N);
|
||||||
|
|
||||||
// calculate reflectance at normal incidence; if dia-electric (like plastic) use F0
|
// calculate reflectance at normal incidence; if dia-electric (like plastic) use F0
|
||||||
// of 0.04 and if it's a metal, use their albedo color as F0 (metallic workflow)
|
// of 0.04 and if it's a metal, use their albedo color as F0 (metallic workflow)
|
||||||
vec3 F0 = vec3(0.04);
|
vec3 F0 = vec3(0.04);
|
||||||
F0 = mix(F0, albedo, metallic);
|
F0 = mix(F0, albedo, metallic);
|
||||||
vec3 F = fresnelSchlickRoughness(max(dot(N, V), 0.0), F0, roughness); // use modified Fresnel-Schlick approximation to take roughness into account
|
vec3 F = fresnelSchlickRoughness(max(dot(N, V), 0.0), F0, roughness); // use modified Fresnel-Schlick approximation to take roughness into account
|
||||||
|
|
||||||
// kS is equal to Fresnel
|
// kS is equal to Fresnel
|
||||||
vec3 kS = F;
|
vec3 kS = F;
|
||||||
// for energy conservation, the diffuse and specular light can't
|
// for energy conservation, the diffuse and specular light can't
|
||||||
// be above 1.0 (unless the surface emits light); to preserve this
|
// be above 1.0 (unless the surface emits light); to preserve this
|
||||||
// relationship the diffuse component (kD) should equal 1.0 - kS.
|
// relationship the diffuse component (kD) should equal 1.0 - kS.
|
||||||
vec3 kD = vec3(1.0) - kS;
|
vec3 kD = vec3(1.0) - kS;
|
||||||
// multiply kD by the inverse metalness such that only non-metals
|
// multiply kD by the inverse metalness such that only non-metals
|
||||||
// have diffuse lighting, or a linear blend if partly metal (pure metals
|
// have diffuse lighting, or a linear blend if partly metal (pure metals
|
||||||
// have no diffuse light).
|
// have no diffuse light).
|
||||||
kD *= 1.0 - metallic;
|
kD *= 1.0 - metallic;
|
||||||
|
|
||||||
// first do ambient lighting (note that the next IBL tutorial will replace
|
// first do ambient lighting (note that the next IBL tutorial will replace
|
||||||
// this ambient lighting with environment lighting).
|
// this ambient lighting with environment lighting).
|
||||||
vec3 ambient = vec3(0.01) * albedo * ao;
|
vec3 ambient = vec3(0.01) * albedo * ao;
|
||||||
|
|
||||||
// reflectance equation
|
// reflectance equation
|
||||||
vec3 Lo = vec3(0.0);
|
vec3 Lo = vec3(0.0);
|
||||||
for(int i = 0; i < 4; ++i)
|
for(int i = 0; i < 4; ++i)
|
||||||
{
|
{
|
||||||
// calculate per-light radiance
|
// calculate per-light radiance
|
||||||
@@ -129,7 +129,7 @@ void main()
|
|||||||
float distance = length(lightPositions[i] - WorldPos);
|
float distance = length(lightPositions[i] - WorldPos);
|
||||||
float attenuation = 1.0 / distance * distance;
|
float attenuation = 1.0 / distance * distance;
|
||||||
vec3 radiance = lightColors[i] * attenuation;
|
vec3 radiance = lightColors[i] * attenuation;
|
||||||
|
|
||||||
// Cook-Torrance BRDF
|
// Cook-Torrance BRDF
|
||||||
float NDF = DistributionGGX(N, H, roughness);
|
float NDF = DistributionGGX(N, H, roughness);
|
||||||
float G = GeometrySmith(N, V, L, roughness);
|
float G = GeometrySmith(N, V, L, roughness);
|
||||||
@@ -145,11 +145,11 @@ void main()
|
|||||||
Lo += (kD * albedo / PI + kS * brdf) * radiance * NdotL;
|
Lo += (kD * albedo / PI + kS * brdf) * radiance * NdotL;
|
||||||
}
|
}
|
||||||
vec3 color = ambient + Lo;
|
vec3 color = ambient + Lo;
|
||||||
|
|
||||||
// HDR tonemapping
|
// HDR tonemapping
|
||||||
color = color / (color + vec3(1.0));
|
color = color / (color + vec3(1.0));
|
||||||
// gamma correct
|
// gamma correct
|
||||||
color = pow(color, vec3(1.0/2.2));
|
color = pow(color, vec3(1.0/2.2));
|
||||||
|
|
||||||
FragColor = vec4(color, 1.0);
|
FragColor = vec4(color, 1.0);
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -13,9 +13,9 @@ uniform mat4 model;
|
|||||||
|
|
||||||
void main()
|
void main()
|
||||||
{
|
{
|
||||||
TexCoords = texCoords;
|
TexCoords = texCoords;
|
||||||
WorldPos = vec3(model * vec4(pos, 1.0f));
|
WorldPos = vec3(model * vec4(pos, 1.0f));
|
||||||
Normal = mat3(model) * normal;
|
Normal = mat3(model) * normal;
|
||||||
|
|
||||||
gl_Position = projection * view * vec4(WorldPos, 1.0);
|
gl_Position = projection * view * vec4(WorldPos, 1.0);
|
||||||
}
|
}
|
||||||
Reference in New Issue
Block a user