Update GLM to latest version (0.9.9.3). This includes GLM's change of matrices no longer default initializing to the identity matrix. This commit thus also includes the update of all of LearnOpenGL's code to reflect this: all matrices are now constructor-initialized to the identity matrix where relevant.

This commit is contained in:
Joey de Vries
2018-12-30 14:27:14 +01:00
parent 239c456ae9
commit f4b6763356
474 changed files with 38219 additions and 38025 deletions

View File

@@ -0,0 +1,69 @@
namespace glm
{
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER qua<T, Q> exp(qua<T, Q> const& q)
{
vec<3, T, Q> u(q.x, q.y, q.z);
T const Angle = glm::length(u);
if (Angle < epsilon<T>())
return qua<T, Q>();
vec<3, T, Q> const v(u / Angle);
return qua<T, Q>(cos(Angle), sin(Angle) * v);
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER qua<T, Q> log(qua<T, Q> const& q)
{
vec<3, T, Q> u(q.x, q.y, q.z);
T Vec3Len = length(u);
if (Vec3Len < epsilon<T>())
{
if(q.w > static_cast<T>(0))
return qua<T, Q>(log(q.w), static_cast<T>(0), static_cast<T>(0), static_cast<T>(0));
else if(q.w < static_cast<T>(0))
return qua<T, Q>(log(-q.w), pi<T>(), static_cast<T>(0), static_cast<T>(0));
else
return qua<T, Q>(std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity());
}
else
{
T t = atan(Vec3Len, T(q.w)) / Vec3Len;
T QuatLen2 = Vec3Len * Vec3Len + q.w * q.w;
return qua<T, Q>(static_cast<T>(0.5) * log(QuatLen2), t * q.x, t * q.y, t * q.z);
}
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER qua<T, Q> pow(qua<T, Q> const& x, T y)
{
//Raising to the power of 0 should yield 1
//Needed to prevent a division by 0 error later on
if(y > -epsilon<T>() && y < epsilon<T>())
return qua<T, Q>(1,0,0,0);
//To deal with non-unit quaternions
T magnitude = sqrt(x.x * x.x + x.y * x.y + x.z * x.z + x.w *x.w);
//Equivalent to raising a real number to a power
//Needed to prevent a division by 0 error later on
if(abs(x.w / magnitude) > static_cast<T>(1) - epsilon<T>() && abs(x.w / magnitude) < static_cast<T>(1) + epsilon<T>())
return qua<T, Q>(pow(x.w, y), 0, 0, 0);
T Angle = acos(x.w / magnitude);
T NewAngle = Angle * y;
T Div = sin(NewAngle) / sin(Angle);
T Mag = pow(magnitude, y - static_cast<T>(1));
return qua<T, Q>(cos(NewAngle) * magnitude * Mag, x.x * Div * Mag, x.y * Div * Mag, x.z * Div * Mag);
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER qua<T, Q> sqrt(qua<T, Q> const& x)
{
return pow(x, static_cast<T>(0.5));
}
}//namespace glm