Update GLM to latest version (0.9.9.3). This includes GLM's change of matrices no longer default initializing to the identity matrix. This commit thus also includes the update of all of LearnOpenGL's code to reflect this: all matrices are now constructor-initialized to the identity matrix where relevant.

This commit is contained in:
Joey de Vries
2018-12-30 14:27:14 +01:00
parent 239c456ae9
commit f4b6763356
474 changed files with 38219 additions and 38025 deletions

View File

@@ -1,75 +1,40 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_matrix_decompose
/// @file glm/gtx/matrix_decompose.inl
/// @date 2014-08-29 / 2014-08-29
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////
namespace glm
#include "../gtc/constants.hpp"
#include "../gtc/epsilon.hpp"
namespace glm{
namespace detail
{
/// Make a linear combination of two vectors and return the result.
// result = (a * ascl) + (b * bscl)
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec3<T, P> combine(
tvec3<T, P> const & a,
tvec3<T, P> const & b,
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<3, T, Q> combine(
vec<3, T, Q> const& a,
vec<3, T, Q> const& b,
T ascl, T bscl)
{
return (a * ascl) + (b * bscl);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER void v3Scale(tvec3<T, P> & v, T desiredLength)
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<3, T, Q> scale(vec<3, T, Q> const& v, T desiredLength)
{
T len = glm::length(v);
if(len != 0)
{
T l = desiredLength / len;
v[0] *= l;
v[1] *= l;
v[2] *= l;
}
return v * desiredLength / length(v);
}
}//namespace detail
/**
* Matrix decompose
* http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp
* Decomposes the mode matrix to translations,rotation scale components
*
*/
// Matrix decompose
// http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp
// Decomposes the mode matrix to translations,rotation scale components
template <typename T, precision P>
GLM_FUNC_QUALIFIER bool decompose(tmat4x4<T, P> const & ModelMatrix, tvec3<T, P> & Scale, tquat<T, P> & Orientation, tvec3<T, P> & Translation, tvec3<T, P> & Skew, tvec4<T, P> & Perspective)
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER bool decompose(mat<4, 4, T, Q> const& ModelMatrix, vec<3, T, Q> & Scale, qua<T, Q> & Orientation, vec<3, T, Q> & Translation, vec<3, T, Q> & Skew, vec<4, T, Q> & Perspective)
{
tmat4x4<T, P> LocalMatrix(ModelMatrix);
mat<4, 4, T, Q> LocalMatrix(ModelMatrix);
// Normalize the matrix.
if(LocalMatrix[3][3] == static_cast<T>(0))
if(epsilonEqual(LocalMatrix[3][3], static_cast<T>(0), epsilon<T>()))
return false;
for(length_t i = 0; i < 4; ++i)
@@ -78,21 +43,24 @@ namespace glm
// perspectiveMatrix is used to solve for perspective, but it also provides
// an easy way to test for singularity of the upper 3x3 component.
tmat4x4<T, P> PerspectiveMatrix(LocalMatrix);
mat<4, 4, T, Q> PerspectiveMatrix(LocalMatrix);
for(length_t i = 0; i < 3; i++)
PerspectiveMatrix[i][3] = static_cast<T>(0);
PerspectiveMatrix[3][3] = static_cast<T>(1);
/// TODO: Fixme!
if(determinant(PerspectiveMatrix) == static_cast<T>(0))
if(epsilonEqual(determinant(PerspectiveMatrix), static_cast<T>(0), epsilon<T>()))
return false;
// First, isolate perspective. This is the messiest.
if(LocalMatrix[0][3] != static_cast<T>(0) || LocalMatrix[1][3] != static_cast<T>(0) || LocalMatrix[2][3] != static_cast<T>(0))
if(
epsilonNotEqual(LocalMatrix[0][3], static_cast<T>(0), epsilon<T>()) ||
epsilonNotEqual(LocalMatrix[1][3], static_cast<T>(0), epsilon<T>()) ||
epsilonNotEqual(LocalMatrix[2][3], static_cast<T>(0), epsilon<T>()))
{
// rightHandSide is the right hand side of the equation.
tvec4<T, P> RightHandSide;
vec<4, T, Q> RightHandSide;
RightHandSide[0] = LocalMatrix[0][3];
RightHandSide[1] = LocalMatrix[1][3];
RightHandSide[2] = LocalMatrix[2][3];
@@ -101,8 +69,8 @@ namespace glm
// Solve the equation by inverting PerspectiveMatrix and multiplying
// rightHandSide by the inverse. (This is the easiest way, not
// necessarily the best.)
tmat4x4<T, P> InversePerspectiveMatrix = glm::inverse(PerspectiveMatrix);// inverse(PerspectiveMatrix, inversePerspectiveMatrix);
tmat4x4<T, P> TransposedInversePerspectiveMatrix = glm::transpose(InversePerspectiveMatrix);// transposeMatrix4(inversePerspectiveMatrix, transposedInversePerspectiveMatrix);
mat<4, 4, T, Q> InversePerspectiveMatrix = glm::inverse(PerspectiveMatrix);// inverse(PerspectiveMatrix, inversePerspectiveMatrix);
mat<4, 4, T, Q> TransposedInversePerspectiveMatrix = glm::transpose(InversePerspectiveMatrix);// transposeMatrix4(inversePerspectiveMatrix, transposedInversePerspectiveMatrix);
Perspective = TransposedInversePerspectiveMatrix * RightHandSide;
// v4MulPointByMatrix(rightHandSide, transposedInversePerspectiveMatrix, perspectivePoint);
@@ -114,43 +82,43 @@ namespace glm
else
{
// No perspective.
Perspective = tvec4<T, P>(0, 0, 0, 1);
Perspective = vec<4, T, Q>(0, 0, 0, 1);
}
// Next take care of translation (easy).
Translation = tvec3<T, P>(LocalMatrix[3]);
LocalMatrix[3] = tvec4<T, P>(0, 0, 0, LocalMatrix[3].w);
Translation = vec<3, T, Q>(LocalMatrix[3]);
LocalMatrix[3] = vec<4, T, Q>(0, 0, 0, LocalMatrix[3].w);
tvec3<T, P> Row[3], Pdum3;
vec<3, T, Q> Row[3], Pdum3;
// Now get scale and shear.
for(length_t i = 0; i < 3; ++i)
for(int j = 0; j < 3; ++j)
Row[i][j] = LocalMatrix[i][j];
for(length_t j = 0; j < 3; ++j)
Row[i][j] = LocalMatrix[i][j];
// Compute X scale factor and normalize first row.
Scale.x = length(Row[0]);// v3Length(Row[0]);
v3Scale(Row[0], static_cast<T>(1));
Row[0] = detail::scale(Row[0], static_cast<T>(1));
// Compute XY shear factor and make 2nd row orthogonal to 1st.
Skew.z = dot(Row[0], Row[1]);
Row[1] = combine(Row[1], Row[0], static_cast<T>(1), -Skew.z);
Row[1] = detail::combine(Row[1], Row[0], static_cast<T>(1), -Skew.z);
// Now, compute Y scale and normalize 2nd row.
Scale.y = length(Row[1]);
v3Scale(Row[1], static_cast<T>(1));
Row[1] = detail::scale(Row[1], static_cast<T>(1));
Skew.z /= Scale.y;
// Compute XZ and YZ shears, orthogonalize 3rd row.
Skew.y = glm::dot(Row[0], Row[2]);
Row[2] = combine(Row[2], Row[0], static_cast<T>(1), -Skew.y);
Row[2] = detail::combine(Row[2], Row[0], static_cast<T>(1), -Skew.y);
Skew.x = glm::dot(Row[1], Row[2]);
Row[2] = combine(Row[2], Row[1], static_cast<T>(1), -Skew.x);
Row[2] = detail::combine(Row[2], Row[1], static_cast<T>(1), -Skew.x);
// Next, get Z scale and normalize 3rd row.
Scale.z = length(Row[2]);
v3Scale(Row[2], static_cast<T>(1));
Row[2] = detail::scale(Row[2], static_cast<T>(1));
Skew.y /= Scale.z;
Skew.x /= Scale.z;
@@ -162,7 +130,7 @@ namespace glm
{
for(length_t i = 0; i < 3; i++)
{
Scale.x *= static_cast<T>(-1);
Scale[i] *= static_cast<T>(-1);
Row[i] *= static_cast<T>(-1);
}
}
@@ -184,47 +152,34 @@ namespace glm
// ret.rotateZ = 0;
// }
T s, t, x, y, z, w;
t = Row[0][0] + Row[1][1] + Row[2][2] + static_cast<T>(1);
if(t > static_cast<T>(1e-4))
int i, j, k = 0;
float root, trace = Row[0].x + Row[1].y + Row[2].z;
if(trace > static_cast<T>(0))
{
s = static_cast<T>(0.5) / sqrt(t);
w = static_cast<T>(0.25) / s;
x = (Row[2][1] - Row[1][2]) * s;
y = (Row[0][2] - Row[2][0]) * s;
z = (Row[1][0] - Row[0][1]) * s;
}
else if(Row[0][0] > Row[1][1] && Row[0][0] > Row[2][2])
{
s = sqrt (static_cast<T>(1) + Row[0][0] - Row[1][1] - Row[2][2]) * static_cast<T>(2); // S=4*qx
x = static_cast<T>(0.25) * s;
y = (Row[0][1] + Row[1][0]) / s;
z = (Row[0][2] + Row[2][0]) / s;
w = (Row[2][1] - Row[1][2]) / s;
}
else if(Row[1][1] > Row[2][2])
{
s = sqrt (static_cast<T>(1) + Row[1][1] - Row[0][0] - Row[2][2]) * static_cast<T>(2); // S=4*qy
x = (Row[0][1] + Row[1][0]) / s;
y = static_cast<T>(0.25) * s;
z = (Row[1][2] + Row[2][1]) / s;
w = (Row[0][2] - Row[2][0]) / s;
}
root = sqrt(trace + static_cast<T>(1.0));
Orientation.w = static_cast<T>(0.5) * root;
root = static_cast<T>(0.5) / root;
Orientation.x = root * (Row[1].z - Row[2].y);
Orientation.y = root * (Row[2].x - Row[0].z);
Orientation.z = root * (Row[0].y - Row[1].x);
} // End if > 0
else
{
s = sqrt(static_cast<T>(1) + Row[2][2] - Row[0][0] - Row[1][1]) * static_cast<T>(2); // S=4*qz
x = (Row[0][2] + Row[2][0]) / s;
y = (Row[1][2] + Row[2][1]) / s;
z = static_cast<T>(0.25) * s;
w = (Row[1][0] - Row[0][1]) / s;
}
{
static int Next[3] = {1, 2, 0};
i = 0;
if(Row[1].y > Row[0].x) i = 1;
if(Row[2].z > Row[i][i]) i = 2;
j = Next[i];
k = Next[j];
Orientation.x = x;
Orientation.y = y;
Orientation.z = z;
Orientation.w = w;
root = sqrt(Row[i][i] - Row[j][j] - Row[k][k] + static_cast<T>(1.0));
Orientation[i] = static_cast<T>(0.5) * root;
root = static_cast<T>(0.5) / root;
Orientation[j] = root * (Row[i][j] + Row[j][i]);
Orientation[k] = root * (Row[i][k] + Row[k][i]);
Orientation.w = root * (Row[j][k] - Row[k][j]);
} // End if <= 0
return true;
}