Update GLM to latest version (0.9.9.3). This includes GLM's change of matrices no longer default initializing to the identity matrix. This commit thus also includes the update of all of LearnOpenGL's code to reflect this: all matrices are now constructor-initialized to the identity matrix where relevant.

This commit is contained in:
Joey de Vries
2018-12-30 14:27:14 +01:00
parent 239c456ae9
commit f4b6763356
474 changed files with 38219 additions and 38025 deletions

View File

@@ -1,174 +1,66 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_quaternion
/// @file glm/gtx/quaternion.inl
/// @date 2005-12-21 / 2011-06-07
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////
#include <limits>
#include "../gtc/constants.hpp"
namespace glm
{
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec3<T, P> cross
(
tvec3<T, P> const & v,
tquat<T, P> const & q
)
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER qua<T, Q> quat_identity()
{
return qua<T, Q>(static_cast<T>(1), static_cast<T>(0), static_cast<T>(0), static_cast<T>(0));
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<3, T, Q> cross(vec<3, T, Q> const& v, qua<T, Q> const& q)
{
return inverse(q) * v;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec3<T, P> cross
(
tquat<T, P> const & q,
tvec3<T, P> const & v
)
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<3, T, Q> cross(qua<T, Q> const& q, vec<3, T, Q> const& v)
{
return q * v;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> squad
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER qua<T, Q> squad
(
tquat<T, P> const & q1,
tquat<T, P> const & q2,
tquat<T, P> const & s1,
tquat<T, P> const & s2,
T const & h)
qua<T, Q> const& q1,
qua<T, Q> const& q2,
qua<T, Q> const& s1,
qua<T, Q> const& s2,
T const& h)
{
return mix(mix(q1, q2, h), mix(s1, s2, h), static_cast<T>(2) * (static_cast<T>(1) - h) * h);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> intermediate
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER qua<T, Q> intermediate
(
tquat<T, P> const & prev,
tquat<T, P> const & curr,
tquat<T, P> const & next
qua<T, Q> const& prev,
qua<T, Q> const& curr,
qua<T, Q> const& next
)
{
tquat<T, P> invQuat = inverse(curr);
return exp((log(next + invQuat) + log(prev + invQuat)) / static_cast<T>(-4)) * curr;
qua<T, Q> invQuat = inverse(curr);
return exp((log(next * invQuat) + log(prev * invQuat)) / static_cast<T>(-4)) * curr;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> exp
(
tquat<T, P> const & q
)
{
tvec3<T, P> u(q.x, q.y, q.z);
T Angle = glm::length(u);
if (Angle < epsilon<T>())
return tquat<T, P>();
tvec3<T, P> v(u / Angle);
return tquat<T, P>(cos(Angle), sin(Angle) * v);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> log
(
tquat<T, P> const & q
)
{
tvec3<T, P> u(q.x, q.y, q.z);
T Vec3Len = length(u);
if (Vec3Len < epsilon<T>())
{
if(q.w > static_cast<T>(0))
return tquat<T, P>(log(q.w), static_cast<T>(0), static_cast<T>(0), static_cast<T>(0));
else if(q.w < static_cast<T>(0))
return tquat<T, P>(log(-q.w), pi<T>(), static_cast<T>(0), static_cast<T>(0));
else
return tquat<T, P>(std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity());
}
else
{
T QuatLen = sqrt(Vec3Len * Vec3Len + q.w * q.w);
T t = atan(Vec3Len, T(q.w)) / Vec3Len;
return tquat<T, P>(log(QuatLen), t * q.x, t * q.y, t * q.z);
}
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> pow(tquat<T, P> const & x, T const & y)
{
//Raising to the power of 0 should yield 1
//Needed to prevent a division by 0 error later on
if(y > -epsilon<T>() && y < epsilon<T>())
return tquat<T, P>(1,0,0,0);
//To deal with non-unit quaternions
T magnitude = sqrt(x.x * x.x + x.y * x.y + x.z * x.z + x.w *x.w);
//Equivalent to raising a real number to a power
//Needed to prevent a division by 0 error later on
if(abs(x.w / magnitude) > static_cast<T>(1) - epsilon<T>() && abs(x.w / magnitude) < static_cast<T>(1) + epsilon<T>())
return tquat<T, P>(pow(x.w, y),0,0,0);
T Angle = acos(x.w / magnitude);
T NewAngle = Angle * y;
T Div = sin(NewAngle) / sin(Angle);
T Mag = pow(magnitude, y-1);
return tquat<T, P>(cos(NewAngle) * magnitude * Mag, x.x * Div * Mag, x.y * Div * Mag, x.z * Div * Mag);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec3<T, P> rotate
(
tquat<T, P> const & q,
tvec3<T, P> const & v
)
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<3, T, Q> rotate(qua<T, Q> const& q, vec<3, T, Q> const& v)
{
return q * v;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec4<T, P> rotate
(
tquat<T, P> const & q,
tvec4<T, P> const & v
)
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<4, T, Q> rotate(qua<T, Q> const& q, vec<4, T, Q> const& v)
{
return q * v;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T extractRealComponent
(
tquat<T, P> const & q
)
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER T extractRealComponent(qua<T, Q> const& q)
{
T w = static_cast<T>(1) - q.x * q.x - q.y * q.y - q.z * q.z;
if(w < T(0))
@@ -177,28 +69,20 @@ namespace glm
return -sqrt(w);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T length2
(
tquat<T, P> const & q
)
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER T length2(qua<T, Q> const& q)
{
return q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> shortMix
(
tquat<T, P> const & x,
tquat<T, P> const & y,
T const & a
)
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER qua<T, Q> shortMix(qua<T, Q> const& x, qua<T, Q> const& y, T const& a)
{
if(a <= static_cast<T>(0)) return x;
if(a >= static_cast<T>(1)) return y;
T fCos = dot(x, y);
tquat<T, P> y2(y); //BUG!!! tquat<T> y2;
qua<T, Q> y2(y); //BUG!!! qua<T> y2;
if(fCos < static_cast<T>(0))
{
y2 = -y;
@@ -221,36 +105,29 @@ namespace glm
k1 = sin((static_cast<T>(0) + a) * fAngle) * fOneOverSin;
}
return tquat<T, P>(
return qua<T, Q>(
k0 * x.w + k1 * y2.w,
k0 * x.x + k1 * y2.x,
k0 * x.y + k1 * y2.y,
k0 * x.z + k1 * y2.z);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> fastMix
(
tquat<T, P> const & x,
tquat<T, P> const & y,
T const & a
)
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER qua<T, Q> fastMix(qua<T, Q> const& x, qua<T, Q> const& y, T const& a)
{
return glm::normalize(x * (static_cast<T>(1) - a) + (y * a));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> rotation
(
tvec3<T, P> const & orig,
tvec3<T, P> const & dest
)
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER qua<T, Q> rotation(vec<3, T, Q> const& orig, vec<3, T, Q> const& dest)
{
T cosTheta = dot(orig, dest);
tvec3<T, P> rotationAxis;
vec<3, T, Q> rotationAxis;
if(cosTheta >= static_cast<T>(1) - epsilon<T>())
return quat();
if(cosTheta >= static_cast<T>(1) - epsilon<T>()) {
// orig and dest point in the same direction
return quat_identity<T,Q>();
}
if(cosTheta < static_cast<T>(-1) + epsilon<T>())
{
@@ -259,9 +136,9 @@ namespace glm
// So guess one; any will do as long as it's perpendicular to start
// This implementation favors a rotation around the Up axis (Y),
// since it's often what you want to do.
rotationAxis = cross(tvec3<T, P>(0, 0, 1), orig);
rotationAxis = cross(vec<3, T, Q>(0, 0, 1), orig);
if(length2(rotationAxis) < epsilon<T>()) // bad luck, they were parallel, try again!
rotationAxis = cross(tvec3<T, P>(1, 0, 0), orig);
rotationAxis = cross(vec<3, T, Q>(1, 0, 0), orig);
rotationAxis = normalize(rotationAxis);
return angleAxis(pi<T>(), rotationAxis);
@@ -273,11 +150,10 @@ namespace glm
T s = sqrt((T(1) + cosTheta) * static_cast<T>(2));
T invs = static_cast<T>(1) / s;
return tquat<T, P>(
s * static_cast<T>(0.5f),
return qua<T, Q>(
s * static_cast<T>(0.5f),
rotationAxis.x * invs,
rotationAxis.y * invs,
rotationAxis.z * invs);
}
}//namespace glm