Shadow tutorials added

Added source code of shadow mapping and omnidirectional shadow mapping
tutorial.
This commit is contained in:
Joey de Vries
2015-05-15 11:25:35 +02:00
parent 052070123a
commit f6c5ac42fc
14 changed files with 691 additions and 207 deletions

View File

@@ -110,13 +110,13 @@ set(5.advanced_lighting
2.gamma_correction 2.gamma_correction
3.1.shadow_mapping 3.1.shadow_mapping
3.2.point_shadows 3.2.point_shadows
3.3.csm # 3.3.csm
4.normal_mapping # 4.normal_mapping
5.parallax_mapping # 5.parallax_mapping
6.hdr # 6.hdr
7.bloom # 7.bloom
8.deferred_shading # 8.deferred_shading
9.ssao # 9.ssao
) )

View File

@@ -0,0 +1,11 @@
#version 330 core
layout (location = 0) in vec3 position;
layout (location = 1) in vec2 texCoords;
out vec2 TexCoords;
void main()
{
gl_Position = vec4(position, 1.0f);
TexCoords = texCoords;
}

View File

@@ -0,0 +1,20 @@
#version 330 core
out vec4 color;
in vec2 TexCoords;
uniform sampler2D depthMap;
uniform float near_plane;
uniform float far_plane;
float LinearizeDepth(float depth)
{
float z = depth * 2.0 - 1.0; // Back to NDC
return (2.0 * near_plane * far_plane) / (far_plane + near_plane - z * (far_plane - near_plane));
}
void main()
{
float depthValue = texture(depthMap, TexCoords).r;
// color = vec4(vec3(LinearizeDepth(depthValue) / far_plane), 1.0); // perspective
color = vec4(vec3(depthValue), 1.0); // orthographic
}

View File

@@ -26,6 +26,9 @@ void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void mouse_callback(GLFWwindow* window, double xpos, double ypos); void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void Do_Movement(); void Do_Movement();
GLuint loadTexture(GLchar* path); GLuint loadTexture(GLchar* path);
void RenderScene(Shader &shader);
void RenderCube();
void RenderQuad();
// Camera // Camera
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f)); Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
@@ -35,7 +38,11 @@ GLfloat deltaTime = 0.0f;
GLfloat lastFrame = 0.0f; GLfloat lastFrame = 0.0f;
// Options // Options
GLboolean blinn = false; GLboolean shadows = true;
// Global variables
GLuint woodTexture;
GLuint planeVAO;
// The MAIN function, from here we start our application and run our Game loop // The MAIN function, from here we start our application and run our Game loop
int main() int main()
@@ -71,19 +78,25 @@ int main()
// Setup and compile our shaders // Setup and compile our shaders
Shader shader("shadow_mapping.vs", "shadow_mapping.frag"); Shader shader("shadow_mapping.vs", "shadow_mapping.frag");
Shader simpleDepthShader("shadow_mapping_depth.vs", "shadow_mapping_depth.frag"); Shader simpleDepthShader("shadow_mapping_depth.vs", "shadow_mapping_depth.frag");
Shader debugDepthQuad("debug_quad.vs", "debug_quad_depth.frag");
// Set texture samples
shader.Use();
glUniform1i(glGetUniformLocation(shader.Program, "diffuseTexture"), 0);
glUniform1i(glGetUniformLocation(shader.Program, "shadowMap"), 1);
GLfloat planeVertices[] = { GLfloat planeVertices[] = {
// Positions // Normals // Texture Coords // Positions // Normals // Texture Coords
8.0f, -0.5f, 8.0f, 0.0f, 1.0f, 0.0f, 5.0f, 0.0f, 25.0f, -0.5f, 25.0f, 0.0f, 1.0f, 0.0f, 25.0f, 0.0f,
-8.0f, -0.5f, 8.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, -25.0f, -0.5f, -25.0f, 0.0f, 1.0f, 0.0f, 0.0f, 25.0f,
-8.0f, -0.5f, -8.0f, 0.0f, 1.0f, 0.0f, 0.0f, 5.0f, -25.0f, -0.5f, 25.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f,
8.0f, -0.5f, 8.0f, 0.0f, 1.0f, 0.0f, 5.0f, 0.0f, 25.0f, -0.5f, 25.0f, 0.0f, 1.0f, 0.0f, 25.0f, 0.0f,
-8.0f, -0.5f, -8.0f, 0.0f, 1.0f, 0.0f, 0.0f, 5.0f, 25.0f, -0.5f, -25.0f, 0.0f, 1.0f, 0.0f, 25.0f, 25.0f,
8.0f, -0.5f, -8.0f, 0.0f, 1.0f, 0.0f, 5.0f, 5.0f -25.0f, -0.5f, -25.0f, 0.0f, 1.0f, 0.0f, 0.0f, 25.0f
}; };
// Setup plane VAO // Setup plane VAO
GLuint planeVAO, planeVBO; GLuint planeVBO;
glGenVertexArrays(1, &planeVAO); glGenVertexArrays(1, &planeVAO);
glGenBuffers(1, &planeVBO); glGenBuffers(1, &planeVBO);
glBindVertexArray(planeVAO); glBindVertexArray(planeVAO);
@@ -98,10 +111,35 @@ int main()
glBindVertexArray(0); glBindVertexArray(0);
// Light source // Light source
glm::vec3 lightPos(0.0f, 0.0f, 0.0f); glm::vec3 lightPos(-2.0f, 4.0f, -1.0f);
// Load textures // Load textures
GLuint floorTexture = loadTexture("../../../resources/textures/wood.png"); woodTexture = loadTexture("../../../resources/textures/wood.png");
// Configure depth map FBO
const GLuint SHADOW_WIDTH = 1024, SHADOW_HEIGHT = 1024;
GLuint depthMapFBO;
glGenFramebuffers(1, &depthMapFBO);
// - Create depth texture
GLuint depthMap;
glGenTextures(1, &depthMap);
glBindTexture(GL_TEXTURE_2D, depthMap);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, SHADOW_WIDTH, SHADOW_HEIGHT, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
GLfloat borderColor[] = { 1.0, 1.0, 1.0, 1.0 };
glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor);
glBindFramebuffer(GL_FRAMEBUFFER, depthMapFBO);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depthMap, 0);
glDrawBuffer(GL_NONE);
glReadBuffer(GL_NONE);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
// Game loop // Game loop
while (!glfwWindowShouldClose(window)) while (!glfwWindowShouldClose(window))
@@ -115,30 +153,55 @@ int main()
glfwPollEvents(); glfwPollEvents();
Do_Movement(); Do_Movement();
// Clear the colorbuffer // Change light position over time
glClearColor(0.1f, 0.1f, 0.1f, 1.0f); lightPos.z = cos(glfwGetTime()) * 2.0f;
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// 1. Render depth of scene to texture (from ligth's perspective) // 1. Render depth of scene to texture (from light's perspective)
// - Get light projection/view matrix. // - Get light projection/view matrix.
glm::mat4 lightProjection, lightView; glm::mat4 lightProjection, lightView;
lightProjection = glm::ortho(-10.0, 10.0, -10.0, 10.0, 0.1, 100.0); glm::mat4 lightSpaceMatrix;
GLfloat near_plane = 1.0f, far_plane = 7.5f;
lightProjection = glm::ortho(-10.0f, 10.0f, -10.0f, 10.0f, near_plane, far_plane);
//lightProjection = glm::perspective(45.0f, (GLfloat)SHADOW_WIDTH / (GLfloat)SHADOW_HEIGHT, near_plane, far_plane); // Note that if you use a perspective projection matrix you'll have to change the light position as the current light position isn't enough to reflect the whole scene.
lightView = glm::lookAt(lightPos, glm::vec3(0.0f), glm::vec3(1.0));
lightSpaceMatrix = lightProjection * lightView;
// - now render scene from light's point of view
simpleDepthShader.Use();
glUniformMatrix4fv(glGetUniformLocation(simpleDepthShader.Program, "lightSpaceMatrix"), 1, GL_FALSE, glm::value_ptr(lightSpaceMatrix));
glViewport(0, 0, SHADOW_WIDTH, SHADOW_HEIGHT);
glBindFramebuffer(GL_FRAMEBUFFER, depthMapFBO);
glClear(GL_DEPTH_BUFFER_BIT);
RenderScene(simpleDepthShader);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// Draw objects // 2. Render scene as normal
glViewport(0, 0, SCR_WIDTH, SCR_HEIGHT);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
shader.Use(); shader.Use();
glm::mat4 view = camera.GetViewMatrix();
glm::mat4 projection = glm::perspective(camera.Zoom, (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f); glm::mat4 projection = glm::perspective(camera.Zoom, (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "view"), 1, GL_FALSE, glm::value_ptr(view)); glm::mat4 view = camera.GetViewMatrix();
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection)); glUniformMatrix4fv(glGetUniformLocation(shader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "view"), 1, GL_FALSE, glm::value_ptr(view));
// Set light uniforms // Set light uniforms
glUniform3fv(glGetUniformLocation(shader.Program, "lightPos"), 1, &lightPos[0]); glUniform3fv(glGetUniformLocation(shader.Program, "lightPos"), 1, &lightPos[0]);
glUniform3fv(glGetUniformLocation(shader.Program, "viewPos"), 1, &camera.Position[0]); glUniform3fv(glGetUniformLocation(shader.Program, "viewPos"), 1, &camera.Position[0]);
// Floor glUniformMatrix4fv(glGetUniformLocation(shader.Program, "lightSpaceMatrix"), 1, GL_FALSE, glm::value_ptr(lightSpaceMatrix));
glBindVertexArray(planeVAO); // Enable/Disable shadows by pressing 'SPACE'
glBindTexture(GL_TEXTURE_2D, floorTexture); glUniform1i(glGetUniformLocation(shader.Program, "shadows"), shadows);
glDrawArrays(GL_TRIANGLES, 0, 6); glActiveTexture(GL_TEXTURE0);
glBindVertexArray(0); glBindTexture(GL_TEXTURE_2D, woodTexture);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, depthMap);
RenderScene(shader);
// 3. DEBUG: visualize depth map by rendering it to plane
debugDepthQuad.Use();
glUniform1f(glGetUniformLocation(debugDepthQuad.Program, "near_plane"), near_plane);
glUniform1f(glGetUniformLocation(debugDepthQuad.Program, "far_plane"), far_plane);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, depthMap);
//RenderQuad(); // uncomment this line to see depth map
// Swap the buffers // Swap the buffers
glfwSwapBuffers(window); glfwSwapBuffers(window);
@@ -148,6 +211,31 @@ int main()
return 0; return 0;
} }
void RenderScene(Shader &shader)
{
// Floor
glm::mat4 model;
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
glBindVertexArray(planeVAO);
glDrawArrays(GL_TRIANGLES, 0, 6);
glBindVertexArray(0);
// Cubes
model = glm::mat4();
model = glm::translate(model, glm::vec3(0.0f, 1.5f, 0.0));
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
RenderCube();
model = glm::mat4();
model = glm::translate(model, glm::vec3(2.0f, 0.0f, 1.0));
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
RenderCube();
model = glm::mat4();
model = glm::translate(model, glm::vec3(-1.0f, 0.0f, 2.0));
model = glm::rotate(model, 60.0f, glm::normalize(glm::vec3(1.0, 0.0, 1.0)));
model = glm::scale(model, glm::vec3(0.5));
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
RenderCube();
}
// RenderQuad() Renders a 1x1 quad in NDC, best used for framebuffer color targets // RenderQuad() Renders a 1x1 quad in NDC, best used for framebuffer color targets
// and post-processing effects. // and post-processing effects.
@@ -180,6 +268,80 @@ void RenderQuad()
glBindVertexArray(0); glBindVertexArray(0);
} }
// RenderCube() Renders a 1x1 3D cube in NDC.
GLuint cubeVAO = 0;
GLuint cubeVBO = 0;
void RenderCube()
{
// Initialize (if necessary)
if (cubeVAO == 0)
{
GLfloat vertices[] = {
// Back face
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // Bottom-left
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f, // bottom-right
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // bottom-left
-0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f,// top-left
// Front face
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, // bottom-right
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
-0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, // top-left
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
// Left face
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
-0.5f, 0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-left
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
-0.5f, -0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-right
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
// Right face
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-right
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-left
// Bottom face
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f, // top-left
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,// bottom-left
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, // bottom-left
-0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, // bottom-right
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
// Top face
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,// top-left
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, // top-right
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,// top-left
-0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f // bottom-left
};
glGenVertexArrays(1, &cubeVAO);
glGenBuffers(1, &cubeVBO);
// Fill buffer
glBindBuffer(GL_ARRAY_BUFFER, cubeVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
// Link vertex attributes
glBindVertexArray(cubeVAO);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
}
// Render Cube
glBindVertexArray(cubeVAO);
glDrawArrays(GL_TRIANGLES, 0, 36);
glBindVertexArray(0);
}
// This function loads a texture from file. Note: texture loading functions like these are usually // This function loads a texture from file. Note: texture loading functions like these are usually
// managed by a 'Resource Manager' that manages all resources (like textures, models, audio). // managed by a 'Resource Manager' that manages all resources (like textures, models, audio).
// For learning purposes we'll just define it as a utility function. // For learning purposes we'll just define it as a utility function.
@@ -221,10 +383,10 @@ void Do_Movement()
if (keys[GLFW_KEY_D]) if (keys[GLFW_KEY_D])
camera.ProcessKeyboard(RIGHT, deltaTime); camera.ProcessKeyboard(RIGHT, deltaTime);
if (keys[GLFW_KEY_B] && !keysPressed[GLFW_KEY_B]) if (keys[GLFW_KEY_SPACE] && !keysPressed[GLFW_KEY_SPACE])
{ {
blinn = !blinn; shadows = !shadows;
keysPressed[GLFW_KEY_B] = true; keysPressed[GLFW_KEY_SPACE] = true;
} }
} }

View File

@@ -5,18 +5,60 @@ in VS_OUT {
vec3 FragPos; vec3 FragPos;
vec3 Normal; vec3 Normal;
vec2 TexCoords; vec2 TexCoords;
vec4 FragPosLightSpace;
} fs_in; } fs_in;
uniform sampler2D floorTexture; uniform sampler2D diffuseTexture;
uniform sampler2D shadowMap;
uniform vec3 lightPos; uniform vec3 lightPos;
uniform vec3 viewPos; uniform vec3 viewPos;
uniform bool shadows;
float ShadowCalculation(vec4 fragPosLightSpace)
{
// perform perspective divide
vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w;
// Transform to [0,1] range
projCoords = projCoords * 0.5 + 0.5;
// Get closest depth value from light's perspective (using [0,1] range fragPosLight as coords)
float closestDepth = texture(shadowMap, projCoords.xy).r;
// Get depth of current fragment from light's perspective
float currentDepth = projCoords.z;
// Calculate bias (based on depth map resolution and slope)
vec3 normal = normalize(fs_in.Normal);
vec3 lightDir = normalize(lightPos - fs_in.FragPos);
float bias = max(0.05 * (1.0 - dot(normal, lightDir)), 0.005);
// Check whether current frag pos is in shadow
// float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0;
// PCF
float shadow = 0.0;
vec2 texelSize = 1.0 / textureSize(shadowMap, 0);
for(int x = -1; x <= 1; ++x)
{
for(int y = -1; y <= 1; ++y)
{
float pcfDepth = texture(shadowMap, projCoords.xy + vec2(x, y) * texelSize).r;
shadow += currentDepth - bias > pcfDepth ? 1.0 : 0.0;
}
}
shadow /= 9.0;
// Keep the shadow at 0.0 when outside the far_plane region of the light's frustum.
if(projCoords.z > 1.0)
shadow = 0.0;
return shadow;
}
void main() void main()
{ {
vec3 color = texture(floorTexture, fs_in.TexCoords).rgb; vec3 color = texture(diffuseTexture, fs_in.TexCoords).rgb;
vec3 normal = normalize(fs_in.Normal); vec3 normal = normalize(fs_in.Normal);
vec3 lightColor = vec3(0.5); vec3 lightColor = vec3(0.3);
// Ambient
vec3 ambient = 0.3 * color;
// Diffuse // Diffuse
vec3 lightDir = normalize(lightPos - fs_in.FragPos); vec3 lightDir = normalize(lightPos - fs_in.FragPos);
float diff = max(dot(lightDir, normal), 0.0); float diff = max(dot(lightDir, normal), 0.0);
@@ -28,12 +70,9 @@ void main()
vec3 halfwayDir = normalize(lightDir + viewDir); vec3 halfwayDir = normalize(lightDir + viewDir);
spec = pow(max(dot(normal, halfwayDir), 0.0), 64.0); spec = pow(max(dot(normal, halfwayDir), 0.0), 64.0);
vec3 specular = spec * lightColor; vec3 specular = spec * lightColor;
// Simple attenuation // Calculate shadow
float distance = length(lightPos - fs_in.FragPos); float shadow = shadows ? ShadowCalculation(fs_in.FragPosLightSpace) : 0.0;
float attenuation = 1.0 / distance; vec3 lighting = (ambient + (1.0 - shadow) * (diffuse + specular)) * color;
diffuse *= attenuation;
specular *= attenuation;
vec3 lighting = (diffuse + specular) * color;
FragColor = vec4(lighting, 1.0f); FragColor = vec4(lighting, 1.0f);
} }

View File

@@ -9,16 +9,19 @@ out VS_OUT {
vec3 FragPos; vec3 FragPos;
vec3 Normal; vec3 Normal;
vec2 TexCoords; vec2 TexCoords;
vec4 FragPosLightSpace;
} vs_out; } vs_out;
uniform mat4 projection; uniform mat4 projection;
uniform mat4 view; uniform mat4 view;
uniform mat4 model; uniform mat4 model;
uniform mat4 lightSpaceMatrix;
void main() void main()
{ {
gl_Position = projection * view * model * vec4(position, 1.0f); gl_Position = projection * view * model * vec4(position, 1.0f);
vs_out.FragPos = position; vs_out.FragPos = vec3(model * vec4(position, 1.0));
vs_out.Normal = transpose(inverse(mat3(model))) * normal; vs_out.Normal = transpose(inverse(mat3(model))) * normal;
vs_out.TexCoords = texCoords; vs_out.TexCoords = texCoords;
vs_out.FragPosLightSpace = lightSpaceMatrix * vec4(vs_out.FragPos, 1.0);
} }

View File

@@ -1,7 +1,6 @@
#version 330 core #version 330 core
out vec4 color;
void main() void main()
{ {
color = vec4(1.0, 0.0, 0.0, 1.0); // gl_FragDepth = gl_FragCoord.z;
} }

View File

@@ -1,10 +1,10 @@
#version 330 core #version 330 core
layout (location = 0) in vec3 position; layout (location = 0) in vec3 position;
uniform mat4 lightProjectionView; uniform mat4 lightSpaceMatrix;
uniform mat4 model; uniform mat4 model;
void main() void main()
{ {
gl_Position = lightProjectionView * model * vec4(position, 1.0f); gl_Position = lightSpaceMatrix * model * vec4(position, 1.0f);
} }

View File

@@ -1,6 +1,3 @@
// Std. Includes
#include <string>
// GLEW // GLEW
#define GLEW_STATIC #define GLEW_STATIC
#include <GL/glew.h> #include <GL/glew.h>
@@ -21,7 +18,7 @@
#include <SOIL.h> #include <SOIL.h>
// Properties // Properties
GLuint screenWidth = 800, screenHeight = 600; const GLuint SCR_WIDTH = 800, SCR_HEIGHT = 600;
// Function prototypes // Function prototypes
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode); void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);
@@ -29,16 +26,24 @@ void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void mouse_callback(GLFWwindow* window, double xpos, double ypos); void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void Do_Movement(); void Do_Movement();
GLuint loadTexture(GLchar* path); GLuint loadTexture(GLchar* path);
void RenderScene(Shader &shader);
void RenderCube();
void RenderQuad();
// Camera // Camera
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f)); Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
bool keys[1024];
GLfloat lastX = 400, lastY = 300;
bool firstMouse = true;
// Delta
GLfloat deltaTime = 0.0f; GLfloat deltaTime = 0.0f;
GLfloat lastFrame = 0.0f; GLfloat lastFrame = 0.0f;
// Options
GLboolean shadows = true;
// Global variables
GLuint woodTexture;
GLuint planeVAO;
// The MAIN function, from here we start our application and run our Game loop // The MAIN function, from here we start our application and run our Game loop
int main() int main()
{ {
@@ -49,7 +54,7 @@ int main()
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_RESIZABLE, GL_FALSE); glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);
GLFWwindow* window = glfwCreateWindow(screenWidth, screenHeight, "LearnOpenGL", nullptr, nullptr); // Windowed GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", nullptr, nullptr); // Windowed
glfwMakeContextCurrent(window); glfwMakeContextCurrent(window);
// Set the required callback functions // Set the required callback functions
@@ -65,103 +70,55 @@ int main()
glewInit(); glewInit();
// Define the viewport dimensions // Define the viewport dimensions
glViewport(0, 0, screenWidth, screenHeight); glViewport(0, 0, SCR_WIDTH, SCR_HEIGHT);
// Setup some OpenGL options // Setup some OpenGL options
glEnable(GL_DEPTH_TEST); glEnable(GL_DEPTH_TEST);
// glDepthFunc(GL_ALWAYS); // Set to always pass the depth test (same effect as glDisable(GL_DEPTH_TEST)) glEnable(GL_CULL_FACE);
// Setup and compile our shaders // Setup and compile our shaders
Shader shader("depth_testing.vs", "depth_testing.frag"); Shader shader("point_shadows.vs", "point_shadows.frag");
Shader simpleDepthShader("point_shadows_depth.vs", "point_shadows_depth.frag", "point_shadows_depth.gs");
#pragma region "object_initialization" // Set texture samples
// Set the object data (buffers, vertex attributes) shader.Use();
GLfloat cubeVertices[] = { glUniform1i(glGetUniformLocation(shader.Program, "diffuseTexture"), 0);
// Positions // Texture Coords glUniform1i(glGetUniformLocation(shader.Program, "depthMap"), 1);
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f,
0.5f, -0.5f, -0.5f, 1.0f, 0.0f,
0.5f, 0.5f, -0.5f, 1.0f, 1.0f,
0.5f, 0.5f, -0.5f, 1.0f, 1.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f,
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, // Light source
0.5f, -0.5f, 0.5f, 1.0f, 0.0f, glm::vec3 lightPos(0.0f, 0.0f, 0.0f);
0.5f, 0.5f, 0.5f, 1.0f, 1.0f,
0.5f, 0.5f, 0.5f, 1.0f, 1.0f,
-0.5f, 0.5f, 0.5f, 0.0f, 1.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f,
-0.5f, 0.5f, 0.5f, 1.0f, 0.0f,
-0.5f, 0.5f, -0.5f, 1.0f, 1.0f,
-0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
-0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f,
-0.5f, 0.5f, 0.5f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f, 0.0f,
0.5f, 0.5f, -0.5f, 1.0f, 1.0f,
0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
0.5f, -0.5f, 0.5f, 0.0f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f, 0.0f,
-0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
0.5f, -0.5f, -0.5f, 1.0f, 1.0f,
0.5f, -0.5f, 0.5f, 1.0f, 0.0f,
0.5f, -0.5f, 0.5f, 1.0f, 0.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f,
-0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f,
0.5f, 0.5f, -0.5f, 1.0f, 1.0f,
0.5f, 0.5f, 0.5f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f, 0.0f,
-0.5f, 0.5f, 0.5f, 0.0f, 0.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f
};
GLfloat planeVertices[] = {
// Positions // Texture Coords (note we set these higher than 1 that together with GL_REPEAT as texture wrapping mode will cause the floor texture to repeat)
5.0f, -0.5f, 5.0f, 2.0f, 0.0f,
-5.0f, -0.5f, 5.0f, 0.0f, 0.0f,
-5.0f, -0.5f, -5.0f, 0.0f, 2.0f,
5.0f, -0.5f, 5.0f, 2.0f, 0.0f,
-5.0f, -0.5f, -5.0f, 0.0f, 2.0f,
5.0f, -0.5f, -5.0f, 2.0f, 2.0f
};
// Setup cube VAO
GLuint cubeVAO, cubeVBO;
glGenVertexArrays(1, &cubeVAO);
glGenBuffers(1, &cubeVBO);
glBindVertexArray(cubeVAO);
glBindBuffer(GL_ARRAY_BUFFER, cubeVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(cubeVertices), &cubeVertices, GL_STATIC_DRAW);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
glBindVertexArray(0);
// Setup plane VAO
GLuint planeVAO, planeVBO;
glGenVertexArrays(1, &planeVAO);
glGenBuffers(1, &planeVBO);
glBindVertexArray(planeVAO);
glBindBuffer(GL_ARRAY_BUFFER, planeVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(planeVertices), &planeVertices, GL_STATIC_DRAW);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
glBindVertexArray(0);
// Load textures // Load textures
GLuint cubeTexture = loadTexture("../../../resources/textures/marble.jpg"); woodTexture = loadTexture("../../../resources/textures/wood.png");
GLuint floorTexture = loadTexture("../../../resources/textures/metal.png");
#pragma endregion // Configure depth map FBO
const GLuint SHADOW_WIDTH = 1024, SHADOW_HEIGHT = 1024;
GLuint depthMapFBO;
glGenFramebuffers(1, &depthMapFBO);
// Create depth cubemap texture
GLuint depthCubemap;
glGenTextures(1, &depthCubemap);
glBindTexture(GL_TEXTURE_CUBE_MAP, depthCubemap);
for (GLuint i = 0; i < 6; ++i)
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_DEPTH_COMPONENT, SHADOW_WIDTH, SHADOW_HEIGHT, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
// Attach cubemap as depth map FBO's color buffer
glBindFramebuffer(GL_FRAMEBUFFER, depthMapFBO);
glFramebufferTexture(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, depthCubemap, 0);
glDrawBuffer(GL_NONE);
glReadBuffer(GL_NONE);
if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
std::cout << "Framebuffer not complete!" << std::endl;
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
// Game loop // Game loop
while(!glfwWindowShouldClose(window)) while (!glfwWindowShouldClose(window))
{ {
// Set frame time // Set frame time
GLfloat currentFrame = glfwGetTime(); GLfloat currentFrame = glfwGetTime();
@@ -172,35 +129,53 @@ int main()
glfwPollEvents(); glfwPollEvents();
Do_Movement(); Do_Movement();
// Clear the colorbuffer // Move light position over time
glClearColor(0.1f, 0.1f, 0.1f, 1.0f); //lightPos.z = sin(glfwGetTime() * 0.5) * 3.0;
// 0. Create depth cubemap transformation matrices
GLfloat aspect = (GLfloat)SHADOW_WIDTH / (GLfloat)SHADOW_HEIGHT;
GLfloat near = 1.0f;
GLfloat far = 25.0f;
glm::mat4 shadowProj = glm::perspective(90.0f, aspect, near, far);
std::vector<glm::mat4> shadowTransforms;
shadowTransforms.push_back(shadowProj * glm::lookAt(lightPos, lightPos + glm::vec3( 1.0, 0.0, 0.0), glm::vec3(0.0, -1.0, 0.0)));
shadowTransforms.push_back(shadowProj * glm::lookAt(lightPos, lightPos + glm::vec3(-1.0, 0.0, 0.0), glm::vec3(0.0, -1.0, 0.0)));
shadowTransforms.push_back(shadowProj * glm::lookAt(lightPos, lightPos + glm::vec3( 0.0, 1.0, 0.0), glm::vec3(0.0, 0.0, 1.0)));
shadowTransforms.push_back(shadowProj * glm::lookAt(lightPos, lightPos + glm::vec3( 0.0, -1.0, 0.0), glm::vec3(0.0, 0.0, -1.0)));
shadowTransforms.push_back(shadowProj * glm::lookAt(lightPos, lightPos + glm::vec3( 0.0, 0.0, 1.0), glm::vec3(0.0, -1.0, 0.0)));
shadowTransforms.push_back(shadowProj * glm::lookAt(lightPos, lightPos + glm::vec3( 0.0, 0.0, -1.0), glm::vec3(0.0, -1.0, 0.0)));
// 1. Render scene to depth cubemap
glViewport(0, 0, SHADOW_WIDTH, SHADOW_HEIGHT);
glBindFramebuffer(GL_FRAMEBUFFER, depthMapFBO);
glClear(GL_DEPTH_BUFFER_BIT);
simpleDepthShader.Use();
for (GLuint i = 0; i < 6; ++i)
glUniformMatrix4fv(glGetUniformLocation(simpleDepthShader.Program, ("shadowTransforms[" + std::to_string(i) + "]").c_str()), 1, GL_FALSE, glm::value_ptr(shadowTransforms[i]));
glUniform1f(glGetUniformLocation(simpleDepthShader.Program, "far_plane"), far);
glUniform3fv(glGetUniformLocation(simpleDepthShader.Program, "lightPos"), 1, &lightPos[0]);
RenderScene(simpleDepthShader);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// 2. Render scene as normal
glViewport(0, 0, SCR_WIDTH, SCR_HEIGHT);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
shader.Use();
// Draw objects glm::mat4 projection = glm::perspective(camera.Zoom, (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
shader.Use();
glm::mat4 model;
glm::mat4 view = camera.GetViewMatrix(); glm::mat4 view = camera.GetViewMatrix();
glm::mat4 projection = glm::perspective(camera.Zoom, (float)screenWidth/(float)screenHeight, 0.1f, 100.0f);
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "view"), 1, GL_FALSE, glm::value_ptr(view));
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection)); glUniformMatrix4fv(glGetUniformLocation(shader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
// Cubes glUniformMatrix4fv(glGetUniformLocation(shader.Program, "view"), 1, GL_FALSE, glm::value_ptr(view));
glBindVertexArray(cubeVAO); // Set light uniforms
glBindTexture(GL_TEXTURE_2D, cubeTexture); // We omit the glActiveTexture part since TEXTURE0 is already the default active texture unit. (sampler used in fragment is set to 0 as well as default) glUniform3fv(glGetUniformLocation(shader.Program, "lightPos"), 1, &lightPos[0]);
model = glm::translate(model, glm::vec3(-1.0f, 0.0f, -1.0f)); glUniform3fv(glGetUniformLocation(shader.Program, "viewPos"), 1, &camera.Position[0]);
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model)); // Enable/Disable shadows by pressing 'SPACE'
glDrawArrays(GL_TRIANGLES, 0, 36); glUniform1i(glGetUniformLocation(shader.Program, "shadows"), shadows);
model = glm::mat4(); glUniform1f(glGetUniformLocation(shader.Program, "far_plane"), far);
model = glm::translate(model, glm::vec3(2.0f, 0.0f, 0.0f)); glActiveTexture(GL_TEXTURE0);
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model)); glBindTexture(GL_TEXTURE_2D, woodTexture);
glDrawArrays(GL_TRIANGLES, 0, 36); glActiveTexture(GL_TEXTURE1);
// Floor glBindTexture(GL_TEXTURE_CUBE_MAP, depthCubemap);
glBindVertexArray(planeVAO); RenderScene(shader);
glBindTexture(GL_TEXTURE_2D, floorTexture);
model = glm::mat4();
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
glDrawArrays(GL_TRIANGLES, 0, 6);
glBindVertexArray(0);
// Swap the buffers // Swap the buffers
glfwSwapBuffers(window); glfwSwapBuffers(window);
@@ -210,63 +185,189 @@ int main()
return 0; return 0;
} }
void RenderScene(Shader &shader)
{
// Room cube
glm::mat4 model;
model = glm::scale(model, glm::vec3(10.0));
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
glDisable(GL_CULL_FACE); // Note that we disable culling here since we render 'inside' the cube instead of the usual 'outside' which throws off the normal culling methods.
glUniform1i(glGetUniformLocation(shader.Program, "reverse_normals"), 1); // A small little hack to invert normals when drawing cube from the inside so lighting still works.
RenderCube();
glUniform1i(glGetUniformLocation(shader.Program, "reverse_normals"), 0); // And of course disable it
glEnable(GL_CULL_FACE);
// Cubes
model = glm::mat4();
model = glm::translate(model, glm::vec3(4.0f, -3.5f, 0.0));
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
RenderCube();
model = glm::mat4();
model = glm::translate(model, glm::vec3(2.0f, 3.0f, 1.0));
model = glm::scale(model, glm::vec3(1.5));
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
RenderCube();
model = glm::mat4();
model = glm::translate(model, glm::vec3(-3.0f, -1.0f, 0.0));
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
RenderCube();
model = glm::mat4();
model = glm::translate(model, glm::vec3(-1.5f, 1.0f, 1.5));
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
RenderCube();
model = glm::mat4();
model = glm::translate(model, glm::vec3(-1.5f, 2.0f, -3.0));
model = glm::rotate(model, 60.0f, glm::normalize(glm::vec3(1.0, 0.0, 1.0)));
model = glm::scale(model, glm::vec3(1.5));
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
RenderCube();
}
// RenderCube() Renders a 1x1 3D cube in NDC.
GLuint cubeVAO = 0;
GLuint cubeVBO = 0;
void RenderCube()
{
// Initialize (if necessary)
if (cubeVAO == 0)
{
GLfloat vertices[] = {
// Back face
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // Bottom-left
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f, // bottom-right
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // bottom-left
-0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f,// top-left
// Front face
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, // bottom-right
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
-0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, // top-left
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
// Left face
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
-0.5f, 0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-left
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
-0.5f, -0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-right
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
// Right face
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-right
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-left
// Bottom face
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f, // top-left
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,// bottom-left
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, // bottom-left
-0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, // bottom-right
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
// Top face
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,// top-left
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, // top-right
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,// top-left
-0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f // bottom-left
};
glGenVertexArrays(1, &cubeVAO);
glGenBuffers(1, &cubeVBO);
// Fill buffer
glBindBuffer(GL_ARRAY_BUFFER, cubeVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
// Link vertex attributes
glBindVertexArray(cubeVAO);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
}
// Render Cube
glBindVertexArray(cubeVAO);
glDrawArrays(GL_TRIANGLES, 0, 36);
glBindVertexArray(0);
}
// This function loads a texture from file. Note: texture loading functions like these are usually // This function loads a texture from file. Note: texture loading functions like these are usually
// managed by a 'Resource Manager' that manages all resources (like textures, models, audio). // managed by a 'Resource Manager' that manages all resources (like textures, models, audio).
// For learning purposes we'll just define it as a utility function. // For learning purposes we'll just define it as a utility function.
GLuint loadTexture(GLchar* path) GLuint loadTexture(GLchar* path)
{ {
//Generate texture ID and load texture data // Generate texture ID and load texture data
GLuint textureID; GLuint textureID;
glGenTextures(1, &textureID); glGenTextures(1, &textureID);
int width,height; int width, height;
unsigned char* image = SOIL_load_image(path, &width, &height, 0, SOIL_LOAD_RGB); unsigned char* image = SOIL_load_image(path, &width, &height, 0, SOIL_LOAD_RGB);
// Assign texture to ID // Assign texture to ID
glBindTexture(GL_TEXTURE_2D, textureID); glBindTexture(GL_TEXTURE_2D, textureID);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
glGenerateMipmap(GL_TEXTURE_2D); glGenerateMipmap(GL_TEXTURE_2D);
// Parameters // Parameters
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT ); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT ); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR ); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glBindTexture(GL_TEXTURE_2D, 0); glBindTexture(GL_TEXTURE_2D, 0);
SOIL_free_image_data(image); SOIL_free_image_data(image);
return textureID; return textureID;
} }
#pragma region "User input" bool keys[1024];
bool keysPressed[1024];
// Moves/alters the camera positions based on user input // Moves/alters the camera positions based on user input
void Do_Movement() void Do_Movement()
{ {
// Camera controls // Camera controls
if(keys[GLFW_KEY_W]) if (keys[GLFW_KEY_W])
camera.ProcessKeyboard(FORWARD, deltaTime); camera.ProcessKeyboard(FORWARD, deltaTime);
if(keys[GLFW_KEY_S]) if (keys[GLFW_KEY_S])
camera.ProcessKeyboard(BACKWARD, deltaTime); camera.ProcessKeyboard(BACKWARD, deltaTime);
if(keys[GLFW_KEY_A]) if (keys[GLFW_KEY_A])
camera.ProcessKeyboard(LEFT, deltaTime); camera.ProcessKeyboard(LEFT, deltaTime);
if(keys[GLFW_KEY_D]) if (keys[GLFW_KEY_D])
camera.ProcessKeyboard(RIGHT, deltaTime); camera.ProcessKeyboard(RIGHT, deltaTime);
if (keys[GLFW_KEY_SPACE] && !keysPressed[GLFW_KEY_SPACE])
{
shadows = !shadows;
keysPressed[GLFW_KEY_SPACE] = true;
}
} }
GLfloat lastX = 400, lastY = 300;
bool firstMouse = true;
// Is called whenever a key is pressed/released via GLFW // Is called whenever a key is pressed/released via GLFW
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode) void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode)
{ {
if(key == GLFW_KEY_ESCAPE && action == GLFW_PRESS) if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
glfwSetWindowShouldClose(window, GL_TRUE); glfwSetWindowShouldClose(window, GL_TRUE);
if(action == GLFW_PRESS) if (key >= 0 && key <= 1024)
keys[key] = true; {
else if(action == GLFW_RELEASE) if (action == GLFW_PRESS)
keys[key] = false; keys[key] = true;
else if (action == GLFW_RELEASE)
{
keys[key] = false;
keysPressed[key] = false;
}
}
} }
void mouse_callback(GLFWwindow* window, double xpos, double ypos) void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{ {
if(firstMouse) if (firstMouse)
{ {
lastX = xpos; lastX = xpos;
lastY = ypos; lastY = ypos;
@@ -274,17 +375,15 @@ void mouse_callback(GLFWwindow* window, double xpos, double ypos)
} }
GLfloat xoffset = xpos - lastX; GLfloat xoffset = xpos - lastX;
GLfloat yoffset = lastY - ypos; GLfloat yoffset = lastY - ypos;
lastX = xpos; lastX = xpos;
lastY = ypos; lastY = ypos;
camera.ProcessMouseMovement(xoffset, yoffset); camera.ProcessMouseMovement(xoffset, yoffset);
} }
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset) void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{ {
camera.ProcessMouseScroll(yoffset); camera.ProcessMouseScroll(yoffset);
} }
#pragma endregion

View File

@@ -1,16 +1,106 @@
#version 330 core #version 330 core
out vec4 color; out vec4 FragColor;
float LinearizeDepth(float depth) // Note that this ranges from [0,1] instead of up to 'far plane distance' since we divide by 'far' in VS_OUT {
vec3 FragPos;
vec3 Normal;
vec2 TexCoords;
} fs_in;
uniform sampler2D diffuseTexture;
uniform samplerCube depthMap;
uniform vec3 lightPos;
uniform vec3 viewPos;
uniform float far_plane;
uniform bool shadows;
// array of offset direction for sampling
vec3 gridSamplingDisk[20] = vec3[]
(
vec3(1, 1, 1), vec3(1, -1, 1), vec3(-1, -1, 1), vec3(-1, 1, 1),
vec3(1, 1, -1), vec3(1, -1, -1), vec3(-1, -1, -1), vec3(-1, 1, -1),
vec3(1, 1, 0), vec3(1, -1, 0), vec3(-1, -1, 0), vec3(-1, 1, 0),
vec3(1, 0, 1), vec3(-1, 0, 1), vec3(1, 0, -1), vec3(-1, 0, -1),
vec3(0, 1, 1), vec3(0, -1, 1), vec3(0, -1, -1), vec3(0, 1, -1)
);
float ShadowCalculation(vec3 fragPos)
{ {
float near = 0.1; // Get vector between fragment position and light position
float far = 100.0; vec3 fragToLight = fragPos - lightPos;
float z = depth * 2.0 - 1.0; // Back to NDC // Use the fragment to light vector to sample from the depth map
return (2.0 * near) / (far + near - z * (far - near)); // float closestDepth = texture(depthMap, fragToLight).r;
// It is currently in linear range between [0,1]. Let's re-transform it back to original depth value
// closestDepth *= far_plane;
// Now get current linear depth as the length between the fragment and light position
float currentDepth = length(fragToLight);
// Now test for shadows
// float bias = 0.05; // We use a much larger bias since depth is now in [near_plane, far_plane] range
// float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0;
// PCF
// float shadow = 0.0;
// float bias = 0.05;
// float samples = 4.0;
// float offset = 0.1;
// for(float x = -offset; x < offset; x += offset / (samples * 0.5))
// {
// for(float y = -offset; y < offset; y += offset / (samples * 0.5))
// {
// for(float z = -offset; z < offset; z += offset / (samples * 0.5))
// {
// float closestDepth = texture(depthMap, fragToLight + vec3(x, y, z)).r; // Use lightdir to lookup cubemap
// closestDepth *= far_plane; // Undo mapping [0;1]
// if(currentDepth - bias > closestDepth)
// shadow += 1.0;
// }
// }
// }
// shadow /= (samples * samples * samples);
float shadow = 0.0;
float bias = 0.15;
int samples = 20;
float viewDistance = length(viewPos - fragPos);
float diskRadius = (1.0 + (viewDistance / far_plane)) / 25.0;
for(int i = 0; i < samples; ++i)
{
float closestDepth = texture(depthMap, fragToLight + gridSamplingDisk[i] * diskRadius).r;
closestDepth *= far_plane; // Undo mapping [0;1]
if(currentDepth - bias > closestDepth)
shadow += 1.0;
}
shadow /= float(samples);
// Display closestDepth as debug (to visualize depth cubemap)
// FragColor = vec4(vec3(closestDepth / far_plane), 1.0);
// return shadow;
return shadow;
} }
void main() void main()
{ {
float depth = LinearizeDepth(gl_FragCoord.z); vec3 color = texture(diffuseTexture, fs_in.TexCoords).rgb;
color = vec4(vec3(depth), 1.0f); vec3 normal = normalize(fs_in.Normal);
vec3 lightColor = vec3(0.3);
// Ambient
vec3 ambient = 0.3 * color;
// Diffuse
vec3 lightDir = normalize(lightPos - fs_in.FragPos);
float diff = max(dot(lightDir, normal), 0.0);
vec3 diffuse = diff * lightColor;
// Specular
vec3 viewDir = normalize(viewPos - fs_in.FragPos);
vec3 reflectDir = reflect(-lightDir, normal);
float spec = 0.0;
vec3 halfwayDir = normalize(lightDir + viewDir);
spec = pow(max(dot(normal, halfwayDir), 0.0), 64.0);
vec3 specular = spec * lightColor;
// Calculate shadow
float shadow = shadows ? ShadowCalculation(fs_in.FragPos) : 0.0;
vec3 lighting = (ambient + (1.0 - shadow) * (diffuse + specular)) * color;
FragColor = vec4(lighting, 1.0f);
} }

View File

@@ -1,15 +1,29 @@
#version 330 core #version 330 core
layout (location = 0) in vec3 position; layout (location = 0) in vec3 position;
layout (location = 1) in vec2 texCoords; layout (location = 1) in vec3 normal;
layout (location = 2) in vec2 texCoords;
out vec2 TexCoords; out vec2 TexCoords;
uniform mat4 model; out VS_OUT {
uniform mat4 view; vec3 FragPos;
vec3 Normal;
vec2 TexCoords;
} vs_out;
uniform mat4 projection; uniform mat4 projection;
uniform mat4 view;
uniform mat4 model;
uniform bool reverse_normals;
void main() void main()
{ {
gl_Position = projection * view * model * vec4(position, 1.0f); gl_Position = projection * view * model * vec4(position, 1.0f);
TexCoords = texCoords; vs_out.FragPos = vec3(model * vec4(position, 1.0));
if(reverse_normals) // A slight hack to make sure the outer large cube displays lighting from the 'inside' instead of the default 'outside'.
vs_out.Normal = transpose(inverse(mat3(model))) * (-1.0 * normal);
else
vs_out.Normal = transpose(inverse(mat3(model))) * normal;
vs_out.TexCoords = texCoords;
} }

View File

@@ -0,0 +1,16 @@
#version 330 core
in vec4 FragPos;
uniform vec3 lightPos;
uniform float far_plane;
void main()
{
float lightDistance = length(FragPos.xyz - lightPos);
// map to [0;1] range by dividing by far_plane
lightDistance = lightDistance / far_plane;
// Write this as modified depth
gl_FragDepth = lightDistance;
}

View File

@@ -0,0 +1,22 @@
#version 330 core
layout (triangles) in;
layout (triangle_strip, max_vertices=18) out;
uniform mat4 shadowTransforms[6];
out vec4 FragPos; // FragPos from GS (output per emitvertex)
void main()
{
for(int face = 0; face < 6; ++face)
{
gl_Layer = face; // built-in variable that specifies to which face we render.
for(int i = 0; i < 3; ++i) // for each triangle's vertices
{
FragPos = gl_in[i].gl_Position;
gl_Position = shadowTransforms[face] * FragPos;
EmitVertex();
}
EndPrimitive();
}
}

View File

@@ -0,0 +1,9 @@
#version 330 core
layout (location = 0) in vec3 position;
uniform mat4 model;
void main()
{
gl_Position = model * vec4(position, 1.0);
}