#ifndef MODEL_H #define MODEL_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; class Model { public: // model data vector textures_loaded; // stores all the textures loaded so far, optimization to make sure textures aren't loaded more than once. vector meshes; string directory; bool gammaCorrection; // constructor, expects a filepath to a 3D model. Model(string const &path, bool gamma = false) : gammaCorrection(gamma) { loadModel(path); } // draws the model, and thus all its meshes void Draw(Shader &shader) { for(unsigned int i = 0; i < meshes.size(); i++) meshes[i].Draw(shader); } auto& GetOffsetMatMap() { return m_OffsetMatMap; } int& GetBoneCount() { return m_BoneCount; } private: std::map m_OffsetMatMap; int m_BoneCount = 0; // loads a model with supported ASSIMP extensions from file and stores the resulting meshes in the meshes vector. void loadModel(string const &path) { // read file via ASSIMP Assimp::Importer importer; const aiScene* scene = importer.ReadFile(path, aiProcess_Triangulate | aiProcess_GenSmoothNormals | aiProcess_CalcTangentSpace); // check for errors if(!scene || scene->mFlags & AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode) // if is Not Zero { cout << "ERROR::ASSIMP:: " << importer.GetErrorString() << endl; return; } // retrieve the directory path of the filepath directory = path.substr(0, path.find_last_of('/')); // process ASSIMP's root node recursively processNode(scene->mRootNode, scene); } // processes a node in a recursive fashion. Processes each individual mesh located at the node and repeats this process on its children nodes (if any). void processNode(aiNode *node, const aiScene *scene) { // process each mesh located at the current node for(unsigned int i = 0; i < node->mNumMeshes; i++) { // the node object only contains indices to index the actual objects in the scene. // the scene contains all the data, node is just to keep stuff organized (like relations between nodes). aiMesh* mesh = scene->mMeshes[node->mMeshes[i]]; meshes.push_back(processMesh(mesh, scene)); } // after we've processed all of the meshes (if any) we then recursively process each of the children nodes for(unsigned int i = 0; i < node->mNumChildren; i++) { processNode(node->mChildren[i], scene); } } void SetVertexBoneDataToDefault(Vertex& vertex) { for (int i = 0; i < MAX_BONE_WEIGHTS; i++) { vertex.m_BoneIDs[i] = -1; vertex.m_Weights[i] = 0.0f; } } Mesh processMesh(aiMesh* mesh, const aiScene* scene) { vector vertices; vector indices; vector textures; for (unsigned int i = 0; i < mesh->mNumVertices; i++) { Vertex vertex; SetVertexBoneDataToDefault(vertex); vertex.Position = AssimpGLMHelpers::GetGLMVec(mesh->mVertices[i]); vertex.Normal = AssimpGLMHelpers::GetGLMVec(mesh->mNormals[i]); if (mesh->mTextureCoords[0]) { glm::vec2 vec; vec.x = mesh->mTextureCoords[0][i].x; vec.y = mesh->mTextureCoords[0][i].y; vertex.TexCoords = vec; } else vertex.TexCoords = glm::vec2(0.0f, 0.0f); vertices.push_back(vertex); } for (unsigned int i = 0; i < mesh->mNumFaces; i++) { aiFace face = mesh->mFaces[i]; for (unsigned int j = 0; j < face.mNumIndices; j++) indices.push_back(face.mIndices[j]); } aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex]; vector diffuseMaps = loadMaterialTextures(material, aiTextureType_DIFFUSE, "texture_diffuse"); textures.insert(textures.end(), diffuseMaps.begin(), diffuseMaps.end()); vector specularMaps = loadMaterialTextures(material, aiTextureType_SPECULAR, "texture_specular"); textures.insert(textures.end(), specularMaps.begin(), specularMaps.end()); std::vector normalMaps = loadMaterialTextures(material, aiTextureType_HEIGHT, "texture_normal"); textures.insert(textures.end(), normalMaps.begin(), normalMaps.end()); std::vector heightMaps = loadMaterialTextures(material, aiTextureType_AMBIENT, "texture_height"); textures.insert(textures.end(), heightMaps.begin(), heightMaps.end()); ExtractBoneWeightForVertices(vertices,mesh,scene); return Mesh(vertices, indices, textures); } void SetVertexBoneData(Vertex& vertex, int boneID, float weight) { for (int i = 0; i < MAX_BONE_WEIGHTS; ++i) { if (vertex.m_BoneIDs[i] < 0) { vertex.m_Weights[i] = weight; vertex.m_BoneIDs[i] = boneID; break; } } } void ExtractBoneWeightForVertices(std::vector& vertices, aiMesh* mesh, const aiScene* scene) { auto& boneInfoMap = m_OffsetMatMap; int& boneCount = m_BoneCount; for (int boneIndex = 0; boneIndex < mesh->mNumBones; ++boneIndex) { int boneID = -1; std::string boneName = mesh->mBones[boneIndex]->mName.C_Str(); if (boneInfoMap.find(boneName) == boneInfoMap.end()) { BoneInfo newBoneInfo; newBoneInfo.id = boneCount; newBoneInfo.offset = AssimpGLMHelpers::ConvertMatrixToGLMFormat(mesh->mBones[boneIndex]->mOffsetMatrix); boneInfoMap[boneName] = newBoneInfo; boneID = boneCount; boneCount++; } else { boneID = boneInfoMap[boneName].id; } assert(boneID != -1); auto weights = mesh->mBones[boneIndex]->mWeights; int numWeights = mesh->mBones[boneIndex]->mNumWeights; for (int weightIndex = 0; weightIndex < numWeights; ++weightIndex) { int vertexId = weights[weightIndex].mVertexId; float weight = weights[weightIndex].mWeight; assert(vertexId <= vertices.size()); SetVertexBoneData(vertices[vertexId], boneID, weight); } } } unsigned int TextureFromFile(const char* path, const string& directory, bool gamma = false) { string filename = string(path); filename = directory + '/' + filename; unsigned int textureID; glGenTextures(1, &textureID); int width, height, nrComponents; unsigned char* data = stbi_load(filename.c_str(), &width, &height, &nrComponents, 0); if (data) { GLenum format; if (nrComponents == 1) format = GL_RED; else if (nrComponents == 3) format = GL_RGB; else if (nrComponents == 4) format = GL_RGBA; glBindTexture(GL_TEXTURE_2D, textureID); glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data); glGenerateMipmap(GL_TEXTURE_2D); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); stbi_image_free(data); } else { std::cout << "Texture failed to load at path: " << path << std::endl; stbi_image_free(data); } return textureID; } // checks all material textures of a given type and loads the textures if they're not loaded yet. // the required info is returned as a Texture struct. vector loadMaterialTextures(aiMaterial *mat, aiTextureType type, string typeName) { vector textures; for(unsigned int i = 0; i < mat->GetTextureCount(type); i++) { aiString str; mat->GetTexture(type, i, &str); // check if texture was loaded before and if so, continue to next iteration: skip loading a new texture bool skip = false; for(unsigned int j = 0; j < textures_loaded.size(); j++) { if(std::strcmp(textures_loaded[j].path.data(), str.C_Str()) == 0) { textures.push_back(textures_loaded[j]); skip = true; // a texture with the same filepath has already been loaded, continue to next one. (optimization) break; } } if(!skip) { // if texture hasn't been loaded already, load it Texture texture; texture.id = TextureFromFile(str.C_Str(), this->directory); texture.type = typeName; texture.path = str.C_Str(); textures.push_back(texture); textures_loaded.push_back(texture); // store it as texture loaded for entire model, to ensure we won't unnecesery load duplicate textures. } } return textures; } }; #endif