#version 330 core out vec4 FragColor; in vec2 TexCoords; in vec3 WorldPos; in vec3 Normal; in mat3 TBN; // material parameters uniform sampler2D albedoMap; uniform sampler2D normalMap; uniform sampler2D metallicMap; uniform sampler2D roughnessMap; uniform sampler2D aoMap; // lights uniform vec3 lightPositions[4]; uniform vec3 lightColors[4]; uniform vec3 camPos; uniform float exposure; const float PI = 3.14159265359; // ---------------------------------------------------------------------------- // Easy trick to get tangent-normals to world-space to keep PBR code simplified. // Don't worry if you don't get what's going on; you generally want to do normal // mapping the usual way for performance anways; I do plan make a note of this // technique somewhere later in the normal mapping tutorial. vec3 getNormalFromMap() { vec3 tangentNormal = texture(normalMap, TexCoords).xyz * 2.0 - 1.0; vec3 Q1 = dFdx(WorldPos); vec3 Q2 = dFdy(WorldPos); vec2 st1 = dFdx(TexCoords); vec2 st2 = dFdy(TexCoords); vec3 N = normalize(Normal); vec3 T = normalize(Q1*st2.t - Q2*st1.t); vec3 B = -normalize(cross(N, T)); mat3 TBN = mat3(T, B, N); return normalize(TBN * tangentNormal); } // ---------------------------------------------------------------------------- float DistributionGGX(vec3 N, vec3 H, float roughness) { float a = roughness*roughness; float a2 = a*a; float NdotH = max(dot(N, H), 0.0); float NdotH2 = NdotH*NdotH; float nom = a2; float denom = (NdotH2 * (a2 - 1.0) + 1.0); denom = PI * denom * denom; return nom / denom; } // ---------------------------------------------------------------------------- float GeometrySchlickGGX(float NdotV, float roughness) { float r = (roughness + 1.0); float k = (r*r) / 8.0; float nom = NdotV; float denom = NdotV * (1.0 - k) + k; return nom / denom; } // ---------------------------------------------------------------------------- float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness) { float NdotV = max(dot(N, V), 0.0); float NdotL = max(dot(N, L), 0.0); float ggx2 = GeometrySchlickGGX(NdotV, roughness); float ggx1 = GeometrySchlickGGX(NdotL, roughness); return ggx1 * ggx2; } // ---------------------------------------------------------------------------- vec3 fresnelSchlick(float cosTheta, vec3 F0) { return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0); } // ---------------------------------------------------------------------------- vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness) { return F0 + (max(vec3(1.0 - roughness), F0) - F0) * pow(1.0 - cosTheta, 5.0); } // ---------------------------------------------------------------------------- void main() { vec3 albedo = pow(texture(albedoMap, TexCoords).rgb, vec3(2.2)); float metallic = texture(metallicMap, TexCoords).r; float roughness = texture(roughnessMap, TexCoords).r; float ao = texture(aoMap, TexCoords).r; vec3 N = getNormalFromMap(); vec3 V = normalize(camPos - WorldPos); vec3 R = reflect(-V, N); // calculate reflectance at normal incidence; if dia-electric (like plastic) use F0 // of 0.04 and if it's a metal, use their albedo color as F0 (metallic workflow) vec3 F0 = vec3(0.04); F0 = mix(F0, albedo, metallic); vec3 F = fresnelSchlickRoughness(max(dot(N, V), 0.0), F0, roughness); // use modified Fresnel-Schlick approximation to take roughness into account // kS is equal to Fresnel vec3 kS = F; // for energy conservation, the diffuse and specular light can't // be above 1.0 (unless the surface emits light); to preserve this // relationship the diffuse component (kD) should equal 1.0 - kS. vec3 kD = vec3(1.0) - kS; // multiply kD by the inverse metalness such that only non-metals // have diffuse lighting, or a linear blend if partly metal (pure metals // have no diffuse light). kD *= 1.0 - metallic; // reflectance equation vec3 Lo = vec3(0.0); for(int i = 0; i < 4; ++i) { // calculate per-light radiance vec3 L = normalize(lightPositions[i] - WorldPos); vec3 H = normalize(V + L); float distance = length(lightPositions[i] - WorldPos); float attenuation = 1.0 / distance * distance; vec3 radiance = lightColors[i] * attenuation; // Cook-Torrance BRDF float NDF = DistributionGGX(N, H, roughness); float G = GeometrySmith(N, V, L, roughness); vec3 nominator = NDF * G * F; float denominator = 4 * max(dot(V, N), 0.0) * max(dot(L, N), 0.0) + 0.001; // 0.001 to prevent divide by zero. vec3 brdf = nominator / denominator; // scale light by NdotL float NdotL = max(dot(N, L), 0.0); // add to outgoing radiance Lo Lo += (kD * albedo / PI + brdf) * radiance * NdotL; // note that we already multiplied the BRDF by the Fresnel (kS) so we won't multiply by kS again } // ambient lighting (note that the next IBL tutorial will replace // this ambient lighting with environment lighting). vec3 ambient = vec3(0.01) * albedo * ao; vec3 color = ambient + Lo; // HDR tonemapping color = color / (color + vec3(1.0)); // gamma correct color = pow(color, vec3(1.0/2.2)); FragColor = vec4(color, 1.0); }