#include #include // GLEW #define GLEW_STATIC #include // GLFW #include // Other Libs #include // GLM Mathematics #include #include #include // Other includes #include #include #include // Function prototypes void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode); void mouse_callback(GLFWwindow* window, double xpos, double ypos); void scroll_callback(GLFWwindow* window, double xoffset, double yoffset); void do_movement(); // Window dimensions const GLuint WIDTH = 800, HEIGHT = 600; // Camera Camera camera(glm::vec3(0.0f, 0.0f, 3.0f)); GLfloat lastX = WIDTH / 2.0; GLfloat lastY = HEIGHT / 2.0; bool keys[1024]; // Light attributes glm::vec3 lightPos(1.2f, 1.0f, 2.0f); // Deltatime GLfloat deltaTime = 0.0f; // Time between current frame and last frame GLfloat lastFrame = 0.0f; // Time of last frame // The MAIN function, from here we start the application and run the game loop int main() { // Init GLFW glfwInit(); // Set all the required options for GLFW glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); glfwWindowHint(GLFW_RESIZABLE, GL_FALSE); // Create a GLFWwindow object that we can use for GLFW's functions GLFWwindow* window = glfwCreateWindow(WIDTH, HEIGHT, "LearnOpenGL", nullptr, nullptr); glfwMakeContextCurrent(window); // Set the required callback functions glfwSetKeyCallback(window, key_callback); glfwSetCursorPosCallback(window, mouse_callback); glfwSetScrollCallback(window, scroll_callback); // GLFW Options glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED); // Set this to true so GLEW knows to use a modern approach to retrieving function pointers and extensions glewExperimental = GL_TRUE; // Initialize GLEW to setup the OpenGL Function pointers glewInit(); // Define the viewport dimensions glViewport(0, 0, WIDTH, HEIGHT); // OpenGL options glEnable(GL_DEPTH_TEST); // Build and compile our shader program Shader lightingShader("light_casters.vs", "light_casters.frag"); Shader lampShader("lamp.vs", "lamp.frag"); // Set up vertex data (and buffer(s)) and attribute pointers GLfloat vertices[] = { // Positions // Normals // Texture Coords -0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f, 0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, 0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, -0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f, -0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, -0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, -0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, -0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, -0.5f, 0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, -0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, -0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, -0.5f, -0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, -0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f, 0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, -0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, -0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, -0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, -0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, -0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f }; // Positions all containers glm::vec3 cubePositions[] = { glm::vec3( 0.0f, 0.0f, 0.0f), glm::vec3( 2.0f, 5.0f, -15.0f), glm::vec3(-1.5f, -2.2f, -2.5f), glm::vec3(-3.8f, -2.0f, -12.3f), glm::vec3( 2.4f, -0.4f, -3.5f), glm::vec3(-1.7f, 3.0f, -7.5f), glm::vec3( 1.3f, -2.0f, -2.5f), glm::vec3( 1.5f, 2.0f, -2.5f), glm::vec3( 1.5f, 0.2f, -1.5f), glm::vec3(-1.3f, 1.0f, -1.5f) }; // First, set the container's VAO (and VBO) GLuint VBO, containerVAO; glGenVertexArrays(1, &containerVAO); glGenBuffers(1, &VBO); glBindBuffer(GL_ARRAY_BUFFER, VBO); glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); glBindVertexArray(containerVAO); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0); glEnableVertexAttribArray(0); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat))); glEnableVertexAttribArray(1); glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat))); glEnableVertexAttribArray(2); glBindVertexArray(0); // Then, we set the light's VAO (VBO stays the same. After all, the vertices are the same for the light object (also a 3D cube)) GLuint lightVAO; glGenVertexArrays(1, &lightVAO); glBindVertexArray(lightVAO); // We only need to bind to the VBO (to link it with glVertexAttribPointer), no need to fill it; the VBO's data already contains all we need. glBindBuffer(GL_ARRAY_BUFFER, VBO); // Set the vertex attributes (only position data for the lamp)) glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0); // Note that we skip over the other data in our buffer object (we don't need the normals/textures, only positions). glEnableVertexAttribArray(0); glBindVertexArray(0); // Load textures GLuint diffuseMap, specularMap, emissionMap; glGenTextures(1, &diffuseMap); glGenTextures(1, &specularMap); glGenTextures(1, &emissionMap); int width, height; unsigned char* image; // Diffuse map image = SOIL_load_image(FileSystem::getPath("resources/textures/container2.png").c_str(), &width, &height, 0, SOIL_LOAD_RGB); glBindTexture(GL_TEXTURE_2D, diffuseMap); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image); glGenerateMipmap(GL_TEXTURE_2D); SOIL_free_image_data(image); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST_MIPMAP_NEAREST); // Specular map image = SOIL_load_image(FileSystem::getPath("resources/textures/container2_specular.png").c_str(), &width, &height, 0, SOIL_LOAD_RGB); glBindTexture(GL_TEXTURE_2D, specularMap); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image); glGenerateMipmap(GL_TEXTURE_2D); SOIL_free_image_data(image); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST_MIPMAP_NEAREST); glBindTexture(GL_TEXTURE_2D, 0); // Set texture units lightingShader.Use(); glUniform1i(glGetUniformLocation(lightingShader.Program, "material.diffuse"), 0); glUniform1i(glGetUniformLocation(lightingShader.Program, "material.specular"), 1); // Game loop while (!glfwWindowShouldClose(window)) { // Calculate deltatime of current frame GLfloat currentFrame = glfwGetTime(); deltaTime = currentFrame - lastFrame; lastFrame = currentFrame; // Check if any events have been activiated (key pressed, mouse moved etc.) and call corresponding response functions glfwPollEvents(); do_movement(); // Clear the colorbuffer glClearColor(0.1f, 0.1f, 0.1f, 1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Use cooresponding shader when setting uniforms/drawing objects lightingShader.Use(); GLint lightPosLoc = glGetUniformLocation(lightingShader.Program, "light.position"); GLint lightSpotdirLoc = glGetUniformLocation(lightingShader.Program, "light.direction"); GLint lightSpotCutOffLoc = glGetUniformLocation(lightingShader.Program, "light.cutOff"); GLint lightSpotOuterCutOffLoc = glGetUniformLocation(lightingShader.Program, "light.outerCutOff"); GLint viewPosLoc = glGetUniformLocation(lightingShader.Program, "viewPos"); glUniform3f(lightPosLoc, camera.Position.x, camera.Position.y, camera.Position.z); glUniform3f(lightSpotdirLoc, camera.Front.x, camera.Front.y, camera.Front.z); glUniform1f(lightSpotCutOffLoc, glm::cos(glm::radians(12.5f))); glUniform1f(lightSpotOuterCutOffLoc, glm::cos(glm::radians(17.5f))); glUniform3f(viewPosLoc, camera.Position.x, camera.Position.y, camera.Position.z); // Set lights properties glUniform3f(glGetUniformLocation(lightingShader.Program, "light.ambient"), 0.1f, 0.1f, 0.1f); // We set the diffuse intensity a bit higher; note that the right lighting conditions differ with each lighting method and environment. // Each environment and lighting type requires some tweaking of these variables to get the best out of your environment. glUniform3f(glGetUniformLocation(lightingShader.Program, "light.diffuse"), 0.8f, 0.8f, 0.8f); glUniform3f(glGetUniformLocation(lightingShader.Program, "light.specular"), 1.0f, 1.0f, 1.0f); glUniform1f(glGetUniformLocation(lightingShader.Program, "light.constant"), 1.0f); glUniform1f(glGetUniformLocation(lightingShader.Program, "light.linear"), 0.09); glUniform1f(glGetUniformLocation(lightingShader.Program, "light.quadratic"), 0.032); // Set material properties glUniform1f(glGetUniformLocation(lightingShader.Program, "material.shininess"), 32.0f); // Create camera transformations glm::mat4 view; view = camera.GetViewMatrix(); glm::mat4 projection = glm::perspective(camera.Zoom, (GLfloat)WIDTH / (GLfloat)HEIGHT, 0.1f, 100.0f); // Get the uniform locations GLint modelLoc = glGetUniformLocation(lightingShader.Program, "model"); GLint viewLoc = glGetUniformLocation(lightingShader.Program, "view"); GLint projLoc = glGetUniformLocation(lightingShader.Program, "projection"); // Pass the matrices to the shader glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view)); glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(projection)); // Bind diffuse map glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, diffuseMap); // Bind specular map glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, specularMap); // Draw the container (using container's vertex attributes) /*glBindVertexArray(containerVAO); glm::mat4 model; glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model)); glDrawArrays(GL_TRIANGLES, 0, 36); glBindVertexArray(0);*/ // Draw 10 containers with the same VAO and VBO information; only their world space coordinates differ glm::mat4 model; glBindVertexArray(containerVAO); for (GLuint i = 0; i < 10; i++) { model = glm::mat4(); model = glm::translate(model, cubePositions[i]); GLfloat angle = 20.0f * i; model = glm::rotate(model, angle, glm::vec3(1.0f, 0.3f, 0.5f)); glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model)); glDrawArrays(GL_TRIANGLES, 0, 36); } glBindVertexArray(0); // Again, no need to draw the lamp object // Also draw the lamp object, again binding the appropriate shader //lampShader.Use(); //// Get location objects for the matrices on the lamp shader (these could be different on a different shader) //modelLoc = glGetUniformLocation(lampShader.Program, "model"); //viewLoc = glGetUniformLocation(lampShader.Program, "view"); //projLoc = glGetUniformLocation(lampShader.Program, "projection"); //// Set matrices //glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view)); //glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(projection)); //model = glm::mat4(); //model = glm::translate(model, lightPos); //model = glm::scale(model, glm::vec3(0.2f)); // Make it a smaller cube //glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model)); //// Draw the light object (using light's vertex attributes) //glBindVertexArray(lightVAO); //glDrawArrays(GL_TRIANGLES, 0, 36); //glBindVertexArray(0); // Swap the screen buffers glfwSwapBuffers(window); } // Terminate GLFW, clearing any resources allocated by GLFW. glfwTerminate(); return 0; } // Is called whenever a key is pressed/released via GLFW void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode) { if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS) glfwSetWindowShouldClose(window, GL_TRUE); if (key >= 0 && key < 1024) { if (action == GLFW_PRESS) keys[key] = true; else if (action == GLFW_RELEASE) keys[key] = false; } } void do_movement() { // Camera controls if (keys[GLFW_KEY_W]) camera.ProcessKeyboard(FORWARD, deltaTime); if (keys[GLFW_KEY_S]) camera.ProcessKeyboard(BACKWARD, deltaTime); if (keys[GLFW_KEY_A]) camera.ProcessKeyboard(LEFT, deltaTime); if (keys[GLFW_KEY_D]) camera.ProcessKeyboard(RIGHT, deltaTime); } bool firstMouse = true; void mouse_callback(GLFWwindow* window, double xpos, double ypos) { if (firstMouse) { lastX = xpos; lastY = ypos; firstMouse = false; } GLfloat xoffset = xpos - lastX; GLfloat yoffset = lastY - ypos; // Reversed since y-coordinates go from bottom to left lastX = xpos; lastY = ypos; camera.ProcessMouseMovement(xoffset, yoffset); } void scroll_callback(GLFWwindow* window, double xoffset, double yoffset) { camera.ProcessMouseScroll(yoffset); }