#include #include #include #include #include #include #include #include #include #include #include void framebuffer_size_callback(GLFWwindow* window, int width, int height); void mouse_callback(GLFWwindow* window, double xpos, double ypos); void scroll_callback(GLFWwindow* window, double xoffset, double yoffset); void processInput(GLFWwindow *window); void renderSphere(); void renderCube(); void renderQuad(); // settings const unsigned int SCR_WIDTH = 1280; const unsigned int SCR_HEIGHT = 720; // camera Camera camera(glm::vec3(0.0f, 0.0f, 3.0f)); float lastX = 800.0f / 2.0; float lastY = 600.0 / 2.0; bool firstMouse = true; // timing float deltaTime = 0.0f; float lastFrame = 0.0f; int main() { // glfw: initialize and configure // ------------------------------ glfwInit(); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_SAMPLES, 4); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); #ifdef __APPLE__ glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); #endif // glfw window creation // -------------------- GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL); glfwMakeContextCurrent(window); if (window == NULL) { std::cout << "Failed to create GLFW window" << std::endl; glfwTerminate(); return -1; } glfwSetFramebufferSizeCallback(window, framebuffer_size_callback); glfwSetCursorPosCallback(window, mouse_callback); glfwSetScrollCallback(window, scroll_callback); // tell GLFW to capture our mouse glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED); // glad: load all OpenGL function pointers // --------------------------------------- if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) { std::cout << "Failed to initialize GLAD" << std::endl; return -1; } // configure global opengl state // ----------------------------- glEnable(GL_DEPTH_TEST); // set depth function to less than AND equal for skybox depth trick. glDepthFunc(GL_LEQUAL); // enable seamless cubemap sampling for lower mip levels in the pre-filter map. glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS); // build and compile shaders // ------------------------- Shader pbrShader("2.2.1.pbr.vs", "2.2.1.pbr.fs"); Shader equirectangularToCubemapShader("2.2.1.cubemap.vs", "2.2.1.equirectangular_to_cubemap.fs"); Shader irradianceShader("2.2.1.cubemap.vs", "2.2.1.irradiance_convolution.fs"); Shader prefilterShader("2.2.1.cubemap.vs", "2.2.1.prefilter.fs"); Shader brdfShader("2.2.1.brdf.vs", "2.2.1.brdf.fs"); Shader backgroundShader("2.2.1.background.vs", "2.2.1.background.fs"); pbrShader.use(); pbrShader.setInt("irradianceMap", 0); pbrShader.setInt("prefilterMap", 1); pbrShader.setInt("brdfLUT", 2); pbrShader.setVec3("albedo", 0.5f, 0.0f, 0.0f); pbrShader.setFloat("ao", 1.0f); backgroundShader.use(); backgroundShader.setInt("environmentMap", 0); // lights // ------ glm::vec3 lightPositions[] = { glm::vec3(-10.0f, 10.0f, 10.0f), glm::vec3( 10.0f, 10.0f, 10.0f), glm::vec3(-10.0f, -10.0f, 10.0f), glm::vec3( 10.0f, -10.0f, 10.0f), }; glm::vec3 lightColors[] = { glm::vec3(300.0f, 300.0f, 300.0f), glm::vec3(300.0f, 300.0f, 300.0f), glm::vec3(300.0f, 300.0f, 300.0f), glm::vec3(300.0f, 300.0f, 300.0f) }; int nrRows = 7; int nrColumns = 7; float spacing = 2.5; // pbr: setup framebuffer // ---------------------- unsigned int captureFBO; unsigned int captureRBO; glGenFramebuffers(1, &captureFBO); glGenRenderbuffers(1, &captureRBO); glBindFramebuffer(GL_FRAMEBUFFER, captureFBO); glBindRenderbuffer(GL_RENDERBUFFER, captureRBO); glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 512, 512); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, captureRBO); // pbr: load the HDR environment map // --------------------------------- stbi_set_flip_vertically_on_load(true); int width, height, nrComponents; float *data = stbi_loadf(FileSystem::getPath("resources/textures/hdr/newport_loft.hdr").c_str(), &width, &height, &nrComponents, 0); unsigned int hdrTexture; if (data) { glGenTextures(1, &hdrTexture); glBindTexture(GL_TEXTURE_2D, hdrTexture); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB16F, width, height, 0, GL_RGB, GL_FLOAT, data); // note how we specify the texture's data value to be float glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); stbi_image_free(data); } else { std::cout << "Failed to load HDR image." << std::endl; } // pbr: setup cubemap to render to and attach to framebuffer // --------------------------------------------------------- unsigned int envCubemap; glGenTextures(1, &envCubemap); glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap); for (unsigned int i = 0; i < 6; ++i) { glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, 512, 512, 0, GL_RGB, GL_FLOAT, nullptr); } glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); // enable pre-filter mipmap sampling (combatting visible dots artifact) glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // pbr: set up projection and view matrices for capturing data onto the 6 cubemap face directions // ---------------------------------------------------------------------------------------------- glm::mat4 captureProjection = glm::perspective(glm::radians(90.0f), 1.0f, 0.1f, 10.0f); glm::mat4 captureViews[] = { glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(1.0f, 0.0f, 0.0f), glm::vec3(0.0f, -1.0f, 0.0f)), glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(-1.0f, 0.0f, 0.0f), glm::vec3(0.0f, -1.0f, 0.0f)), glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 1.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f)), glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, -1.0f, 0.0f), glm::vec3(0.0f, 0.0f, -1.0f)), glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f), glm::vec3(0.0f, -1.0f, 0.0f)), glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, -1.0f), glm::vec3(0.0f, -1.0f, 0.0f)) }; // pbr: convert HDR equirectangular environment map to cubemap equivalent // ---------------------------------------------------------------------- equirectangularToCubemapShader.use(); equirectangularToCubemapShader.setInt("equirectangularMap", 0); equirectangularToCubemapShader.setMat4("projection", captureProjection); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, hdrTexture); glViewport(0, 0, 512, 512); // don't forget to configure the viewport to the capture dimensions. glBindFramebuffer(GL_FRAMEBUFFER, captureFBO); for (unsigned int i = 0; i < 6; ++i) { equirectangularToCubemapShader.setMat4("view", captureViews[i]); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, envCubemap, 0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); renderCube(); } glBindFramebuffer(GL_FRAMEBUFFER, 0); // then let OpenGL generate mipmaps from first mip face (combatting visible dots artifact) glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap); glGenerateMipmap(GL_TEXTURE_CUBE_MAP); // pbr: create an irradiance cubemap, and re-scale capture FBO to irradiance scale. // -------------------------------------------------------------------------------- unsigned int irradianceMap; glGenTextures(1, &irradianceMap); glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap); for (unsigned int i = 0; i < 6; ++i) { glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, 32, 32, 0, GL_RGB, GL_FLOAT, nullptr); } glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glBindFramebuffer(GL_FRAMEBUFFER, captureFBO); glBindRenderbuffer(GL_RENDERBUFFER, captureRBO); glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 32, 32); // pbr: solve diffuse integral by convolution to create an irradiance (cube)map. // ----------------------------------------------------------------------------- irradianceShader.use(); irradianceShader.setInt("environmentMap", 0); irradianceShader.setMat4("projection", captureProjection); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap); glViewport(0, 0, 32, 32); // don't forget to configure the viewport to the capture dimensions. glBindFramebuffer(GL_FRAMEBUFFER, captureFBO); for (unsigned int i = 0; i < 6; ++i) { irradianceShader.setMat4("view", captureViews[i]); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, irradianceMap, 0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); renderCube(); } glBindFramebuffer(GL_FRAMEBUFFER, 0); // pbr: create a pre-filter cubemap, and re-scale capture FBO to pre-filter scale. // -------------------------------------------------------------------------------- unsigned int prefilterMap; glGenTextures(1, &prefilterMap); glBindTexture(GL_TEXTURE_CUBE_MAP, prefilterMap); for (unsigned int i = 0; i < 6; ++i) { glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, 128, 128, 0, GL_RGB, GL_FLOAT, nullptr); } glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); // be sure to set minification filter to mip_linear glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // generate mipmaps for the cubemap so OpenGL automatically allocates the required memory. glGenerateMipmap(GL_TEXTURE_CUBE_MAP); // pbr: run a quasi monte-carlo simulation on the environment lighting to create a prefilter (cube)map. // ---------------------------------------------------------------------------------------------------- prefilterShader.use(); prefilterShader.setInt("environmentMap", 0); prefilterShader.setMat4("projection", captureProjection); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap); glBindFramebuffer(GL_FRAMEBUFFER, captureFBO); unsigned int maxMipLevels = 5; for (unsigned int mip = 0; mip < maxMipLevels; ++mip) { // reisze framebuffer according to mip-level size. unsigned int mipWidth = static_cast(128 * std::pow(0.5, mip)); unsigned int mipHeight = static_cast(128 * std::pow(0.5, mip)); glBindRenderbuffer(GL_RENDERBUFFER, captureRBO); glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, mipWidth, mipHeight); glViewport(0, 0, mipWidth, mipHeight); float roughness = (float)mip / (float)(maxMipLevels - 1); prefilterShader.setFloat("roughness", roughness); for (unsigned int i = 0; i < 6; ++i) { prefilterShader.setMat4("view", captureViews[i]); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, prefilterMap, mip); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); renderCube(); } } glBindFramebuffer(GL_FRAMEBUFFER, 0); // pbr: generate a 2D LUT from the BRDF equations used. // ---------------------------------------------------- unsigned int brdfLUTTexture; glGenTextures(1, &brdfLUTTexture); // pre-allocate enough memory for the LUT texture. glBindTexture(GL_TEXTURE_2D, brdfLUTTexture); glTexImage2D(GL_TEXTURE_2D, 0, GL_RG16F, 512, 512, 0, GL_RG, GL_FLOAT, 0); // be sure to set wrapping mode to GL_CLAMP_TO_EDGE glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // then re-configure capture framebuffer object and render screen-space quad with BRDF shader. glBindFramebuffer(GL_FRAMEBUFFER, captureFBO); glBindRenderbuffer(GL_RENDERBUFFER, captureRBO); glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 512, 512); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, brdfLUTTexture, 0); glViewport(0, 0, 512, 512); brdfShader.use(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); renderQuad(); glBindFramebuffer(GL_FRAMEBUFFER, 0); // initialize static shader uniforms before rendering // -------------------------------------------------- glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f); pbrShader.use(); pbrShader.setMat4("projection", projection); backgroundShader.use(); backgroundShader.setMat4("projection", projection); // then before rendering, configure the viewport to the original framebuffer's screen dimensions int scrWidth, scrHeight; glfwGetFramebufferSize(window, &scrWidth, &scrHeight); glViewport(0, 0, scrWidth, scrHeight); // render loop // ----------- while (!glfwWindowShouldClose(window)) { // per-frame time logic // -------------------- auto currentFrame = static_cast(glfwGetTime()); deltaTime = currentFrame - lastFrame; lastFrame = currentFrame; // input // ----- processInput(window); // render // ------ glClearColor(0.2f, 0.3f, 0.3f, 1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // render scene, supplying the convoluted irradiance map to the final shader. // ------------------------------------------------------------------------------------------ pbrShader.use(); glm::mat4 view = camera.GetViewMatrix(); pbrShader.setMat4("view", view); pbrShader.setVec3("camPos", camera.Position); // bind pre-computed IBL data glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_CUBE_MAP, prefilterMap); glActiveTexture(GL_TEXTURE2); glBindTexture(GL_TEXTURE_2D, brdfLUTTexture); // render rows*column number of spheres with varying metallic/roughness values scaled by rows and columns respectively glm::mat4 model = glm::mat4(1.0f); for (int row = 0; row < nrRows; ++row) { pbrShader.setFloat("metallic", (float)row / (float)nrRows); for (int col = 0; col < nrColumns; ++col) { // we clamp the roughness to 0.025 - 1.0 as perfectly smooth surfaces (roughness of 0.0) tend to look a bit off // on direct lighting. pbrShader.setFloat("roughness", glm::clamp((float)col / (float)nrColumns, 0.05f, 1.0f)); model = glm::mat4(1.0f); model = glm::translate(model, glm::vec3( (float)(col - (nrColumns / 2)) * spacing, (float)(row - (nrRows / 2)) * spacing, -2.0f )); pbrShader.setMat4("model", model); renderSphere(); } } // render light source (simply re-render sphere at light positions) // this looks a bit off as we use the same shader, but it'll make their positions obvious and // keeps the codeprint small. for (unsigned int i = 0; i < sizeof(lightPositions) / sizeof(lightPositions[0]); ++i) { glm::vec3 newPos = lightPositions[i] + glm::vec3(sin(glfwGetTime() * 5.0) * 5.0, 0.0, 0.0); newPos = lightPositions[i]; pbrShader.setVec3("lightPositions[" + std::to_string(i) + "]", newPos); pbrShader.setVec3("lightColors[" + std::to_string(i) + "]", lightColors[i]); model = glm::mat4(1.0f); model = glm::translate(model, newPos); model = glm::scale(model, glm::vec3(0.5f)); pbrShader.setMat4("model", model); renderSphere(); } // render skybox (render as last to prevent overdraw) backgroundShader.use(); backgroundShader.setMat4("view", view); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap); //glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap); // display irradiance map //glBindTexture(GL_TEXTURE_CUBE_MAP, prefilterMap); // display prefilter map renderCube(); // render BRDF map to screen //brdfShader.Use(); //renderQuad(); // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.) // ------------------------------------------------------------------------------- glfwSwapBuffers(window); glfwPollEvents(); } // glfw: terminate, clearing all previously allocated GLFW resources. // ------------------------------------------------------------------ glfwTerminate(); return 0; } // process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly // --------------------------------------------------------------------------------------------------------- void processInput(GLFWwindow *window) { if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS) glfwSetWindowShouldClose(window, true); if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS) camera.ProcessKeyboard(FORWARD, deltaTime); if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS) camera.ProcessKeyboard(BACKWARD, deltaTime); if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS) camera.ProcessKeyboard(LEFT, deltaTime); if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS) camera.ProcessKeyboard(RIGHT, deltaTime); } // glfw: whenever the window size changed (by OS or user resize) this callback function executes // --------------------------------------------------------------------------------------------- void framebuffer_size_callback(GLFWwindow* window, int width, int height) { // make sure the viewport matches the new window dimensions; note that width and // height will be significantly larger than specified on retina displays. glViewport(0, 0, width, height); } // glfw: whenever the mouse moves, this callback is called // ------------------------------------------------------- void mouse_callback(GLFWwindow* window, double xposIn, double yposIn) { auto xpos = static_cast(xposIn); auto ypos = static_cast(yposIn); if (firstMouse) { lastX = xpos; lastY = ypos; firstMouse = false; } float xoffset = xpos - lastX; float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top lastX = xpos; lastY = ypos; camera.ProcessMouseMovement(xoffset, yoffset); } // glfw: whenever the mouse scroll wheel scrolls, this callback is called // ---------------------------------------------------------------------- void scroll_callback(GLFWwindow* window, double xoffset, double yoffset) { camera.ProcessMouseScroll(static_cast(yoffset)); } // renders (and builds at first invocation) a sphere // ------------------------------------------------- unsigned int sphereVAO = 0; GLsizei indexCount; void renderSphere() { if (sphereVAO == 0) { glGenVertexArrays(1, &sphereVAO); unsigned int vbo, ebo; glGenBuffers(1, &vbo); glGenBuffers(1, &ebo); std::vector positions; std::vector uv; std::vector normals; std::vector indices; const unsigned int X_SEGMENTS = 64; const unsigned int Y_SEGMENTS = 64; const float PI = 3.14159265359f; for (unsigned int x = 0; x <= X_SEGMENTS; ++x) { for (unsigned int y = 0; y <= Y_SEGMENTS; ++y) { float xSegment = (float)x / (float)X_SEGMENTS; float ySegment = (float)y / (float)Y_SEGMENTS; float xPos = std::cos(xSegment * 2.0f * PI) * std::sin(ySegment * PI); float yPos = std::cos(ySegment * PI); float zPos = std::sin(xSegment * 2.0f * PI) * std::sin(ySegment * PI); positions.push_back(glm::vec3(xPos, yPos, zPos)); uv.push_back(glm::vec2(xSegment, ySegment)); normals.push_back(glm::vec3(xPos, yPos, zPos)); } } bool oddRow = false; for (unsigned int y = 0; y < Y_SEGMENTS; ++y) { if (!oddRow) // even rows: y == 0, y == 2; and so on { for (unsigned int x = 0; x <= X_SEGMENTS; ++x) { indices.push_back(y * (X_SEGMENTS + 1) + x); indices.push_back((y + 1) * (X_SEGMENTS + 1) + x); } } else { for (int x = X_SEGMENTS; x >= 0; --x) { indices.push_back((y + 1) * (X_SEGMENTS + 1) + x); indices.push_back(y * (X_SEGMENTS + 1) + x); } } oddRow = !oddRow; } indexCount = static_cast(indices.size()); std::vector data; for (unsigned int i = 0; i < positions.size(); ++i) { data.push_back(positions[i].x); data.push_back(positions[i].y); data.push_back(positions[i].z); if (normals.size() > 0) { data.push_back(normals[i].x); data.push_back(normals[i].y); data.push_back(normals[i].z); } if (uv.size() > 0) { data.push_back(uv[i].x); data.push_back(uv[i].y); } } glBindVertexArray(sphereVAO); glBindBuffer(GL_ARRAY_BUFFER, vbo); glBufferData(GL_ARRAY_BUFFER, data.size() * sizeof(float), &data[0], GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo); glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned int), &indices[0], GL_STATIC_DRAW); unsigned int stride = (3 + 2 + 3) * sizeof(float); glEnableVertexAttribArray(0); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, stride, (void*)0); glEnableVertexAttribArray(1); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, stride, (void*)(3 * sizeof(float))); glEnableVertexAttribArray(2); glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, stride, (void*)(6 * sizeof(float))); } glBindVertexArray(sphereVAO); glDrawElements(GL_TRIANGLE_STRIP, indexCount, GL_UNSIGNED_INT, 0); } // renderCube() renders a 1x1 3D cube in NDC. // ------------------------------------------------- unsigned int cubeVAO = 0; unsigned int cubeVBO = 0; void renderCube() { // initialize (if necessary) if (cubeVAO == 0) { float vertices[] = { // back face -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // bottom-left 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f, // bottom-right 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // bottom-left -1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f, // top-left // front face -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, // bottom-right 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, // top-left -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left // left face -1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right -1.0f, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-left -1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left -1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left -1.0f, -1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-right -1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right // right face 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left 1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right 1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-right 1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left 1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-left // bottom face -1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right 1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f, // top-left 1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, // bottom-left 1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, // bottom-left -1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, // bottom-right -1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right // top face -1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, // top-left 1.0f, 1.0f , 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right 1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, // top-right 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right -1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, // top-left -1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f // bottom-left }; glGenVertexArrays(1, &cubeVAO); glGenBuffers(1, &cubeVBO); // fill buffer glBindBuffer(GL_ARRAY_BUFFER, cubeVBO); glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); // link vertex attributes glBindVertexArray(cubeVAO); glEnableVertexAttribArray(0); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)0); glEnableVertexAttribArray(1); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(3 * sizeof(float))); glEnableVertexAttribArray(2); glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(6 * sizeof(float))); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindVertexArray(0); } // render Cube glBindVertexArray(cubeVAO); glDrawArrays(GL_TRIANGLES, 0, 36); glBindVertexArray(0); } // renderQuad() renders a 1x1 XY quad in NDC // ----------------------------------------- unsigned int quadVAO = 0; unsigned int quadVBO; void renderQuad() { if (quadVAO == 0) { float quadVertices[] = { // positions // texture Coords -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, }; // setup plane VAO glGenVertexArrays(1, &quadVAO); glGenBuffers(1, &quadVBO); glBindVertexArray(quadVAO); glBindBuffer(GL_ARRAY_BUFFER, quadVBO); glBufferData(GL_ARRAY_BUFFER, sizeof(quadVertices), &quadVertices, GL_STATIC_DRAW); glEnableVertexAttribArray(0); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)0); glEnableVertexAttribArray(1); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(3 * sizeof(float))); } glBindVertexArray(quadVAO); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); glBindVertexArray(0); }