#pragma once // Std. Includes #include #include #include #include #include #include using namespace std; // GL Includes #include // Contains all the necessery OpenGL includes #include #include #include #include #include #include #include unsigned int TextureFromFile(const char* path, string directory, bool gamma = false); class Model { public: /* Model Data */ vector textures_loaded; // Stores all the textures loaded so far, optimization to make sure textures aren't loaded more than once. vector meshes; string directory; bool gammaCorrection; /* Functions */ // Constructor, expects a filepath to a 3D model. Model(string const & path, bool gamma = false) : gammaCorrection(gamma) { this->loadModel(path); } // Draws the model, and thus all its meshes void Draw(Shader shader) { for(GLuint i = 0; i < this->meshes.size(); i++) this->meshes[i].Draw(shader); } private: /* Functions */ // Loads a model with supported ASSIMP extensions from file and stores the resulting meshes in the meshes vector. void loadModel(string path) { // Read file via ASSIMP Assimp::Importer importer; const aiScene* scene = importer.ReadFile(path, aiProcess_Triangulate | aiProcess_FlipUVs | aiProcess_CalcTangentSpace); // Check for errors if(!scene || scene->mFlags & AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode) // if is Not Zero { cout << "ERROR::ASSIMP:: " << importer.GetErrorString() << endl; return; } // Retrieve the directory path of the filepath this->directory = path.substr(0, path.find_last_of('/')); // Process ASSIMP's root node recursively this->processNode(scene->mRootNode, scene); } // Processes a node in a recursive fashion. Processes each individual mesh located at the node and repeats this process on its children nodes (if any). void processNode(aiNode* node, const aiScene* scene) { // Process each mesh located at the current node for(GLuint i = 0; i < node->mNumMeshes; i++) { // The node object only contains indices to index the actual objects in the scene. // The scene contains all the data, node is just to keep stuff organized (like relations between nodes). aiMesh* mesh = scene->mMeshes[node->mMeshes[i]]; this->meshes.push_back(this->processMesh(mesh, scene)); } // After we've processed all of the meshes (if any) we then recursively process each of the children nodes for(GLuint i = 0; i < node->mNumChildren; i++) { this->processNode(node->mChildren[i], scene); } } Mesh processMesh(aiMesh* mesh, const aiScene* scene) { // Data to fill vector vertices; vector indices; vector textures; // Walk through each of the mesh's vertices for(GLuint i = 0; i < mesh->mNumVertices; i++) { Vertex vertex; glm::vec3 vector; // We declare a placeholder vector since assimp uses its own vector class that doesn't directly convert to glm's vec3 class so we transfer the data to this placeholder glm::vec3 first. // Positions vector.x = mesh->mVertices[i].x; vector.y = mesh->mVertices[i].y; vector.z = mesh->mVertices[i].z; vertex.Position = vector; // Normals vector.x = mesh->mNormals[i].x; vector.y = mesh->mNormals[i].y; vector.z = mesh->mNormals[i].z; vertex.Normal = vector; // Texture Coordinates if(mesh->mTextureCoords[0]) // Does the mesh contain texture coordinates? { glm::vec2 vec; // A vertex can contain up to 8 different texture coordinates. We thus make the assumption that we won't // use models where a vertex can have multiple texture coordinates so we always take the first set (0). vec.x = mesh->mTextureCoords[0][i].x; vec.y = mesh->mTextureCoords[0][i].y; vertex.TexCoords = vec; } else vertex.TexCoords = glm::vec2(0.0f, 0.0f); // Tangent vector.x = mesh->mTangents[i].x; vector.y = mesh->mTangents[i].y; vector.z = mesh->mTangents[i].z; vertex.Tangent = vector; // Bitangent vector.x = mesh->mBitangents[i].x; vector.y = mesh->mBitangents[i].y; vector.z = mesh->mBitangents[i].z; vertex.Bitangent = vector; vertices.push_back(vertex); } // Now wak through each of the mesh's faces (a face is a mesh its triangle) and retrieve the corresponding vertex indices. for(GLuint i = 0; i < mesh->mNumFaces; i++) { aiFace face = mesh->mFaces[i]; // Retrieve all indices of the face and store them in the indices vector for(GLuint j = 0; j < face.mNumIndices; j++) indices.push_back(face.mIndices[j]); } // Process materials if(mesh->mMaterialIndex >= 0) { aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex]; // We assume a convention for sampler names in the shaders. Each diffuse texture should be named // as 'texture_diffuseN' where N is a sequential number ranging from 1 to MAX_SAMPLER_NUMBER. // Same applies to other texture as the following list summarizes: // Diffuse: texture_diffuseN // Specular: texture_specularN // Normal: texture_normalN // 1. Diffuse maps vector diffuseMaps = this->loadMaterialTextures(material, aiTextureType_DIFFUSE, "texture_diffuse"); textures.insert(textures.end(), diffuseMaps.begin(), diffuseMaps.end()); // 2. Specular maps vector specularMaps = this->loadMaterialTextures(material, aiTextureType_SPECULAR, "texture_specular"); textures.insert(textures.end(), specularMaps.begin(), specularMaps.end()); // 3. Normal maps std::vector normalMaps = this->loadMaterialTextures(material, aiTextureType_HEIGHT, "texture_normal"); textures.insert(textures.end(), normalMaps.begin(), normalMaps.end()); // 4. Height maps std::vector heightMaps = this->loadMaterialTextures(material, aiTextureType_AMBIENT, "texture_height"); textures.insert(textures.end(), heightMaps.begin(), heightMaps.end()); } // Return a mesh object created from the extracted mesh data return Mesh(vertices, indices, textures); } // Checks all material textures of a given type and loads the textures if they're not loaded yet. // The required info is returned as a Texture struct. vector loadMaterialTextures(aiMaterial* mat, aiTextureType type, string typeName) { vector textures; for(GLuint i = 0; i < mat->GetTextureCount(type); i++) { aiString str; mat->GetTexture(type, i, &str); // Check if texture was loaded before and if so, continue to next iteration: skip loading a new texture GLboolean skip = false; for(GLuint j = 0; j < textures_loaded.size(); j++) { if(std::strcmp(textures_loaded[j].path.C_Str(), str.C_Str()) == 0) { textures.push_back(textures_loaded[j]); skip = true; // A texture with the same filepath has already been loaded, continue to next one. (optimization) break; } } if(!skip) { // If texture hasn't been loaded already, load it Texture texture; texture.id = TextureFromFile(str.C_Str(), this->directory); texture.type = typeName; texture.path = str; textures.push_back(texture); this->textures_loaded.push_back(texture); // Store it as texture loaded for entire model, to ensure we won't unnecesery load duplicate textures. } } return textures; } }; unsigned int TextureFromFile(const char* path, string directory, bool gamma) { string filename = string(path); filename = directory + '/' + filename; unsigned int textureID; glGenTextures(1, &textureID); int width, height, nrComponents; unsigned char *data = stbi_load(filename.c_str(), &width, &height, &nrComponents, 0); if (data) { GLenum format; if (nrComponents == 1) format = GL_RED; else if (nrComponents == 3) format = GL_RGB; else if (nrComponents == 4) format = GL_RGBA; glBindTexture(GL_TEXTURE_2D, textureID); glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data); glGenerateMipmap(GL_TEXTURE_2D); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); stbi_image_free(data); } else { std::cout << "Texture failed to load at path: " << path << std::endl; stbi_image_free(data); } return textureID; }