mirror of
https://github.com/JoeyDeVries/LearnOpenGL.git
synced 2026-01-02 04:37:54 +08:00
148 lines
5.0 KiB
GLSL
148 lines
5.0 KiB
GLSL
#version 330 core
|
|
out vec4 FragColor;
|
|
in vec2 TexCoords;
|
|
in vec3 WorldPos;
|
|
in vec3 Normal;
|
|
|
|
// material parameters
|
|
uniform sampler2D albedoMap;
|
|
uniform sampler2D normalMap;
|
|
uniform sampler2D metallicMap;
|
|
uniform sampler2D roughnessMap;
|
|
uniform sampler2D aoMap;
|
|
|
|
// lights
|
|
uniform vec3 lightPositions[4];
|
|
uniform vec3 lightColors[4];
|
|
|
|
uniform vec3 camPos;
|
|
|
|
const float PI = 3.14159265359;
|
|
// ----------------------------------------------------------------------------
|
|
// Easy trick to get tangent-normals to world-space to keep PBR code simplified.
|
|
// Don't worry if you don't get what's going on; you generally want to do normal
|
|
// mapping the usual way for performance anways; I do plan make a note of this
|
|
// technique somewhere later in the normal mapping tutorial.
|
|
vec3 getNormalFromMap()
|
|
{
|
|
vec3 tangentNormal = texture(normalMap, TexCoords).xyz * 2.0 - 1.0;
|
|
|
|
vec3 Q1 = dFdx(WorldPos);
|
|
vec3 Q2 = dFdy(WorldPos);
|
|
vec2 st1 = dFdx(TexCoords);
|
|
vec2 st2 = dFdy(TexCoords);
|
|
|
|
vec3 N = normalize(Normal);
|
|
vec3 T = normalize(Q1*st2.t - Q2*st1.t);
|
|
vec3 B = -normalize(cross(N, T));
|
|
mat3 TBN = mat3(T, B, N);
|
|
|
|
return normalize(TBN * tangentNormal);
|
|
}
|
|
// ----------------------------------------------------------------------------
|
|
float DistributionGGX(vec3 N, vec3 H, float roughness)
|
|
{
|
|
float a = roughness*roughness;
|
|
float a2 = a*a;
|
|
float NdotH = max(dot(N, H), 0.0);
|
|
float NdotH2 = NdotH*NdotH;
|
|
|
|
float nom = a2;
|
|
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
|
|
denom = PI * denom * denom;
|
|
|
|
return nom / denom;
|
|
}
|
|
// ----------------------------------------------------------------------------
|
|
float GeometrySchlickGGX(float NdotV, float roughness)
|
|
{
|
|
float r = (roughness + 1.0);
|
|
float k = (r*r) / 8.0;
|
|
|
|
float nom = NdotV;
|
|
float denom = NdotV * (1.0 - k) + k;
|
|
|
|
return nom / denom;
|
|
}
|
|
// ----------------------------------------------------------------------------
|
|
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
|
|
{
|
|
float NdotV = max(dot(N, V), 0.0);
|
|
float NdotL = max(dot(N, L), 0.0);
|
|
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
|
|
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
|
|
|
|
return ggx1 * ggx2;
|
|
}
|
|
// ----------------------------------------------------------------------------
|
|
vec3 fresnelSchlick(float cosTheta, vec3 F0)
|
|
{
|
|
return F0 + (1.0 - F0) * pow(clamp(1.0 - cosTheta, 0.0, 1.0), 5.0);
|
|
}
|
|
// ----------------------------------------------------------------------------
|
|
void main()
|
|
{
|
|
vec3 albedo = pow(texture(albedoMap, TexCoords).rgb, vec3(2.2));
|
|
float metallic = texture(metallicMap, TexCoords).r;
|
|
float roughness = texture(roughnessMap, TexCoords).r;
|
|
float ao = texture(aoMap, TexCoords).r;
|
|
|
|
vec3 N = getNormalFromMap();
|
|
vec3 V = normalize(camPos - WorldPos);
|
|
|
|
// calculate reflectance at normal incidence; if dia-electric (like plastic) use F0
|
|
// of 0.04 and if it's a metal, use the albedo color as F0 (metallic workflow)
|
|
vec3 F0 = vec3(0.04);
|
|
F0 = mix(F0, albedo, metallic);
|
|
|
|
// reflectance equation
|
|
vec3 Lo = vec3(0.0);
|
|
for(int i = 0; i < 4; ++i)
|
|
{
|
|
// calculate per-light radiance
|
|
vec3 L = normalize(lightPositions[i] - WorldPos);
|
|
vec3 H = normalize(V + L);
|
|
float distance = length(lightPositions[i] - WorldPos);
|
|
float attenuation = 1.0 / (distance * distance);
|
|
vec3 radiance = lightColors[i] * attenuation;
|
|
|
|
// Cook-Torrance BRDF
|
|
float NDF = DistributionGGX(N, H, roughness);
|
|
float G = GeometrySmith(N, V, L, roughness);
|
|
vec3 F = fresnelSchlick(max(dot(H, V), 0.0), F0);
|
|
|
|
vec3 nominator = NDF * G * F;
|
|
float denominator = 4 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0) + 0.0001; // + 0.0001 to prevent divide by zero
|
|
vec3 specular = nominator / denominator;
|
|
|
|
// kS is equal to Fresnel
|
|
vec3 kS = F;
|
|
// for energy conservation, the diffuse and specular light can't
|
|
// be above 1.0 (unless the surface emits light); to preserve this
|
|
// relationship the diffuse component (kD) should equal 1.0 - kS.
|
|
vec3 kD = vec3(1.0) - kS;
|
|
// multiply kD by the inverse metalness such that only non-metals
|
|
// have diffuse lighting, or a linear blend if partly metal (pure metals
|
|
// have no diffuse light).
|
|
kD *= 1.0 - metallic;
|
|
|
|
// scale light by NdotL
|
|
float NdotL = max(dot(N, L), 0.0);
|
|
|
|
// add to outgoing radiance Lo
|
|
Lo += (kD * albedo / PI + specular) * radiance * NdotL; // note that we already multiplied the BRDF by the Fresnel (kS) so we won't multiply by kS again
|
|
}
|
|
|
|
// ambient lighting (note that the next IBL tutorial will replace
|
|
// this ambient lighting with environment lighting).
|
|
vec3 ambient = vec3(0.03) * albedo * ao;
|
|
|
|
vec3 color = ambient + Lo;
|
|
|
|
// HDR tonemapping
|
|
color = color / (color + vec3(1.0));
|
|
// gamma correct
|
|
color = pow(color, vec3(1.0/2.2));
|
|
|
|
FragColor = vec4(color, 1.0);
|
|
} |