Files
LearnOpenGL/src/6.pbr/2.2.2.ibl_specular_textured/ibl_specular_textured.cpp
2017-03-31 22:34:26 +02:00

835 lines
36 KiB
C++

// Std. Includes
#include <string>
// GLEW
#define GLEW_STATIC
#include <GL/glew.h>
// GLFW
#include <GLFW/glfw3.h>
// GL includes
#include <learnopengl/shader.h>
#include <learnopengl/camera.h>
// GLM Mathemtics
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
// Other Libs
#include <learnopengl/filesystem.h>
#include "stb_image.h"
// Properties
const GLuint SCR_WIDTH = 1280, SCR_HEIGHT = 720;
// Function prototypes
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void Do_Movement();
GLuint loadTexture(GLchar const * path);
void renderSphere();
void renderCube();
void RenderQuad();
// camera
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
// timing
GLfloat deltaTime = 0.0f;
GLfloat lastFrame = 0.0f;
// The MAIN function, from here we start the application and run the Game loop
int main()
{
// GLFW Init
// ---------
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_SAMPLES, 4);
glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", nullptr, nullptr); // Windowed
glfwMakeContextCurrent(window);
// GLFW config
// -----------
glfwSetKeyCallback(window, key_callback);
glfwSetCursorPosCallback(window, mouse_callback);
glfwSetScrollCallback(window, scroll_callback);
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
// Initialize GLEW to setup the OpenGL Function pointers
// -----------------------------------------------------
glewExperimental = GL_TRUE;
glewInit();
glGetError();
// Setup OpenGL state
// ------------------
glEnable(GL_DEPTH_TEST);
// set depth function to less than AND equal for skybox depth trick.
glDepthFunc(GL_LEQUAL);
// enable seamless cubemap sampling for lower mip levels in the pre-filter map.
glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS);
// load and initialize shaders
// ---------------------------
Shader pbrShader("2.2.2.pbr.vs", "2.2.2.pbr.frag");
Shader equirectangularToCubemapShader("2.2.1.cubemap.vs", "2.2.1.equirectangular_to_cubemap.frag");
Shader irradianceShader("2.2.1.cubemap.vs", "2.2.1.irradiance_convolution.frag");
Shader prefilterShader("2.2.1.cubemap.vs", "2.2.1.prefilter.frag");
Shader brdfShader("2.2.1.brdf.vs", "2.2.1.brdf.frag");
Shader backgroundShader("2.2.1.background.vs", "2.2.1.background.frag");
pbrShader.Use();
glUniform1i(glGetUniformLocation(pbrShader.Program, "irradianceMap"), 0);
glUniform1i(glGetUniformLocation(pbrShader.Program, "prefilterMap"), 1);
glUniform1i(glGetUniformLocation(pbrShader.Program, "brdfLUT"), 2);
glUniform1i(glGetUniformLocation(pbrShader.Program, "albedoMap"), 3);
glUniform1i(glGetUniformLocation(pbrShader.Program, "normalMap"), 4);
glUniform1i(glGetUniformLocation(pbrShader.Program, "metallicMap"), 5);
glUniform1i(glGetUniformLocation(pbrShader.Program, "roughnessMap"), 6);
glUniform1i(glGetUniformLocation(pbrShader.Program, "aoMap"), 7);
backgroundShader.Use();
glUniform1i(glGetUniformLocation(backgroundShader.Program, "environmentMap"), 0);
// load PBR material textures
// --------------------------
// rusted iron
unsigned int ironAlbedoMap = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/albedo.png").c_str());
unsigned int ironNormalMap = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/normal.png").c_str());
unsigned int ironMetallicMap = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/metallic.png").c_str());
unsigned int ironRoughnessMap = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/roughness.png").c_str());
unsigned int ironAOMap = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/ao.png").c_str());
// gold
unsigned int goldAlbedoMap = loadTexture(FileSystem::getPath("resources/textures/pbr/gold/albedo.png").c_str());
unsigned int goldNormalMap = loadTexture(FileSystem::getPath("resources/textures/pbr/gold/normal.png").c_str());
unsigned int goldMetallicMap = loadTexture(FileSystem::getPath("resources/textures/pbr/gold/metallic.png").c_str());
unsigned int goldRoughnessMap = loadTexture(FileSystem::getPath("resources/textures/pbr/gold/roughness.png").c_str());
unsigned int goldAOMap = loadTexture(FileSystem::getPath("resources/textures/pbr/gold/ao.png").c_str());
// grass
unsigned int grassAlbedoMap = loadTexture(FileSystem::getPath("resources/textures/pbr/grass/albedo.png").c_str());
unsigned int grassNormalMap = loadTexture(FileSystem::getPath("resources/textures/pbr/grass/normal.png").c_str());
unsigned int grassMetallicMap = loadTexture(FileSystem::getPath("resources/textures/pbr/grass/metallic.png").c_str());
unsigned int grassRoughnessMap = loadTexture(FileSystem::getPath("resources/textures/pbr/grass/roughness.png").c_str());
unsigned int grassAOMap = loadTexture(FileSystem::getPath("resources/textures/pbr/grass/ao.png").c_str());
// plastic
unsigned int plasticAlbedoMap = loadTexture(FileSystem::getPath("resources/textures/pbr/plastic/albedo.png").c_str());
unsigned int plasticNormalMap = loadTexture(FileSystem::getPath("resources/textures/pbr/plastic/normal.png").c_str());
unsigned int plasticMetallicMap = loadTexture(FileSystem::getPath("resources/textures/pbr/plastic/metallic.png").c_str());
unsigned int plasticRoughnessMap = loadTexture(FileSystem::getPath("resources/textures/pbr/plastic/roughness.png").c_str());
unsigned int plasticAOMap = loadTexture(FileSystem::getPath("resources/textures/pbr/plastic/ao.png").c_str());
// wall
unsigned int wallAlbedoMap = loadTexture(FileSystem::getPath("resources/textures/pbr/wall/albedo.png").c_str());
unsigned int wallNormalMap = loadTexture(FileSystem::getPath("resources/textures/pbr/wall/normal.png").c_str());
unsigned int wallMetallicMap = loadTexture(FileSystem::getPath("resources/textures/pbr/wall/metallic.png").c_str());
unsigned int wallRoughnessMap = loadTexture(FileSystem::getPath("resources/textures/pbr/wall/roughness.png").c_str());
unsigned int wallAOMap = loadTexture(FileSystem::getPath("resources/textures/pbr/wall/ao.png").c_str());
// lights
// ------
glm::vec3 lightPositions[] = {
glm::vec3(-10.0f, 10.0f, 10.0f),
glm::vec3( 10.0f, 10.0f, 10.0f),
glm::vec3(-10.0f, -10.0f, 10.0f),
glm::vec3( 10.0f, -10.0f, 10.0f),
};
glm::vec3 lightColors[] = {
glm::vec3(300.0f, 300.0f, 300.0f),
glm::vec3(300.0f, 300.0f, 300.0f),
glm::vec3(300.0f, 300.0f, 300.0f),
glm::vec3(300.0f, 300.0f, 300.0f)
};
int nrRows = 7;
int nrColumns = 7;
float spacing = 2.5;
// pbr: setup framebuffer
// ----------------------
unsigned int captureFBO;
unsigned int captureRBO;
glGenFramebuffers(1, &captureFBO);
glGenRenderbuffers(1, &captureRBO);
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 512, 512);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, captureRBO);
// pbr: load the HDR environment map
// ---------------------------------
stbi_set_flip_vertically_on_load(true);
int width, height, nrComponents;
float *data = stbi_loadf(FileSystem::getPath("resources/textures/hdr/newport_loft.hdr").c_str(), &width, &height, &nrComponents, 0);
unsigned int hdrTexture;
if (data)
{
glGenTextures(1, &hdrTexture);
glBindTexture(GL_TEXTURE_2D, hdrTexture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB16F, width, height, 0, GL_RGB, GL_FLOAT, data); // note how we specify the texture's data value to be float
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
stbi_image_free(data);
}
else
{
std::cout << "Failed to load HDR image." << std::endl;
}
// pbr: setup cubemap to render to and attach to framebuffer
// ---------------------------------------------------------
unsigned int envCubemap;
glGenTextures(1, &envCubemap);
glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
for (unsigned int i = 0; i < 6; ++i)
{
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, 512, 512, 0, GL_RGB, GL_FLOAT, nullptr);
}
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); // enable pre-filter mipmap sampling (combatting visible dots artifact)
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// pbr: set up projection and view matrices for capturing data onto the 6 cubemap face directions
// ----------------------------------------------------------------------------------------------
glm::mat4 captureProjection = glm::perspective(glm::radians(90.0f), 1.0f, 0.1f, 10.0f);
glm::mat4 captureViews[] =
{
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(1.0f, 0.0f, 0.0f), glm::vec3(0.0f, -1.0f, 0.0f)),
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(-1.0f, 0.0f, 0.0f), glm::vec3(0.0f, -1.0f, 0.0f)),
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 1.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f)),
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, -1.0f, 0.0f), glm::vec3(0.0f, 0.0f, -1.0f)),
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f), glm::vec3(0.0f, -1.0f, 0.0f)),
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, -1.0f), glm::vec3(0.0f, -1.0f, 0.0f))
};
// pbr: convert HDR equirectangular environment map to cubemap equivalent
// ----------------------------------------------------------------------
equirectangularToCubemapShader.Use();
glUniform1i(glGetUniformLocation(equirectangularToCubemapShader.Program, "equirectangularMap"), 0);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, hdrTexture);
glUniformMatrix4fv(glGetUniformLocation(equirectangularToCubemapShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(captureProjection));
glViewport(0, 0, 512, 512); // don't forget to configure the viewport to the capture dimensions.
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
for (unsigned int i = 0; i < 6; ++i)
{
glUniformMatrix4fv(glGetUniformLocation(equirectangularToCubemapShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(captureViews[i]));
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, envCubemap, 0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
renderCube();
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// then let OpenGL generate mipmaps from first mip face (combatting visible dots artifact)
glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
// pbr: create an irradiance cubemap, and re-scale capture FBO to irradiance scale.
// --------------------------------------------------------------------------------
unsigned int irradianceMap;
glGenTextures(1, &irradianceMap);
glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap);
for (unsigned int i = 0; i < 6; ++i)
{
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB32F, 32, 32, 0, GL_RGB, GL_FLOAT, nullptr);
}
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 32, 32);
// pbr: solve diffuse integral by convolution to create an irradiance (cube)map.
// -----------------------------------------------------------------------------
irradianceShader.Use();
glUniform1i(glGetUniformLocation(irradianceShader.Program, "environmentMap"), 0);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
glUniformMatrix4fv(glGetUniformLocation(irradianceShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(captureProjection));
glViewport(0, 0, 32, 32); // don't forget to configure the viewport to the capture dimensions.
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
for (unsigned int i = 0; i < 6; ++i)
{
glUniformMatrix4fv(glGetUniformLocation(irradianceShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(captureViews[i]));
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, irradianceMap, 0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
renderCube();
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// pbr: create a pre-filter cubemap, and re-scale capture FBO to pre-filter scale.
// --------------------------------------------------------------------------------
unsigned int prefilterMap;
glGenTextures(1, &prefilterMap);
glBindTexture(GL_TEXTURE_CUBE_MAP, prefilterMap);
for (unsigned int i = 0; i < 6; ++i)
{
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, 128, 128, 0, GL_RGB, GL_FLOAT, nullptr);
}
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); // be sure to set minifcation filter to mip_linear
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// generate mipmaps for the cubemap so OpenGL automatically allocates the required memory.
glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
// pbr: run a quasi monte-carlo simulation on the environment lighting to create a prefilter (cube)map.
// ----------------------------------------------------------------------------------------------------
prefilterShader.Use();
glUniform1i(glGetUniformLocation(prefilterShader.Program, "environmentMap"), 0);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
glUniformMatrix4fv(glGetUniformLocation(prefilterShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(captureProjection));
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
unsigned int maxMipLevels = 5;
for (unsigned int mip = 0; mip < maxMipLevels; ++mip)
{
// reisze framebuffer according to mip-level size.
unsigned int mipWidth = 128 * std::pow(0.5, mip);
unsigned int mipHeight = 128 * std::pow(0.5, mip);
glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, mipWidth, mipHeight);
glViewport(0, 0, mipWidth, mipHeight);
float roughness = (float)mip / (float)(maxMipLevels - 1);
glUniform1f(glGetUniformLocation(prefilterShader.Program, "roughness"), roughness);
for (unsigned int i = 0; i < 6; ++i)
{
glUniformMatrix4fv(glGetUniformLocation(prefilterShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(captureViews[i]));
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, prefilterMap, mip);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
renderCube();
}
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// pbr: generate a 2D LUT from the BRDF equations used.
// ----------------------------------------------------
unsigned int brdfLUTTexture;
glGenTextures(1, &brdfLUTTexture);
// pre-allocate enough memory for the LUT texture.
glBindTexture(GL_TEXTURE_2D, brdfLUTTexture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RG16F, 512, 512, 0, GL_RG, GL_FLOAT, 0);
// be sure to set wrapping mode to GL_CLAMP_TO_EDGE
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// then re-configure capture framebuffer object and render screen-space quad with BRDF shader.
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 512, 512);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, brdfLUTTexture, 0);
glViewport(0, 0, 512, 512);
brdfShader.Use();
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
RenderQuad();
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// initialize static shader uniforms before rendering
// --------------------------------------------------
glm::mat4 projection = glm::perspective(camera.Zoom, (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
pbrShader.Use();
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
backgroundShader.Use();
glUniformMatrix4fv(glGetUniformLocation(backgroundShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
// then before rendering, configure the viewport to the actual screen dimensions
glViewport(0, 0, SCR_WIDTH, SCR_HEIGHT);
// Game loop
while (!glfwWindowShouldClose(window))
{
// set frame time
GLfloat currentFrame = glfwGetTime();
deltaTime = currentFrame - lastFrame;
lastFrame = currentFrame;
// check and call events
glfwPollEvents();
Do_Movement();
// clear the colorbuffer
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// render scene, supplying the convoluted irradiance map to the final shader.
// ------------------------------------------------------------------------------------------
pbrShader.Use();
glm::mat4 model;
glm::mat4 view = camera.GetViewMatrix();
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(view));
glUniform3fv(glGetUniformLocation(pbrShader.Program, "camPos"), 1, &camera.Position[0]);
// bind pre-computed IBL data
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_CUBE_MAP, prefilterMap);
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, brdfLUTTexture);
// rusted iron
glActiveTexture(GL_TEXTURE3);
glBindTexture(GL_TEXTURE_2D, ironAlbedoMap);
glActiveTexture(GL_TEXTURE4);
glBindTexture(GL_TEXTURE_2D, ironNormalMap);
glActiveTexture(GL_TEXTURE5);
glBindTexture(GL_TEXTURE_2D, ironMetallicMap);
glActiveTexture(GL_TEXTURE6);
glBindTexture(GL_TEXTURE_2D, ironRoughnessMap);
glActiveTexture(GL_TEXTURE7);
glBindTexture(GL_TEXTURE_2D, ironAOMap);
model = glm::mat4();
model = glm::translate(model, glm::vec3(-5.0, 0.0, 2.0));
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
renderSphere();
// gold
glActiveTexture(GL_TEXTURE3);
glBindTexture(GL_TEXTURE_2D, goldAlbedoMap);
glActiveTexture(GL_TEXTURE4);
glBindTexture(GL_TEXTURE_2D, goldNormalMap);
glActiveTexture(GL_TEXTURE5);
glBindTexture(GL_TEXTURE_2D, goldMetallicMap);
glActiveTexture(GL_TEXTURE6);
glBindTexture(GL_TEXTURE_2D, goldRoughnessMap);
glActiveTexture(GL_TEXTURE7);
glBindTexture(GL_TEXTURE_2D, goldAOMap);
model = glm::mat4();
model = glm::translate(model, glm::vec3(-3.0, 0.0, 2.0));
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
renderSphere();
// grass
glActiveTexture(GL_TEXTURE3);
glBindTexture(GL_TEXTURE_2D, grassAlbedoMap);
glActiveTexture(GL_TEXTURE4);
glBindTexture(GL_TEXTURE_2D, grassNormalMap);
glActiveTexture(GL_TEXTURE5);
glBindTexture(GL_TEXTURE_2D, grassMetallicMap);
glActiveTexture(GL_TEXTURE6);
glBindTexture(GL_TEXTURE_2D, grassRoughnessMap);
glActiveTexture(GL_TEXTURE7);
glBindTexture(GL_TEXTURE_2D, grassAOMap);
model = glm::mat4();
model = glm::translate(model, glm::vec3(-1.0, 0.0, 2.0));
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
renderSphere();
// plastic
glActiveTexture(GL_TEXTURE3);
glBindTexture(GL_TEXTURE_2D, plasticAlbedoMap);
glActiveTexture(GL_TEXTURE4);
glBindTexture(GL_TEXTURE_2D, plasticNormalMap);
glActiveTexture(GL_TEXTURE5);
glBindTexture(GL_TEXTURE_2D, plasticMetallicMap);
glActiveTexture(GL_TEXTURE6);
glBindTexture(GL_TEXTURE_2D, plasticRoughnessMap);
glActiveTexture(GL_TEXTURE7);
glBindTexture(GL_TEXTURE_2D, plasticAOMap);
model = glm::mat4();
model = glm::translate(model, glm::vec3(1.0, 0.0, 2.0));
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
renderSphere();
// wall
glActiveTexture(GL_TEXTURE3);
glBindTexture(GL_TEXTURE_2D, wallAlbedoMap);
glActiveTexture(GL_TEXTURE4);
glBindTexture(GL_TEXTURE_2D, wallNormalMap);
glActiveTexture(GL_TEXTURE5);
glBindTexture(GL_TEXTURE_2D, wallMetallicMap);
glActiveTexture(GL_TEXTURE6);
glBindTexture(GL_TEXTURE_2D, wallRoughnessMap);
glActiveTexture(GL_TEXTURE7);
glBindTexture(GL_TEXTURE_2D, wallAOMap);
model = glm::mat4();
model = glm::translate(model, glm::vec3(3.0, 0.0, 2.0));
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
renderSphere();
// render light source (simply re-render sphere at light positions)
// this looks a bit off as we use the same shader, but it'll make their positions obvious and
// keeps the codeprint small.
for (unsigned int i = 0; i < sizeof(lightPositions) / sizeof(lightPositions[0]); ++i)
{
glm::vec3 newPos = lightPositions[i] + glm::vec3(sin(glfwGetTime() * 5.0) * 5.0, 0.0, 0.0);
newPos = lightPositions[i];
glUniform3fv(glGetUniformLocation(pbrShader.Program, ("lightPositions[" + std::to_string(i) + "]").c_str()), 1, &newPos[0]); \
glUniform3fv(glGetUniformLocation(pbrShader.Program, ("lightColors[" + std::to_string(i) + "]").c_str()), 1, &lightColors[i][0]);
model = glm::mat4();
model = glm::translate(model, newPos);
model = glm::scale(model, glm::vec3(0.5f));
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
renderSphere();
}
// render skybox (render as last to prevent overdraw)
backgroundShader.Use();
glUniformMatrix4fv(glGetUniformLocation(backgroundShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(view));
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
//glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap); // display irradiance map
//glBindTexture(GL_TEXTURE_CUBE_MAP, prefilterMap); // display prefilter map
renderCube();
// render BRDF map to screen
//brdfShader.Use();
//RenderQuad();
// Swap the buffers
glfwSwapBuffers(window);
}
glfwTerminate();
return 0;
}
// renders (and builds at first invocation) a sphere
unsigned int sphereVAO = 0;
unsigned int indexCount;
void renderSphere()
{
if (sphereVAO == 0)
{
glGenVertexArrays(1, &sphereVAO);
unsigned int vbo, ebo;
glGenBuffers(1, &vbo);
glGenBuffers(1, &ebo);
std::vector<glm::vec3> positions;
std::vector<glm::vec2> uv;
std::vector<glm::vec3> normals;
std::vector<unsigned int> indices;
const unsigned int X_SEGMENTS = 64;
const unsigned int Y_SEGMENTS = 64;
const float PI = 3.14159265359;
for (unsigned int y = 0; y <= Y_SEGMENTS; ++y)
{
for (unsigned int x = 0; x <= X_SEGMENTS; ++x)
{
float xSegment = (float)x / (float)X_SEGMENTS;
float ySegment = (float)y / (float)Y_SEGMENTS;
float xPos = std::cos(xSegment * 2.0f * PI) * std::sin(ySegment * PI);
float yPos = std::cos(ySegment * PI);
float zPos = std::sin(xSegment * 2.0f * PI) * std::sin(ySegment * PI);
positions.push_back(glm::vec3(xPos, yPos, zPos));
uv.push_back(glm::vec2(xSegment, ySegment));
normals.push_back(glm::vec3(xPos, yPos, zPos));
}
}
bool oddRow = false;
for (int y = 0; y < Y_SEGMENTS; ++y)
{
if (!oddRow) // even rows: y == 0, y == 2; and so on
{
for (int x = 0; x <= X_SEGMENTS; ++x)
{
indices.push_back(y * (X_SEGMENTS + 1) + x);
indices.push_back((y + 1) * (X_SEGMENTS + 1) + x);
}
}
else
{
for (int x = X_SEGMENTS; x >= 0; --x)
{
indices.push_back((y + 1) * (X_SEGMENTS + 1) + x);
indices.push_back(y * (X_SEGMENTS + 1) + x);
}
}
oddRow = !oddRow;
}
indexCount = indices.size();
std::vector<float> data;
for (int i = 0; i < positions.size(); ++i)
{
data.push_back(positions[i].x);
data.push_back(positions[i].y);
data.push_back(positions[i].z);
if (uv.size() > 0)
{
data.push_back(uv[i].x);
data.push_back(uv[i].y);
}
if (normals.size() > 0)
{
data.push_back(normals[i].x);
data.push_back(normals[i].y);
data.push_back(normals[i].z);
}
}
glBindVertexArray(sphereVAO);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferData(GL_ARRAY_BUFFER, data.size() * sizeof(float), &data[0], GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned int), &indices[0], GL_STATIC_DRAW);
float stride = (3 + 2 + 3) * sizeof(float);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, stride, (GLvoid*)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, stride, (GLvoid*)(3 * sizeof(float)));
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, stride, (GLvoid*)(5 * sizeof(float)));
}
glBindVertexArray(sphereVAO);
glDrawElements(GL_TRIANGLE_STRIP, indexCount, GL_UNSIGNED_INT, 0);
}
// RenderCube() Renders a 1x1 3D cube in NDC.
GLuint cubeVAO = 0;
GLuint cubeVBO = 0;
void renderCube()
{
// Initialize (if necessary)
if (cubeVAO == 0)
{
GLfloat vertices[] = {
// Back face
-1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // Bottom-left
1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f, // bottom-right
1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
-1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // bottom-left
-1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f,// top-left
// Front face
-1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, // bottom-right
1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
-1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, // top-left
-1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
// Left face
-1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
-1.0f, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-left
-1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
-1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
-1.0f, -1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-right
-1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
// Right face
1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-right
1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-left
// Bottom face
-1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f, // top-left
1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,// bottom-left
1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, // bottom-left
-1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, // bottom-right
-1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
// Top face
-1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,// top-left
1.0f, 1.0f , 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, // top-right
1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
-1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,// top-left
-1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f // bottom-left
};
glGenVertexArrays(1, &cubeVAO);
glGenBuffers(1, &cubeVBO);
// Fill buffer
glBindBuffer(GL_ARRAY_BUFFER, cubeVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
// Link vertex attributes
glBindVertexArray(cubeVAO);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
}
// Render Cube
glBindVertexArray(cubeVAO);
glDrawArrays(GL_TRIANGLES, 0, 36);
glBindVertexArray(0);
}
// RenderQuad() Renders a 1x1 XY quad in NDC
GLuint quadVAO = 0;
GLuint quadVBO;
void RenderQuad()
{
if (quadVAO == 0)
{
GLfloat quadVertices[] = {
// Positions // Texture Coords
-1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
-1.0f, -1.0f, 0.0f, 0.0f, 0.0f,
1.0f, 1.0f, 0.0f, 1.0f, 1.0f,
1.0f, -1.0f, 0.0f, 1.0f, 0.0f,
};
// Setup plane VAO
glGenVertexArrays(1, &quadVAO);
glGenBuffers(1, &quadVBO);
glBindVertexArray(quadVAO);
glBindBuffer(GL_ARRAY_BUFFER, quadVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(quadVertices), &quadVertices, GL_STATIC_DRAW);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
}
glBindVertexArray(quadVAO);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
glBindVertexArray(0);
}
// This function loads a texture from file. Note: texture loading functions like these are usually
// managed by a 'Resource Manager' that manages all resources (like textures, models, audio).
// For learning purposes we'll just define it as a utility function.
unsigned int loadTexture(char const * path)
{
//Generate texture ID and load texture data
unsigned int textureID;
glGenTextures(1, &textureID);
int width, height, nrComponents;
unsigned char *data = stbi_load(path, &width, &height, &nrComponents, 0);
if (data)
{
GLenum format;
if (nrComponents == 1)
format = GL_RED;
else if (nrComponents == 3)
format = GL_RGB;
else if (nrComponents == 4)
format = GL_RGBA;
glBindTexture(GL_TEXTURE_2D, textureID);
glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
glGenerateMipmap(GL_TEXTURE_2D);
// Parameters
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
stbi_image_free(data);
}
else
{
std::cout << "Texture failed to load at path: " << path << std::endl;
stbi_image_free(data);
}
return textureID;
}
#pragma region "User input"
bool keys[1024];
bool keysPressed[1024];
// Moves/alters the camera positions based on user input
void Do_Movement()
{
// Camera controls
if (keys[GLFW_KEY_W])
camera.ProcessKeyboard(FORWARD, deltaTime);
if (keys[GLFW_KEY_S])
camera.ProcessKeyboard(BACKWARD, deltaTime);
if (keys[GLFW_KEY_A])
camera.ProcessKeyboard(LEFT, deltaTime);
if (keys[GLFW_KEY_D])
camera.ProcessKeyboard(RIGHT, deltaTime);
}
// Is called whenever a key is pressed/released via GLFW
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode)
{
if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
glfwSetWindowShouldClose(window, GL_TRUE);
if (key >= 0 && key <= 1024)
{
if (action == GLFW_PRESS)
keys[key] = true;
else if (action == GLFW_RELEASE)
{
keys[key] = false;
keysPressed[key] = false;
}
}
}
GLfloat lastX = 400, lastY = 300;
bool firstMouse = true;
// Moves/alters the camera positions based on user input
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{
if (firstMouse)
{
lastX = xpos;
lastY = ypos;
firstMouse = false;
}
GLfloat xoffset = xpos - lastX;
GLfloat yoffset = lastY - ypos;
lastX = xpos;
lastY = ypos;
camera.ProcessMouseMovement(xoffset, yoffset);
}
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
camera.ProcessMouseScroll(yoffset);
}
#pragma endregion