daily update

This commit is contained in:
2025-12-29 09:08:40 +08:00
parent b32406225f
commit 411fc48982
130 changed files with 24830 additions and 0 deletions

View File

@@ -0,0 +1,4 @@
IncludeCategories:
- Regex: ".*"
Priority: 0
SortIncludes: false

15
basic-lighting/CMakeLists.txt Executable file
View File

@@ -0,0 +1,15 @@
cmake_minimum_required(VERSION 3.5)
project(lighting-color)
add_executable(
${PROJECT_NAME}
main.cc
glad.c
)
target_link_libraries(
${PROJECT_NAME}
PRIVATE
libglfw3.a
)

131
basic-lighting/camera.hh Executable file
View File

@@ -0,0 +1,131 @@
#ifndef CAMERA_H
#define CAMERA_H
#include <glad/glad.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
// Defines several possible options for camera movement. Used as abstraction to
// stay away from window-system specific input methods
enum Camera_Movement { FORWARD, BACKWARD, LEFT, RIGHT };
// Default camera values
const float YAW = -90.0f;
const float PITCH = 0.0f;
const float SPEED = 2.5f;
const float SENSITIVITY = 0.1f;
const float ZOOM = 45.0f;
// An abstract camera class that processes input and calculates the
// corresponding Euler Angles, Vectors and Matrices for use in OpenGL
class Camera {
public:
// camera Attributes
glm::vec3 Position;
glm::vec3 Front;
glm::vec3 Up;
glm::vec3 Right;
glm::vec3 WorldUp;
// euler Angles
float Yaw;
float Pitch;
// camera options
float MovementSpeed;
float MouseSensitivity;
float Zoom;
// constructor with vectors
Camera(glm::vec3 position = glm::vec3(0.0f, 0.0f, 0.0f),
glm::vec3 up = glm::vec3(0.0f, 1.0f, 0.0f), float yaw = YAW,
float pitch = PITCH)
: Front(glm::vec3(0.0f, 0.0f, -1.0f)), MovementSpeed(SPEED),
MouseSensitivity(SENSITIVITY), Zoom(ZOOM) {
Position = position;
WorldUp = up;
Yaw = yaw;
Pitch = pitch;
updateCameraVectors();
}
// constructor with scalar values
Camera(float posX, float posY, float posZ, float upX, float upY, float upZ,
float yaw, float pitch)
: Front(glm::vec3(0.0f, 0.0f, -1.0f)), MovementSpeed(SPEED),
MouseSensitivity(SENSITIVITY), Zoom(ZOOM) {
Position = glm::vec3(posX, posY, posZ);
WorldUp = glm::vec3(upX, upY, upZ);
Yaw = yaw;
Pitch = pitch;
updateCameraVectors();
}
// returns the view matrix calculated using Euler Angles and the LookAt Matrix
glm::mat4 GetViewMatrix() {
return glm::lookAt(Position, Position + Front, Up);
}
// processes input received from any keyboard-like input system. Accepts input
// parameter in the form of camera defined ENUM (to abstract it from windowing
// systems)
void ProcessKeyboard(Camera_Movement direction, float deltaTime) {
float velocity = MovementSpeed * deltaTime;
if (direction == FORWARD)
Position += Front * velocity;
if (direction == BACKWARD)
Position -= Front * velocity;
if (direction == LEFT)
Position -= Right * velocity;
if (direction == RIGHT)
Position += Right * velocity;
}
// processes input received from a mouse input system. Expects the offset
// value in both the x and y direction.
void ProcessMouseMovement(float xoffset, float yoffset,
GLboolean constrainPitch = true) {
xoffset *= MouseSensitivity;
yoffset *= MouseSensitivity;
Yaw += xoffset;
Pitch += yoffset;
// make sure that when pitch is out of bounds, screen doesn't get flipped
if (constrainPitch) {
if (Pitch > 89.0f)
Pitch = 89.0f;
if (Pitch < -89.0f)
Pitch = -89.0f;
}
// update Front, Right and Up Vectors using the updated Euler angles
updateCameraVectors();
}
// processes input received from a mouse scroll-wheel event. Only requires
// input on the vertical wheel-axis
void ProcessMouseScroll(float yoffset) {
Zoom -= (float)yoffset;
if (Zoom < 1.0f)
Zoom = 1.0f;
if (Zoom > 45.0f)
Zoom = 45.0f;
}
private:
// calculates the front vector from the Camera's (updated) Euler Angles
void updateCameraVectors() {
// calculate the new Front vector
glm::vec3 front;
front.x = cos(glm::radians(Yaw)) * cos(glm::radians(Pitch));
front.y = sin(glm::radians(Pitch));
front.z = sin(glm::radians(Yaw)) * cos(glm::radians(Pitch));
Front = glm::normalize(front);
// also re-calculate the Right and Up vector
Right = glm::normalize(glm::cross(
Front, WorldUp)); // normalize the vectors, because their length gets
// closer to 0 the more you look up or down which
// results in slower movement.
Up = glm::normalize(glm::cross(Right, Front));
}
};
#endif

1140
basic-lighting/glad.c Executable file

File diff suppressed because it is too large Load Diff

269
basic-lighting/main.cc Executable file
View File

@@ -0,0 +1,269 @@
#include <cmath>
#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <glm/ext/vector_float3.hpp>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <iostream>
#include "camera.hh"
#include "myshader.hh"
void framebuffer_size_callback(GLFWwindow *window, int width, int height);
void mouse_callback(GLFWwindow *window, double xpos, double ypos);
void scroll_callback(GLFWwindow *window, double xoffset, double yoffset);
void processInput(GLFWwindow *window);
// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;
// camera
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
float lastX = SCR_WIDTH / 2.0f;
float lastY = SCR_HEIGHT / 2.0f;
bool firstMouse = true;
// timing
float deltaTime = 0.0f;
float lastFrame = 0.0f;
// lighting
glm::vec3 lightPos(1.2f, 1.0f, 2.0f);
int main() {
// glfw: initialize and configure
// ------------------------------
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
#ifdef __APPLE__
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif
// glfw window creation
// --------------------
GLFWwindow *window =
glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
if (window == NULL) {
std::cout << "Failed to create GLFW window" << std::endl;
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window);
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
glfwSetCursorPosCallback(window, mouse_callback);
glfwSetScrollCallback(window, scroll_callback);
// tell GLFW to capture our mouse
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
// glad: load all OpenGL function pointers
// ---------------------------------------
if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) {
std::cout << "Failed to initialize GLAD" << std::endl;
return -1;
}
// configure global opengl state
// -----------------------------
glEnable(GL_DEPTH_TEST);
// build and compile our shader zprogram
// ------------------------------------
Shader lightingShader("../shaders/vscolors.glsl", "../shaders/fscolors.glsl");
Shader lightCubeShader("../shaders/vslightCube.glsl",
"../shaders/fslightCube.glsl");
// set up vertex data (and buffer(s)) and configure vertex attributes
// ------------------------------------------------------------------
float vertices[] = {
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.5f, -0.5f, -0.5f,
0.0f, 0.0f, -1.0f, 0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, -0.5f, 0.5f, -0.5f,
0.0f, 0.0f, -1.0f, -0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.5f, -0.5f, 0.5f,
0.0f, 0.0f, 1.0f, 0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, -0.5f, 0.5f, 0.5f,
0.0f, 0.0f, 1.0f, -0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, -0.5f, 0.5f, -0.5f,
-1.0f, 0.0f, 0.0f, -0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f,
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, -0.5f, -0.5f, 0.5f,
-1.0f, 0.0f, 0.0f, -0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 0.5f, 0.5f, -0.5f,
1.0f, 0.0f, 0.0f, 0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f,
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.5f, -0.5f, 0.5f,
1.0f, 0.0f, 0.0f, 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f,
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.5f, -0.5f, -0.5f,
0.0f, -1.0f, 0.0f, 0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f,
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, -0.5f, -0.5f, 0.5f,
0.0f, -1.0f, 0.0f, -0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.5f, 0.5f, -0.5f,
0.0f, 1.0f, 0.0f, 0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, -0.5f, 0.5f, 0.5f,
0.0f, 1.0f, 0.0f, -0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f};
unsigned int VBO, cubeVAO;
glGenVertexArrays(1, &cubeVAO);
glGenBuffers(1, &VBO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
glBindVertexArray(cubeVAO);
// position attribute
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void *)0);
glEnableVertexAttribArray(0);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float),
(void *)(3 * sizeof(float)));
glEnableVertexAttribArray(1);
// second, configure the light's VAO (VBO stays the same; the vertices are
// the same for the light object which is also a 3D cube)
unsigned int lightCubeVAO;
glGenVertexArrays(1, &lightCubeVAO);
glBindVertexArray(lightCubeVAO);
// we only need to bind to the VBO (to link it with glVertexAttribPointer),
// no need to fill it; the VBO's data already contains all we need (it's
// already bound, but we do it again for educational purposes)
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void *)0);
glEnableVertexAttribArray(0);
// render loop
// -----------
while (!glfwWindowShouldClose(window)) {
// per-frame time logic
// --------------------
float currentFrame = static_cast<float>(glfwGetTime());
deltaTime = currentFrame - lastFrame;
lastFrame = currentFrame;
// input
// -----
processInput(window);
// render
// ------
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// be sure to activate shader when setting uniforms/drawing objects
lightingShader.use();
lightingShader.setVec3("objectColor", 1.0f, 0.5f, 0.31f);
lightingShader.setVec3("lightColor", 1.0f, 1.0f, 1.0f);
float t = static_cast<float>(glfwGetTime());
glm::vec3 curLightPos = glm::vec3(cos(t), lightPos.y, sin(t));
lightingShader.setVec3("lightPos", curLightPos);
lightingShader.setVec3("viewPos", camera.Position);
// view/projection transformations
glm::mat4 projection =
glm::perspective(glm::radians(camera.Zoom),
(float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
glm::mat4 view = camera.GetViewMatrix();
lightingShader.setMat4("projection", projection);
lightingShader.setMat4("view", view);
// world transformation
glm::mat4 model = glm::mat4(1.0f);
lightingShader.setMat4("model", model);
// render the cube
glBindVertexArray(cubeVAO);
glDrawArrays(GL_TRIANGLES, 0, 36);
// also draw the lamp object
lightCubeShader.use();
lightCubeShader.setMat4("projection", projection);
lightCubeShader.setMat4("view", view);
model = glm::mat4(1.0f);
model = glm::translate(model, curLightPos);
model = glm::scale(model, glm::vec3(0.2f)); // a smaller cube
lightCubeShader.setMat4("model", model);
glBindVertexArray(lightCubeVAO);
glDrawArrays(GL_TRIANGLES, 0, 36);
// glfw: swap buffers and poll IO events (keys pressed/released, mouse
// moved etc.)
// -------------------------------------------------------------------------------
glfwSwapBuffers(window);
glfwPollEvents();
}
// optional: de-allocate all resources once they've outlived their purpose:
// ------------------------------------------------------------------------
glDeleteVertexArrays(1, &cubeVAO);
glDeleteVertexArrays(1, &lightCubeVAO);
glDeleteBuffers(1, &VBO);
// glfw: terminate, clearing all previously allocated GLFW resources.
// ------------------------------------------------------------------
glfwTerminate();
return 0;
}
// process all input: query GLFW whether relevant keys are pressed/released this
// frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow *window) {
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
camera.ProcessKeyboard(FORWARD, deltaTime);
if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
camera.ProcessKeyboard(BACKWARD, deltaTime);
if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
camera.ProcessKeyboard(LEFT, deltaTime);
if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
camera.ProcessKeyboard(RIGHT, deltaTime);
}
// glfw: whenever the window size changed (by OS or user resize) this callback
// function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow *window, int width, int height) {
// make sure the viewport matches the new window dimensions; note that width
// and height will be significantly larger than specified on retina
// displays.
glViewport(0, 0, width, height);
}
// glfw: whenever the mouse moves, this callback is called
// -------------------------------------------------------
void mouse_callback(GLFWwindow *window, double xposIn, double yposIn) {
float xpos = static_cast<float>(xposIn);
float ypos = static_cast<float>(yposIn);
if (firstMouse) {
lastX = xpos;
lastY = ypos;
firstMouse = false;
}
float xoffset = xpos - lastX;
float yoffset =
lastY - ypos; // reversed since y-coordinates go from bottom to top
lastX = xpos;
lastY = ypos;
camera.ProcessMouseMovement(xoffset, yoffset);
}
// glfw: whenever the mouse scroll wheel scrolls, this callback is called
// ----------------------------------------------------------------------
void scroll_callback(GLFWwindow *window, double xoffset, double yoffset) {
camera.ProcessMouseScroll(static_cast<float>(yoffset));
}

109
basic-lighting/myshader.hh Executable file
View File

@@ -0,0 +1,109 @@
#pragma once
#include <glad/glad.h>
#include <string.h>
#include <fstream>
#include <glm/glm.hpp>
#include <iostream>
#include <iterator>
#include <sstream>
class Shader {
public:
// 程序ID
unsigned int ID;
// 构造器读取并构建着色器
Shader(const char* vertexPath, const char* fragmentPath) {
std::string vertexCode;
std::string fragmentCode;
std::ifstream vShaderFile;
std::ifstream fShaderFile;
vShaderFile.exceptions(std::ifstream::failbit | std::ifstream::badbit);
fShaderFile.exceptions(std::ifstream::failbit | std::ifstream::badbit);
try {
vShaderFile.open(vertexPath);
fShaderFile.open(fragmentPath);
std::stringstream vShaderStream, fShaderStream;
vShaderStream << vShaderFile.rdbuf();
fShaderStream << fShaderFile.rdbuf();
vShaderFile.close();
fShaderFile.close();
vertexCode = vShaderStream.str();
fragmentCode = fShaderStream.str();
} catch (std::ifstream::failure e) {
std::cout << "Error::SHADER::FILE_NOT_SUCCESFULLY_READ"
<< std::endl;
std::cout << "=====Error Path=====" << std::endl
<< vertexPath << std::endl
<< fragmentPath << std::endl;
}
const char* vShaderCode = vertexCode.c_str();
const char* fShaderCode = fragmentCode.c_str();
// 编译着色器
unsigned int vertex, fragment;
int success;
char infoLog[512];
// 顶点着色器
vertex = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertex, 1, &vShaderCode, NULL);
glCompileShader(vertex);
glGetShaderiv(vertex, GL_COMPILE_STATUS, &success);
if (!success) {
glGetShaderInfoLog(vertex, 512, NULL, infoLog);
std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n"
<< infoLog << std::endl;
}
// 片段着色器
fragment = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fragment, 1, &fShaderCode, NULL);
glCompileShader(fragment);
glGetShaderiv(fragment, GL_COMPILE_STATUS, &success);
if (!success) {
glGetShaderInfoLog(fragment, 512, NULL, infoLog);
std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n"
<< infoLog << std::endl;
}
ID = glCreateProgram();
glAttachShader(ID, vertex);
glAttachShader(ID, fragment);
glLinkProgram(ID);
glGetProgramiv(ID, GL_LINK_STATUS, &success);
if (!success) {
glGetShaderInfoLog(ID, 512, NULL, infoLog);
std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n"
<< infoLog << std::endl;
}
glDeleteShader(vertex);
glDeleteShader(fragment);
}
// 使用/激活程序
void use() { glUseProgram(ID); }
// uniform工具函数
void setBool(const std::string& name, bool value) const {
glUniform1i(glGetUniformLocation(ID, name.c_str()), (int)value);
}
void setInt(const std::string& name, int value) const {
glUniform1i(glGetUniformLocation(ID, name.c_str()), value);
}
void setFloat(const std::string& name, float value) const {
glUniform1f(glGetUniformLocation(ID, name.c_str()), value);
}
void setMat4(const std::string& name, glm::mat4 m) {
glUniformMatrix4fv(glGetUniformLocation(ID, name.c_str()), 1, GL_FALSE,
&m[0][0]);
}
void setVec3(const std::string& name, float x, float y, float z) {
glUniform3f(glGetUniformLocation(ID, name.c_str()), x, y, z);
}
void setVec3(const std::string& name, const glm::vec3 v) {
glUniform3fv(glGetUniformLocation(ID, name.c_str()), 1, &v[0]);
}
};

View File

@@ -0,0 +1,28 @@
#version 330 core
out vec4 FragColor;
in vec3 FragPos;
in vec3 Normal;
uniform vec3 viewPos;
uniform vec3 lightPos;
uniform vec3 objectColor;
uniform vec3 lightColor;
void main() {
float ambientStrength = 0.1;
float specularStrength = 0.9;
vec3 ambient = ambientStrength * lightColor;
vec3 norm = normalize(Normal);
vec3 lightDir = normalize(lightPos - FragPos);
float diff = max(dot(norm, lightDir), 0.0);
vec3 diffuse = diff * lightColor;
vec3 viewDir = normalize(viewPos - FragPos);
vec3 reflectDir = reflect(-lightDir, norm);
float spec = pow(max(dot(viewDir, reflectDir), 0.0), 32);
vec3 specular = specularStrength * spec * lightColor;
vec3 result = (ambient + diffuse + specular) * objectColor;
FragColor = vec4(result, 1.0);
}

View File

@@ -0,0 +1,5 @@
#version 330 core
out vec4 FragColor;
void main() {
FragColor = vec4(1.0);
}

View File

@@ -0,0 +1,17 @@
#version 330 core
layout(location = 0) in vec3 aPos;
layout(location = 1) in vec3 aNormal;
out vec3 FragPos;
out vec3 Normal;
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
void main() {
FragPos = vec3(model * vec4(aPos, 1.0));
Normal = mat3(transpose(inverse(model))) * aNormal;
gl_Position = projection * view * model * vec4(aPos, 1.0);
}

View File

@@ -0,0 +1,10 @@
#version 330 core
layout(location = 0) in vec3 aPos;
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
void main() {
gl_Position = projection * view * model * vec4(aPos, 1.0);
}