update gitignore
This commit is contained in:
@@ -1,319 +0,0 @@
|
||||
/***********************************************************************
|
||||
* Software License Agreement (BSD License)
|
||||
*
|
||||
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
||||
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
||||
*
|
||||
* THE BSD LICENSE
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef OPENCV_FLANN_INDEX_TESTING_H_
|
||||
#define OPENCV_FLANN_INDEX_TESTING_H_
|
||||
|
||||
//! @cond IGNORED
|
||||
|
||||
#include <cstring>
|
||||
#include <cmath>
|
||||
|
||||
#include "matrix.h"
|
||||
#include "nn_index.h"
|
||||
#include "result_set.h"
|
||||
#include "logger.h"
|
||||
#include "timer.h"
|
||||
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
inline int countCorrectMatches(int* neighbors, int* groundTruth, int n)
|
||||
{
|
||||
int count = 0;
|
||||
for (int i=0; i<n; ++i) {
|
||||
for (int k=0; k<n; ++k) {
|
||||
if (neighbors[i]==groundTruth[k]) {
|
||||
count++;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
|
||||
template <typename Distance>
|
||||
typename Distance::ResultType computeDistanceRaport(const Matrix<typename Distance::ElementType>& inputData, typename Distance::ElementType* target,
|
||||
int* neighbors, int* groundTruth, int veclen, int n, const Distance& distance)
|
||||
{
|
||||
typedef typename Distance::ResultType DistanceType;
|
||||
|
||||
DistanceType ret = 0;
|
||||
for (int i=0; i<n; ++i) {
|
||||
DistanceType den = distance(inputData[groundTruth[i]], target, veclen);
|
||||
DistanceType num = distance(inputData[neighbors[i]], target, veclen);
|
||||
|
||||
if ((den==0)&&(num==0)) {
|
||||
ret += 1;
|
||||
}
|
||||
else {
|
||||
ret += num/den;
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename Distance>
|
||||
float search_with_ground_truth(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
|
||||
const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, int nn, int checks,
|
||||
float& time, typename Distance::ResultType& dist, const Distance& distance, int skipMatches)
|
||||
{
|
||||
typedef typename Distance::ResultType DistanceType;
|
||||
|
||||
if (matches.cols<size_t(nn)) {
|
||||
Logger::info("matches.cols=%d, nn=%d\n",matches.cols,nn);
|
||||
|
||||
FLANN_THROW(cv::Error::StsError, "Ground truth is not computed for as many neighbors as requested");
|
||||
}
|
||||
|
||||
KNNResultSet<DistanceType> resultSet(nn+skipMatches);
|
||||
SearchParams searchParams(checks);
|
||||
|
||||
std::vector<int> indices(nn+skipMatches);
|
||||
std::vector<DistanceType> dists(nn+skipMatches);
|
||||
int* neighbors = &indices[skipMatches];
|
||||
|
||||
int correct = 0;
|
||||
DistanceType distR = 0;
|
||||
StartStopTimer t;
|
||||
int repeats = 0;
|
||||
while (t.value<0.2) {
|
||||
repeats++;
|
||||
t.start();
|
||||
correct = 0;
|
||||
distR = 0;
|
||||
for (size_t i = 0; i < testData.rows; i++) {
|
||||
resultSet.init(&indices[0], &dists[0]);
|
||||
index.findNeighbors(resultSet, testData[i], searchParams);
|
||||
|
||||
correct += countCorrectMatches(neighbors,matches[i], nn);
|
||||
distR += computeDistanceRaport<Distance>(inputData, testData[i], neighbors, matches[i], (int)testData.cols, nn, distance);
|
||||
}
|
||||
t.stop();
|
||||
}
|
||||
time = float(t.value/repeats);
|
||||
|
||||
float precicion = (float)correct/(nn*testData.rows);
|
||||
|
||||
dist = distR/(testData.rows*nn);
|
||||
|
||||
Logger::info("%8d %10.4g %10.5g %10.5g %10.5g\n",
|
||||
checks, precicion, time, 1000.0 * time / testData.rows, dist);
|
||||
|
||||
return precicion;
|
||||
}
|
||||
|
||||
|
||||
template <typename Distance>
|
||||
float test_index_checks(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
|
||||
const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
|
||||
int checks, float& precision, const Distance& distance, int nn = 1, int skipMatches = 0)
|
||||
{
|
||||
typedef typename Distance::ResultType DistanceType;
|
||||
|
||||
Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n");
|
||||
Logger::info("---------------------------------------------------------\n");
|
||||
|
||||
float time = 0;
|
||||
DistanceType dist = 0;
|
||||
precision = search_with_ground_truth(index, inputData, testData, matches, nn, checks, time, dist, distance, skipMatches);
|
||||
|
||||
return time;
|
||||
}
|
||||
|
||||
template <typename Distance>
|
||||
float test_index_precision(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
|
||||
const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
|
||||
float precision, int& checks, const Distance& distance, int nn = 1, int skipMatches = 0)
|
||||
{
|
||||
typedef typename Distance::ResultType DistanceType;
|
||||
const float SEARCH_EPS = 0.001f;
|
||||
|
||||
Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n");
|
||||
Logger::info("---------------------------------------------------------\n");
|
||||
|
||||
int c2 = 1;
|
||||
float p2;
|
||||
int c1 = 1;
|
||||
//float p1;
|
||||
float time;
|
||||
DistanceType dist;
|
||||
|
||||
p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
|
||||
|
||||
if (p2>precision) {
|
||||
Logger::info("Got as close as I can\n");
|
||||
checks = c2;
|
||||
return time;
|
||||
}
|
||||
|
||||
while (p2<precision) {
|
||||
c1 = c2;
|
||||
//p1 = p2;
|
||||
c2 *=2;
|
||||
p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
|
||||
}
|
||||
|
||||
int cx;
|
||||
float realPrecision;
|
||||
if (fabs(p2-precision)>SEARCH_EPS) {
|
||||
Logger::info("Start linear estimation\n");
|
||||
// after we got to values in the vecinity of the desired precision
|
||||
// use linear approximation get a better estimation
|
||||
|
||||
cx = (c1+c2)/2;
|
||||
realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
|
||||
while (fabs(realPrecision-precision)>SEARCH_EPS) {
|
||||
|
||||
if (realPrecision<precision) {
|
||||
c1 = cx;
|
||||
}
|
||||
else {
|
||||
c2 = cx;
|
||||
}
|
||||
cx = (c1+c2)/2;
|
||||
if (cx==c1) {
|
||||
Logger::info("Got as close as I can\n");
|
||||
break;
|
||||
}
|
||||
realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
|
||||
}
|
||||
|
||||
c2 = cx;
|
||||
p2 = realPrecision;
|
||||
|
||||
}
|
||||
else {
|
||||
Logger::info("No need for linear estimation\n");
|
||||
cx = c2;
|
||||
realPrecision = p2;
|
||||
}
|
||||
|
||||
checks = cx;
|
||||
return time;
|
||||
}
|
||||
|
||||
|
||||
template <typename Distance>
|
||||
void test_index_precisions(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
|
||||
const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
|
||||
float* precisions, int precisions_length, const Distance& distance, int nn = 1, int skipMatches = 0, float maxTime = 0)
|
||||
{
|
||||
typedef typename Distance::ResultType DistanceType;
|
||||
|
||||
const float SEARCH_EPS = 0.001;
|
||||
|
||||
// make sure precisions array is sorted
|
||||
std::sort(precisions, precisions+precisions_length);
|
||||
|
||||
int pindex = 0;
|
||||
float precision = precisions[pindex];
|
||||
|
||||
Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n");
|
||||
Logger::info("---------------------------------------------------------\n");
|
||||
|
||||
int c2 = 1;
|
||||
float p2;
|
||||
|
||||
int c1 = 1;
|
||||
|
||||
float time;
|
||||
DistanceType dist;
|
||||
|
||||
p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
|
||||
|
||||
// if precision for 1 run down the tree is already
|
||||
// better then some of the requested precisions, then
|
||||
// skip those
|
||||
while (precisions[pindex]<p2 && pindex<precisions_length) {
|
||||
pindex++;
|
||||
}
|
||||
|
||||
if (pindex==precisions_length) {
|
||||
Logger::info("Got as close as I can\n");
|
||||
return;
|
||||
}
|
||||
|
||||
for (int i=pindex; i<precisions_length; ++i) {
|
||||
|
||||
precision = precisions[i];
|
||||
while (p2<precision) {
|
||||
c1 = c2;
|
||||
c2 *=2;
|
||||
p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
|
||||
if ((maxTime> 0)&&(time > maxTime)&&(p2<precision)) return;
|
||||
}
|
||||
|
||||
int cx;
|
||||
float realPrecision;
|
||||
if (fabs(p2-precision)>SEARCH_EPS) {
|
||||
Logger::info("Start linear estimation\n");
|
||||
// after we got to values in the vecinity of the desired precision
|
||||
// use linear approximation get a better estimation
|
||||
|
||||
cx = (c1+c2)/2;
|
||||
realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
|
||||
while (fabs(realPrecision-precision)>SEARCH_EPS) {
|
||||
|
||||
if (realPrecision<precision) {
|
||||
c1 = cx;
|
||||
}
|
||||
else {
|
||||
c2 = cx;
|
||||
}
|
||||
cx = (c1+c2)/2;
|
||||
if (cx==c1) {
|
||||
Logger::info("Got as close as I can\n");
|
||||
break;
|
||||
}
|
||||
realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
|
||||
}
|
||||
|
||||
c2 = cx;
|
||||
p2 = realPrecision;
|
||||
|
||||
}
|
||||
else {
|
||||
Logger::info("No need for linear estimation\n");
|
||||
cx = c2;
|
||||
realPrecision = p2;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//! @endcond
|
||||
|
||||
#endif //OPENCV_FLANN_INDEX_TESTING_H_
|
||||
Reference in New Issue
Block a user