update gitignore
This commit is contained in:
@@ -1,548 +0,0 @@
|
||||
/***********************************************************************
|
||||
* Software License Agreement (BSD License)
|
||||
*
|
||||
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
||||
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
||||
*
|
||||
* THE BSD LICENSE
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef OPENCV_FLANN_RESULTSET_H
|
||||
#define OPENCV_FLANN_RESULTSET_H
|
||||
|
||||
//! @cond IGNORED
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstring>
|
||||
#include <iostream>
|
||||
#include <limits>
|
||||
#include <set>
|
||||
#include <vector>
|
||||
|
||||
#include "opencv2/core/base.hpp"
|
||||
#include "opencv2/core/cvdef.h"
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
/* This record represents a branch point when finding neighbors in
|
||||
the tree. It contains a record of the minimum distance to the query
|
||||
point, as well as the node at which the search resumes.
|
||||
*/
|
||||
|
||||
template <typename T, typename DistanceType>
|
||||
struct BranchStruct
|
||||
{
|
||||
T node; /* Tree node at which search resumes */
|
||||
DistanceType mindist; /* Minimum distance to query for all nodes below. */
|
||||
|
||||
BranchStruct() {}
|
||||
BranchStruct(const T& aNode, DistanceType dist) : node(aNode), mindist(dist) {}
|
||||
|
||||
bool operator<(const BranchStruct<T, DistanceType>& rhs) const
|
||||
{
|
||||
return mindist<rhs.mindist;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template <typename DistanceType>
|
||||
class ResultSet
|
||||
{
|
||||
public:
|
||||
virtual ~ResultSet() {}
|
||||
|
||||
virtual bool full() const = 0;
|
||||
|
||||
virtual void addPoint(DistanceType dist, int index) = 0;
|
||||
|
||||
virtual DistanceType worstDist() const = 0;
|
||||
|
||||
};
|
||||
|
||||
/**
|
||||
* KNNSimpleResultSet does not ensure that the element it holds are unique.
|
||||
* Is used in those cases where the nearest neighbour algorithm used does not
|
||||
* attempt to insert the same element multiple times.
|
||||
*/
|
||||
template <typename DistanceType>
|
||||
class KNNSimpleResultSet : public ResultSet<DistanceType>
|
||||
{
|
||||
int* indices;
|
||||
DistanceType* dists;
|
||||
int capacity;
|
||||
int count;
|
||||
DistanceType worst_distance_;
|
||||
|
||||
public:
|
||||
KNNSimpleResultSet(int capacity_) : capacity(capacity_), count(0)
|
||||
{
|
||||
}
|
||||
|
||||
void init(int* indices_, DistanceType* dists_)
|
||||
{
|
||||
indices = indices_;
|
||||
dists = dists_;
|
||||
count = 0;
|
||||
worst_distance_ = (std::numeric_limits<DistanceType>::max)();
|
||||
dists[capacity-1] = worst_distance_;
|
||||
}
|
||||
|
||||
size_t size() const
|
||||
{
|
||||
return count;
|
||||
}
|
||||
|
||||
bool full() const CV_OVERRIDE
|
||||
{
|
||||
return count == capacity;
|
||||
}
|
||||
|
||||
|
||||
void addPoint(DistanceType dist, int index) CV_OVERRIDE
|
||||
{
|
||||
if (dist >= worst_distance_) return;
|
||||
int i;
|
||||
for (i=count; i>0; --i) {
|
||||
#ifdef FLANN_FIRST_MATCH
|
||||
if ( (dists[i-1]>dist) || ((dist==dists[i-1])&&(indices[i-1]>index)) )
|
||||
#else
|
||||
if (dists[i-1]>dist)
|
||||
#endif
|
||||
{
|
||||
if (i<capacity) {
|
||||
dists[i] = dists[i-1];
|
||||
indices[i] = indices[i-1];
|
||||
}
|
||||
}
|
||||
else break;
|
||||
}
|
||||
if (count < capacity) ++count;
|
||||
dists[i] = dist;
|
||||
indices[i] = index;
|
||||
worst_distance_ = dists[capacity-1];
|
||||
}
|
||||
|
||||
DistanceType worstDist() const CV_OVERRIDE
|
||||
{
|
||||
return worst_distance_;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* K-Nearest neighbour result set. Ensures that the elements inserted are unique
|
||||
*/
|
||||
template <typename DistanceType>
|
||||
class KNNResultSet : public ResultSet<DistanceType>
|
||||
{
|
||||
int* indices;
|
||||
DistanceType* dists;
|
||||
int capacity;
|
||||
int count;
|
||||
DistanceType worst_distance_;
|
||||
|
||||
public:
|
||||
KNNResultSet(int capacity_)
|
||||
: indices(NULL), dists(NULL), capacity(capacity_), count(0), worst_distance_(0)
|
||||
{
|
||||
}
|
||||
|
||||
void init(int* indices_, DistanceType* dists_)
|
||||
{
|
||||
indices = indices_;
|
||||
dists = dists_;
|
||||
count = 0;
|
||||
worst_distance_ = (std::numeric_limits<DistanceType>::max)();
|
||||
dists[capacity-1] = worst_distance_;
|
||||
}
|
||||
|
||||
size_t size() const
|
||||
{
|
||||
return count;
|
||||
}
|
||||
|
||||
bool full() const CV_OVERRIDE
|
||||
{
|
||||
return count == capacity;
|
||||
}
|
||||
|
||||
|
||||
void addPoint(DistanceType dist, int index) CV_OVERRIDE
|
||||
{
|
||||
CV_DbgAssert(indices);
|
||||
CV_DbgAssert(dists);
|
||||
if (dist >= worst_distance_) return;
|
||||
int i;
|
||||
for (i = count; i > 0; --i) {
|
||||
#ifdef FLANN_FIRST_MATCH
|
||||
if ( (dists[i-1]<=dist) && ((dist!=dists[i-1])||(indices[i-1]<=index)) )
|
||||
#else
|
||||
if (dists[i-1]<=dist)
|
||||
#endif
|
||||
{
|
||||
// Check for duplicate indices
|
||||
for (int j = i; dists[j] == dist && j--;) {
|
||||
if (indices[j] == index) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (count < capacity) ++count;
|
||||
for (int j = count-1; j > i; --j) {
|
||||
dists[j] = dists[j-1];
|
||||
indices[j] = indices[j-1];
|
||||
}
|
||||
dists[i] = dist;
|
||||
indices[i] = index;
|
||||
worst_distance_ = dists[capacity-1];
|
||||
}
|
||||
|
||||
DistanceType worstDist() const CV_OVERRIDE
|
||||
{
|
||||
return worst_distance_;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* A result-set class used when performing a radius based search.
|
||||
*/
|
||||
template <typename DistanceType>
|
||||
class RadiusResultSet : public ResultSet<DistanceType>
|
||||
{
|
||||
DistanceType radius;
|
||||
int* indices;
|
||||
DistanceType* dists;
|
||||
size_t capacity;
|
||||
size_t count;
|
||||
|
||||
public:
|
||||
RadiusResultSet(DistanceType radius_, int* indices_, DistanceType* dists_, int capacity_) :
|
||||
radius(radius_), indices(indices_), dists(dists_), capacity(capacity_)
|
||||
{
|
||||
init();
|
||||
}
|
||||
|
||||
~RadiusResultSet()
|
||||
{
|
||||
}
|
||||
|
||||
void init()
|
||||
{
|
||||
count = 0;
|
||||
}
|
||||
|
||||
size_t size() const
|
||||
{
|
||||
return count;
|
||||
}
|
||||
|
||||
bool full() const
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
void addPoint(DistanceType dist, int index)
|
||||
{
|
||||
if (dist<radius) {
|
||||
if ((capacity>0)&&(count < capacity)) {
|
||||
dists[count] = dist;
|
||||
indices[count] = index;
|
||||
}
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
DistanceType worstDist() const
|
||||
{
|
||||
return radius;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/** Class that holds the k NN neighbors
|
||||
* Faster than KNNResultSet as it uses a binary heap and does not maintain two arrays
|
||||
*/
|
||||
template<typename DistanceType>
|
||||
class UniqueResultSet : public ResultSet<DistanceType>
|
||||
{
|
||||
public:
|
||||
struct DistIndex
|
||||
{
|
||||
DistIndex(DistanceType dist, unsigned int index) :
|
||||
dist_(dist), index_(index)
|
||||
{
|
||||
}
|
||||
bool operator<(const DistIndex dist_index) const
|
||||
{
|
||||
return (dist_ < dist_index.dist_) || ((dist_ == dist_index.dist_) && index_ < dist_index.index_);
|
||||
}
|
||||
DistanceType dist_;
|
||||
unsigned int index_;
|
||||
};
|
||||
|
||||
/** Default constructor */
|
||||
UniqueResultSet() :
|
||||
is_full_(false), worst_distance_(std::numeric_limits<DistanceType>::max())
|
||||
{
|
||||
}
|
||||
|
||||
/** Check the status of the set
|
||||
* @return true if we have k NN
|
||||
*/
|
||||
inline bool full() const CV_OVERRIDE
|
||||
{
|
||||
return is_full_;
|
||||
}
|
||||
|
||||
/** Remove all elements in the set
|
||||
*/
|
||||
virtual void clear() = 0;
|
||||
|
||||
/** Copy the set to two C arrays
|
||||
* @param indices pointer to a C array of indices
|
||||
* @param dist pointer to a C array of distances
|
||||
* @param n_neighbors the number of neighbors to copy
|
||||
*/
|
||||
virtual void copy(int* indices, DistanceType* dist, int n_neighbors = -1) const
|
||||
{
|
||||
if (n_neighbors < 0) {
|
||||
for (typename std::set<DistIndex>::const_iterator dist_index = dist_indices_.begin(), dist_index_end =
|
||||
dist_indices_.end(); dist_index != dist_index_end; ++dist_index, ++indices, ++dist) {
|
||||
*indices = dist_index->index_;
|
||||
*dist = dist_index->dist_;
|
||||
}
|
||||
}
|
||||
else {
|
||||
int i = 0;
|
||||
for (typename std::set<DistIndex>::const_iterator dist_index = dist_indices_.begin(), dist_index_end =
|
||||
dist_indices_.end(); (dist_index != dist_index_end) && (i < n_neighbors); ++dist_index, ++indices, ++dist, ++i) {
|
||||
*indices = dist_index->index_;
|
||||
*dist = dist_index->dist_;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** Copy the set to two C arrays but sort it according to the distance first
|
||||
* @param indices pointer to a C array of indices
|
||||
* @param dist pointer to a C array of distances
|
||||
* @param n_neighbors the number of neighbors to copy
|
||||
*/
|
||||
virtual void sortAndCopy(int* indices, DistanceType* dist, int n_neighbors = -1) const
|
||||
{
|
||||
copy(indices, dist, n_neighbors);
|
||||
}
|
||||
|
||||
/** The number of neighbors in the set
|
||||
*/
|
||||
size_t size() const
|
||||
{
|
||||
return dist_indices_.size();
|
||||
}
|
||||
|
||||
/** The distance of the furthest neighbor
|
||||
* If we don't have enough neighbors, it returns the max possible value
|
||||
*/
|
||||
inline DistanceType worstDist() const CV_OVERRIDE
|
||||
{
|
||||
return worst_distance_;
|
||||
}
|
||||
protected:
|
||||
/** Flag to say if the set is full */
|
||||
bool is_full_;
|
||||
|
||||
/** The worst distance found so far */
|
||||
DistanceType worst_distance_;
|
||||
|
||||
/** The best candidates so far */
|
||||
std::set<DistIndex> dist_indices_;
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/** Class that holds the k NN neighbors
|
||||
* Faster than KNNResultSet as it uses a binary heap and does not maintain two arrays
|
||||
*/
|
||||
template<typename DistanceType>
|
||||
class KNNUniqueResultSet : public UniqueResultSet<DistanceType>
|
||||
{
|
||||
public:
|
||||
/** Constructor
|
||||
* @param capacity the number of neighbors to store at max
|
||||
*/
|
||||
KNNUniqueResultSet(unsigned int capacity) : capacity_(capacity)
|
||||
{
|
||||
this->is_full_ = false;
|
||||
this->clear();
|
||||
}
|
||||
|
||||
/** Add a possible candidate to the best neighbors
|
||||
* @param dist distance for that neighbor
|
||||
* @param index index of that neighbor
|
||||
*/
|
||||
inline void addPoint(DistanceType dist, int index) CV_OVERRIDE
|
||||
{
|
||||
// Don't do anything if we are worse than the worst
|
||||
if (dist >= worst_distance_) return;
|
||||
dist_indices_.insert(DistIndex(dist, index));
|
||||
|
||||
if (is_full_) {
|
||||
if (dist_indices_.size() > capacity_) {
|
||||
dist_indices_.erase(*dist_indices_.rbegin());
|
||||
worst_distance_ = dist_indices_.rbegin()->dist_;
|
||||
}
|
||||
}
|
||||
else if (dist_indices_.size() == capacity_) {
|
||||
is_full_ = true;
|
||||
worst_distance_ = dist_indices_.rbegin()->dist_;
|
||||
}
|
||||
}
|
||||
|
||||
/** Remove all elements in the set
|
||||
*/
|
||||
void clear() CV_OVERRIDE
|
||||
{
|
||||
dist_indices_.clear();
|
||||
worst_distance_ = std::numeric_limits<DistanceType>::max();
|
||||
is_full_ = false;
|
||||
}
|
||||
|
||||
protected:
|
||||
typedef typename UniqueResultSet<DistanceType>::DistIndex DistIndex;
|
||||
using UniqueResultSet<DistanceType>::is_full_;
|
||||
using UniqueResultSet<DistanceType>::worst_distance_;
|
||||
using UniqueResultSet<DistanceType>::dist_indices_;
|
||||
|
||||
/** The number of neighbors to keep */
|
||||
unsigned int capacity_;
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/** Class that holds the radius nearest neighbors
|
||||
* It is more accurate than RadiusResult as it is not limited in the number of neighbors
|
||||
*/
|
||||
template<typename DistanceType>
|
||||
class RadiusUniqueResultSet : public UniqueResultSet<DistanceType>
|
||||
{
|
||||
public:
|
||||
/** Constructor
|
||||
* @param radius the maximum distance of a neighbor
|
||||
*/
|
||||
RadiusUniqueResultSet(DistanceType radius) :
|
||||
radius_(radius)
|
||||
{
|
||||
is_full_ = true;
|
||||
}
|
||||
|
||||
/** Add a possible candidate to the best neighbors
|
||||
* @param dist distance for that neighbor
|
||||
* @param index index of that neighbor
|
||||
*/
|
||||
void addPoint(DistanceType dist, int index) CV_OVERRIDE
|
||||
{
|
||||
if (dist <= radius_) dist_indices_.insert(DistIndex(dist, index));
|
||||
}
|
||||
|
||||
/** Remove all elements in the set
|
||||
*/
|
||||
inline void clear() CV_OVERRIDE
|
||||
{
|
||||
dist_indices_.clear();
|
||||
}
|
||||
|
||||
|
||||
/** Check the status of the set
|
||||
* @return alwys false
|
||||
*/
|
||||
inline bool full() const CV_OVERRIDE
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
/** The distance of the furthest neighbor
|
||||
* If we don't have enough neighbors, it returns the max possible value
|
||||
*/
|
||||
inline DistanceType worstDist() const CV_OVERRIDE
|
||||
{
|
||||
return radius_;
|
||||
}
|
||||
private:
|
||||
typedef typename UniqueResultSet<DistanceType>::DistIndex DistIndex;
|
||||
using UniqueResultSet<DistanceType>::dist_indices_;
|
||||
using UniqueResultSet<DistanceType>::is_full_;
|
||||
|
||||
/** The furthest distance a neighbor can be */
|
||||
DistanceType radius_;
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/** Class that holds the k NN neighbors within a radius distance
|
||||
*/
|
||||
template<typename DistanceType>
|
||||
class KNNRadiusUniqueResultSet : public KNNUniqueResultSet<DistanceType>
|
||||
{
|
||||
public:
|
||||
/** Constructor
|
||||
* @param capacity the number of neighbors to store at max
|
||||
* @param radius the maximum distance of a neighbor
|
||||
*/
|
||||
KNNRadiusUniqueResultSet(unsigned int capacity, DistanceType radius)
|
||||
{
|
||||
this->capacity_ = capacity;
|
||||
this->radius_ = radius;
|
||||
this->dist_indices_.reserve(capacity_);
|
||||
this->clear();
|
||||
}
|
||||
|
||||
/** Remove all elements in the set
|
||||
*/
|
||||
void clear()
|
||||
{
|
||||
dist_indices_.clear();
|
||||
worst_distance_ = radius_;
|
||||
is_full_ = false;
|
||||
}
|
||||
private:
|
||||
using KNNUniqueResultSet<DistanceType>::dist_indices_;
|
||||
using KNNUniqueResultSet<DistanceType>::is_full_;
|
||||
using KNNUniqueResultSet<DistanceType>::worst_distance_;
|
||||
|
||||
/** The maximum number of neighbors to consider */
|
||||
unsigned int capacity_;
|
||||
|
||||
/** The maximum distance of a neighbor */
|
||||
DistanceType radius_;
|
||||
};
|
||||
}
|
||||
|
||||
//! @endcond
|
||||
|
||||
#endif //OPENCV_FLANN_RESULTSET_H
|
||||
Reference in New Issue
Block a user