first commit

This commit is contained in:
2025-12-18 09:19:39 +08:00
parent 1bc7adf399
commit d4975da9a5
24 changed files with 2506 additions and 0 deletions

48
shaders/bg.frag Normal file
View File

@@ -0,0 +1,48 @@
#version 330 core
out vec4 FragColor;
// 视口大小(像素,建议传入 framebuffer 尺寸HiDPI 下要乘 devicePixelRatio
uniform vec2 uViewport;
// 以像素为单位的网格间距:细网格/粗网格
uniform float uMinorStep;
uniform float uMajorStep;
// 生成抗锯齿网格线(返回 0..11 表示在线上)
float gridLine(float stepPx) {
vec2 coord = gl_FragCoord.xy;
vec2 q = coord / stepPx;
// 距离最近网格线的归一化距离,再用 fwidth 做抗锯齿
vec2 g = abs(fract(q - 0.5) - 0.5) / fwidth(q);
float line = 1.0 - min(min(g.x, g.y), 1.0);
return line;
}
void main() {
vec2 viewport = max(uViewport, vec2(1.0));
vec2 uv = gl_FragCoord.xy / viewport; // 0..1
// 背景渐变:上更亮、下稍灰,常见 3D 软件的“科技感”底色
vec3 topCol = vec3(0.99, 0.99, 1.00);
vec3 botCol = vec3(0.94, 0.95, 0.98);
vec3 col = mix(botCol, topCol, uv.y);
// 网格线:细线 + 粗线(每隔一段更深一点)
float minor = gridLine(max(uMinorStep, 1.0));
float major = gridLine(max(uMajorStep, 1.0));
vec3 minorCol = vec3(0.80, 0.82, 0.87);
vec3 majorCol = vec3(0.70, 0.73, 0.80);
col = mix(col, minorCol, minor * 0.22);
col = mix(col, majorCol, major * 0.35);
// 轻微 vignette四角略暗让画面更“聚焦”
vec2 p = uv * 2.0 - 1.0;
float v = clamp(1.0 - dot(p, p) * 0.12, 0.0, 1.0);
col *= mix(1.0, v, 0.35);
FragColor = vec4(col, 1.0);
}

8
shaders/bg.vert Normal file
View File

@@ -0,0 +1,8 @@
#version 330 core
// 全屏背景:直接在裁剪空间画一个矩形(不受相机/旋转影响)
layout(location = 0) in vec2 aPos; // NDC: [-1,1]
void main() {
gl_Position = vec4(aPos, 0.0, 1.0);
}

153
shaders/dots.frag Normal file
View File

@@ -0,0 +1,153 @@
#version 330 core
in vec2 vUV;
in float vValue;
in vec3 vWorldPos;
out vec4 FragColor;
uniform float uMinV;
uniform float uMaxV;
uniform sampler2D uDotTex;
uniform int uHasData; // 0 = no data, 1 = has data
uniform vec3 uCameraPos;
uniform float uDotRadius;
uniform int uRenderMode; // 0=realistic, 1=dataViz
const float PI = 3.14159265359;
float saturate(float x) { return clamp(x, 0.0, 1.0); }
vec3 dataColorRamp(float t) {
t = saturate(t);
vec3 c0 = vec3(0.10, 0.75, 1.00); // cyan-blue (low)
vec3 c1 = vec3(0.10, 0.95, 0.35); // green
vec3 c2 = vec3(1.00, 0.92, 0.22); // yellow
vec3 c3 = vec3(1.00, 0.22, 0.10); // red (high)
if (t < 0.33) return mix(c0, c1, t / 0.33);
if (t < 0.66) return mix(c1, c2, (t - 0.33) / 0.33);
return mix(c2, c3, (t - 0.66) / 0.34);
}
vec3 fresnelSchlick(float cosTheta, vec3 F0) {
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
}
float D_GGX(float NdotH, float roughness) {
float a = max(0.04, roughness);
float alpha = a * a;
float alpha2 = alpha * alpha;
float denom = (NdotH * NdotH) * (alpha2 - 1.0) + 1.0;
return alpha2 / (PI * denom * denom + 1e-7);
}
float G_SchlickGGX(float NdotV, float roughness) {
float r = roughness + 1.0;
float k = (r * r) / 8.0;
return NdotV / (NdotV * (1.0 - k) + k + 1e-7);
}
float G_Smith(float NdotV, float NdotL, float roughness) {
float ggx1 = G_SchlickGGX(NdotV, roughness);
float ggx2 = G_SchlickGGX(NdotL, roughness);
return ggx1 * ggx2;
}
float D_GGX_Aniso(vec3 N, vec3 H, vec3 T, vec3 B, float ax, float ay) {
float NdotH = saturate(dot(N, H));
float TdotH = dot(T, H);
float BdotH = dot(B, H);
float ax2 = ax * ax;
float ay2 = ay * ay;
float denom = (TdotH * TdotH) / (ax2 + 1e-7) + (BdotH * BdotH) / (ay2 + 1e-7) + NdotH * NdotH;
return 1.0 / (PI * ax * ay * denom * denom + 1e-7);
}
vec3 evalLight(
vec3 N,
vec3 V,
vec3 L,
vec3 lightColor,
vec3 baseColor,
float metallic,
float roughness,
float aniso,
vec3 brushDir
) {
float NdotL = saturate(dot(N, L));
float NdotV = saturate(dot(N, V));
if (NdotL <= 0.0 || NdotV <= 0.0) return vec3(0.0);
vec3 H = normalize(V + L);
float NdotH = saturate(dot(N, H));
float VdotH = saturate(dot(V, H));
vec3 F0 = mix(vec3(0.04), baseColor, metallic);
vec3 F = fresnelSchlick(VdotH, F0);
float D = D_GGX(NdotH, roughness);
if (aniso > 0.001) {
vec3 T = normalize(brushDir - N * dot(brushDir, N));
vec3 B = normalize(cross(N, T));
float alpha = max(0.04, roughness);
float a = alpha * alpha;
float ax = mix(a, a * 0.30, aniso);
float ay = mix(a, a * 2.00, aniso);
D = D_GGX_Aniso(N, H, T, B, ax, ay);
}
float G = G_Smith(NdotV, NdotL, roughness);
vec3 spec = (D * G * F) / max(4.0 * NdotV * NdotL, 1e-6);
vec3 kD = (vec3(1.0) - F) * (1.0 - metallic);
vec3 diff = kD * baseColor / PI;
return (diff + spec) * lightColor * NdotL;
}
void main() {
vec2 p = vUV * 2.0 - 1.0;
float r = length(p);
if (r > 1.0) discard;
float r01 = saturate(r);
// Industrial engineering model: simple plated metal pad (brass/gold-ish).
// When no data, keep a bright gold base. When data is present, render the
// data color directly (no remaining gold tint), while preserving depth cues.
vec3 metalBase = vec3(0.98, 0.82, 0.30);
float value01 = clamp((vValue - uMinV) / max(1e-6, (uMaxV - uMinV)), 0.0, 1.0);
vec3 dataCol = dataColorRamp(value01);
bool hasData = (uHasData != 0);
vec3 baseColor = hasData ? dataCol : metalBase;
// Mostly flat, with a slight bevel near the edge to catch highlights.
float slope = mix(0.06, 0.28, smoothstep(0.55, 1.0, r01));
vec3 N = normalize(vec3(p.x * slope, 1.0, p.y * slope));
vec3 V = normalize(uCameraPos - vWorldPos);
float metallic = hasData ? 0.0 : 0.90;
float roughness = hasData ? 0.78 : ((uRenderMode == 1) ? 0.70 : 0.55);
vec3 keyL = normalize(vec3(0.55, 1.00, 0.25));
vec3 fillL = normalize(vec3(-0.30, 0.70, -0.80));
vec3 keyC = vec3(1.00, 0.98, 0.95) * 1.8;
vec3 fillC = vec3(0.85, 0.90, 1.00) * 0.9;
vec3 Lo = vec3(0.0);
Lo += evalLight(N, V, keyL, keyC, baseColor, metallic, roughness, 0.0, vec3(1.0, 0.0, 0.0));
Lo += evalLight(N, V, fillL, fillC, baseColor, metallic, roughness, 0.0, vec3(1.0, 0.0, 0.0));
vec3 F0 = mix(vec3(0.04), baseColor, metallic);
vec3 ambient = baseColor * 0.10 + F0 * 0.04;
float edgeAO = smoothstep(0.88, 1.0, r01);
float ao = 1.0 - edgeAO * 0.10;
// Subtle boundary ring (engineering-model crispness, not a UI outline).
float ring = smoothstep(0.82, 0.92, r01) - smoothstep(0.92, 1.00, r01);
vec3 col = (ambient + Lo) * ao;
col = mix(col, col * 0.82, ring * 0.35);
FragColor = vec4(clamp(col, 0.0, 1.0), 1.0);
}

31
shaders/dots.vert Normal file
View File

@@ -0,0 +1,31 @@
#version 330 core
layout(location = 0) in vec2 qQuadPos; // 单位 quad 的局部顶点坐标(范围 [-1,1]
layout(location = 1) in vec2 aUV; // UV用于 fragment shader 把 quad 变成圆形)
layout(location = 2) in vec2 iOffsetXZ; // 每个点的偏移(世界坐标 XZ
layout(location = 3) in float iValue; // 每个点的数值(用于颜色映射)
out vec2 vUV;
out float vValue;
out vec3 vWorldPos;
uniform mat4 uMVP; // Projection * View * Model这里 Model 约等于单位矩阵)
uniform float uDotRadius; // dot 半径(世界坐标单位)
uniform float uBaseY; // dot 的高度(通常 = panel 顶面 y + 一点点偏移)
void main() {
vUV = aUV;
vValue = iValue;
// 先确定 dot 的中心点(世界坐标)
vec3 world = vec3(iOffsetXZ.x, uBaseY, iOffsetXZ.y);
// 再把单位 quad 按半径缩放并加到中心点上(让 quad 落在 XZ 平面)
world.x += qQuadPos.x * uDotRadius;
world.z += qQuadPos.y * uDotRadius;
// 输出裁剪空间坐标(最终会进行透视除法与视口映射,变成屏幕上的像素)
vWorldPos = world;
gl_Position = uMVP * vec4(world, 1.0);
}

183
shaders/panel.frag Normal file
View File

@@ -0,0 +1,183 @@
#version 330 core
in vec3 vWorldPos;
in vec3 vWorldNormal;
out vec4 FragColor;
uniform vec3 uCameraPos;
uniform float uPanelW;
uniform float uPanelH;
uniform float uPanelD;
uniform int uRows;
uniform int uCols;
uniform float uPitch;
uniform float uDotRadius;
uniform int uRenderMode; // 0=realistic, 1=dataViz
const float PI = 3.14159265359;
float saturate(float x) { return clamp(x, 0.0, 1.0); }
float hash12(vec2 p) {
vec3 p3 = fract(vec3(p.xyx) * 0.1031);
p3 += dot(p3, p3.yzx + 33.33);
return fract((p3.x + p3.y) * p3.z);
}
float noise2d(vec2 p) {
vec2 i = floor(p);
vec2 f = fract(p);
float a = hash12(i);
float b = hash12(i + vec2(1.0, 0.0));
float c = hash12(i + vec2(0.0, 1.0));
float d = hash12(i + vec2(1.0, 1.0));
vec2 u = f * f * (3.0 - 2.0 * f);
return mix(a, b, u.x) + (c - a) * u.y * (1.0 - u.x) + (d - b) * u.x * u.y;
}
float fbm(vec2 p) {
float v = 0.0;
float a = 0.5;
for (int i = 0; i < 4; ++i) {
v += a * noise2d(p);
p *= 2.0;
a *= 0.5;
}
return v;
}
vec3 fresnelSchlick(float cosTheta, vec3 F0) {
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
}
float D_GGX(float NdotH, float roughness) {
float a = max(0.04, roughness);
float alpha = a * a;
float alpha2 = alpha * alpha;
float denom = (NdotH * NdotH) * (alpha2 - 1.0) + 1.0;
return alpha2 / (PI * denom * denom + 1e-7);
}
float G_SchlickGGX(float NdotV, float roughness) {
float r = roughness + 1.0;
float k = (r * r) / 8.0;
return NdotV / (NdotV * (1.0 - k) + k + 1e-7);
}
float G_Smith(float NdotV, float NdotL, float roughness) {
float ggx1 = G_SchlickGGX(NdotV, roughness);
float ggx2 = G_SchlickGGX(NdotL, roughness);
return ggx1 * ggx2;
}
float D_GGX_Aniso(vec3 N, vec3 H, vec3 T, vec3 B, float ax, float ay) {
float NdotH = saturate(dot(N, H));
float TdotH = dot(T, H);
float BdotH = dot(B, H);
float ax2 = ax * ax;
float ay2 = ay * ay;
float denom = (TdotH * TdotH) / (ax2 + 1e-7) + (BdotH * BdotH) / (ay2 + 1e-7) + NdotH * NdotH;
return 1.0 / (PI * ax * ay * denom * denom + 1e-7);
}
vec3 evalLight(
vec3 N,
vec3 V,
vec3 L,
vec3 lightColor,
vec3 baseColor,
float metallic,
float roughness,
float aniso,
vec3 brushDir
) {
float NdotL = saturate(dot(N, L));
float NdotV = saturate(dot(N, V));
if (NdotL <= 0.0 || NdotV <= 0.0) return vec3(0.0);
vec3 H = normalize(V + L);
float NdotH = saturate(dot(N, H));
float VdotH = saturate(dot(V, H));
vec3 F0 = mix(vec3(0.04), baseColor, metallic);
vec3 F = fresnelSchlick(VdotH, F0);
float D = D_GGX(NdotH, roughness);
if (aniso > 0.001) {
vec3 T = normalize(brushDir - N * dot(brushDir, N));
vec3 B = normalize(cross(N, T));
float alpha = max(0.04, roughness);
float a = alpha * alpha;
float ax = mix(a, a * 0.35, aniso);
float ay = mix(a, a * 1.80, aniso);
D = D_GGX_Aniso(N, H, T, B, ax, ay);
}
float G = G_Smith(NdotV, NdotL, roughness);
vec3 spec = (D * G * F) / max(4.0 * NdotV * NdotL, 1e-6);
vec3 kD = (vec3(1.0) - F) * (1.0 - metallic);
vec3 diff = kD * baseColor / PI;
return (diff + spec) * lightColor * NdotL;
}
float nearestDotDistanceXZ(vec2 xz) {
if (uPitch <= 0.0 || uRows <= 0 || uCols <= 0) return 1e6;
int colsM1 = max(uCols - 1, 0);
int rowsM1 = max(uRows - 1, 0);
float halfGridW = float(colsM1) * uPitch * 0.5;
float halfGridD = float(rowsM1) * uPitch * 0.5;
vec2 g = (xz + vec2(halfGridW, halfGridD)) / max(1e-6, uPitch);
vec2 gi = floor(g + 0.5);
gi = clamp(gi, vec2(0.0), vec2(float(colsM1), float(rowsM1)));
vec2 c = gi * uPitch - vec2(halfGridW, halfGridD);
return length(xz - c);
}
void main() {
// panel 先用一个固定颜色(后续可以加光照/材质)
vec3 N = normalize(vWorldNormal);
vec3 V = normalize(uCameraPos - vWorldPos);
float isTop = step(0.75, N.y);
// ------------------------------------------------------------
// Industrial engineering model: neutral matte gray panel (support layer only)
// ------------------------------------------------------------
vec3 topBase = vec3(0.30, 0.31, 0.32);
vec3 sideBase = vec3(0.27, 0.28, 0.29);
vec3 baseColor = mix(sideBase, topBase, isTop);
vec2 xz = vWorldPos.xz;
float dotContact = 0.0;
if (isTop > 0.5 && uDotRadius > 0.0) {
float d = nearestDotDistanceXZ(xz);
float w = max(0.002, uDotRadius * 0.22);
dotContact = 1.0 - smoothstep(uDotRadius, uDotRadius + w, d);
}
vec3 L = normalize(vec3(0.45, 1.00, 0.20));
float diff = saturate(dot(N, L));
float lighting = 0.90 + 0.10 * diff;
float hw = max(1e-6, uPanelW * 0.5);
float hd = max(1e-6, uPanelD * 0.5);
float edgeDist = min(hw - abs(vWorldPos.x), hd - abs(vWorldPos.z));
float edgeW = max(0.002, min(hw, hd) * 0.012);
float edgeLine = (1.0 - smoothstep(edgeW, edgeW * 2.5, edgeDist)) * isTop;
float rim = pow(1.0 - saturate(dot(N, V)), 2.2) * isTop;
float ao = 1.0 - dotContact * 0.08;
vec3 col = baseColor * lighting * ao;
col += edgeLine * vec3(0.020);
col += rim * vec3(0.015);
// Slightly deepen the bottom face to read as thickness, but keep it subtle.
float isBottom = step(0.75, -N.y);
col *= mix(1.0, 0.92, isBottom);
FragColor = vec4(clamp(col, 0.0, 1.0), 1.0);
}

18
shaders/panel.vert Normal file
View File

@@ -0,0 +1,18 @@
#version 330 core
// 顶点输入(来自 VBO
layout(location=0) in vec3 aPos; // 顶点位置(当前我们直接当作“世界坐标”来用)
layout(location=1) in vec3 aN; // 法线(当前没用到,先保留)
// uMVP = Projection * View * Model
// 把顶点从“世界坐标”变换到“裁剪空间clip spaceOpenGL 用 gl_Position 来完成屏幕投影
out vec3 vWorldPos;
out vec3 vWorldNormal;
uniform mat4 uMVP;
void main() {
// Model is identity in this project; treat vertex data as world space.
vWorldPos = aPos;
vWorldNormal = aN;
gl_Position = uMVP * vec4(aPos, 1.0);
}