first commit

This commit is contained in:
2025-12-18 09:19:39 +08:00
parent 1bc7adf399
commit d4975da9a5
24 changed files with 2506 additions and 0 deletions

2
.gitignore vendored
View File

@@ -52,3 +52,5 @@ CMakeLists.txt.user
Thumbs.db
*.swp
*~
/.cache/
/build/

151
AUTO_PANEL_SIZING.md Normal file
View File

@@ -0,0 +1,151 @@
# 自动适配:点阵不越界 + 面板尺寸跟随点阵
这份文档说明本项目里为了实现:
1. **圆点(点阵)始终落在面板顶面上,不越界**
2. **面板的宽/深W/D根据点阵规格自动缩放**
3. **面板厚度H保持独立可控不随点阵改变**
所做的代码改动和使用方式。
---
## 现象 & 根因
当前点阵的摆放逻辑(`src/glwidget.cpp``GLWidget::updateInstanceBufferIfNeeded_()`)是:
- 点阵中心围绕原点居中摆放
- 每个点的中心坐标:
- `x = c * pitch - (cols-1)*pitch/2`
- `z = r * pitch - (rows-1)*pitch/2`
- 所以 **点中心** 的范围一定在:
- `x ∈ [-gridW/2, +gridW/2]`,其中 `gridW = (cols-1)*pitch`
- `z ∈ [-gridD/2, +gridD/2]`,其中 `gridD = (rows-1)*pitch`
但每个点是“有半径”的(`dotRadius`),在 shader 里实际画出来的圆会占据:
- `x` 方向还会向外多出 `dotRadius`
- `z` 方向还会向外多出 `dotRadius`
如果面板的 `W/D` 没有随点阵变化而调整,就会出现你截图里那种:**外圈点的圆形被画到了面板外**(看起来像“越界”)。
---
## 解决思路(数学上怎么保证不越界)
要让“圆点的边缘”也不越界,需要满足:
- 面板半宽 `panelW/2 >= gridW/2 + dotRadius`
- 面板半深 `panelD/2 >= gridD/2 + dotRadius`
等价于:
- `panelW >= gridW + 2*dotRadius`
- `panelD >= gridD + 2*dotRadius`
本项目采用的就是这条公式。
> 如果你希望四周再留白一点,只要把公式改成:`+ 2*(dotRadius + margin)` 即可。
---
## 代码改动点(做了什么)
### 1) `setSpec()` 里自动计算面板 W/D
文件:`src/glwidget.cpp`,函数:`GLWidget::setSpec(...)`
做的事:
-`rows/cols/pitch/dotRadius` 做了下限保护(避免负数)
- 根据点阵规格计算面板顶面 `m_panelW/m_panelD`
- `gridW = (cols-1) * pitch`
- `gridD = (rows-1) * pitch`
- `m_panelW = gridW + 2*dotRadius`
- `m_panelD = gridD + 2*dotRadius`
- 标记面板几何和 dots 几何需要重建dirty flag
这样一旦你改点阵规格,面板会自动缩放到刚好包住点阵。
---
### 2) 厚度单独控制:`setPanelThickness()`
文件:`src/glwidget.h` / `src/glwidget.cpp`
新增接口:
- `void setPanelThickness(float h);`
它只修改 `m_panelH`(厚度),并标记面板几何需要重建。
---
### 3) 由于 W/D 会变:需要“重建几何体 buffer”
原因:面板顶面矩形的顶点坐标依赖 `m_panelW/m_panelD`,改变后必须重建 VBO/IBO/VAO 才能反映到 GPU。
做法:
- 新增两个 dirty flag
- `m_panelGeometryDirty`
- `m_dotsGeometryDirty`
-`GLWidget::paintGL()` 的开头判断 dirty
- dirty 就调用 `initPanelGeometry_()` / `initDotGeometry_()` 重建
- dots 重建后会重新分配 instanceVBO所以把 `m_valuesDirty = true`,确保下一帧重新上传 instance 数据
---
### 4) `initPanelGeometry_()` / `initDotGeometry_()` 现在会先删旧 buffer
因为会重复调用重建,所以这两个函数里加入了:
-`glDeleteBuffers` / `glDeleteVertexArrays`
- 再重新 `glGen*` 创建新资源
保证不会重复堆积资源(泄漏)或引用旧 VAO。
---
### 5) `main.cpp` 不再手动写死面板 W/D
文件:`main.cpp`
把原来的:
- `glw->setPanelSize(1.2f, 0.08f, 1.2f);`
改为:
- `glw->setPanelThickness(0.08f);`
原因:如果继续调用 `setPanelSize()`,你会把 `setSpec()` 自动算出来的 W/D 覆盖掉,越界问题就会回来。
---
## 使用方式(你应该怎么调用)
推荐顺序:
1. `glw->setSpec(rows, cols, pitch, dotRadius);`
- 会自动算出 `panelW/panelD`,保证点不越界
2. `glw->setPanelThickness(panelH);`
- 只改厚度,不影响自动宽深
3. `glw->setRange(minV, maxV);`
4. `glw->submitValues(values);`
如果你确实想手动指定面板大小(不走自动适配),可以再调用:
- `glw->setPanelSize(w, h, d);`
但要理解:这会覆盖自动计算的 `W/D`,点可能再次越界(除非你按本文公式算好)。
---
## 可选改进(按你需求继续拓展)
- **加边距(不要贴边)**:在 `setSpec()` 里引入 `margin`,把公式改成:
`m_panelW = gridW + 2*(m_dotRadius + margin)`
`m_panelD = gridD + 2*(m_dotRadius + margin)`
- **让点阵填满面板但不改变 pitch**:目前面板跟着 pitch 走;如果你希望面板固定而 pitch 自适配,需要反过来解 pitch。

134
BACKGROUND_GRID.md Normal file
View File

@@ -0,0 +1,134 @@
# 屏幕空间背景(白底 + 灰色网格线)说明
这份文档解释项目里新增的“3D 软件常见的白色背景 + 灰色分割线网格”是怎么实现的,以及如何调整效果。
需求点:
- 背景看起来更“科技感”(轻微渐变 + 网格线 + vignette
- **背景不随相机旋转**(不受 yaw/pitch/zoom 影响)
---
## 实现方式概览(为什么它不会旋转)
我们采用“屏幕空间screen-space”绘制方式
1. **画一个全屏 quad**(两个三角形),顶点坐标直接写在裁剪空间 NDC[-1,1]
2. fragment shader 使用 `gl_FragCoord`(屏幕像素坐标)生成网格线
由于整个背景是直接画在屏幕坐标系里,不使用 `uMVP`,所以它不会跟着相机旋转或移动。
---
## 关键文件
- 资源注册:`resources.qrc`
- 新增:`shaders/bg.vert``shaders/bg.frag`
- Shader
- `shaders/bg.vert`:全屏 quad 的顶点 shader裁剪空间直出
- `shaders/bg.frag`:背景颜色 + 抗锯齿网格线(基于 `gl_FragCoord`
- C++OpenGLWidget
- `src/glwidget.h`:新增 `m_bgProg``m_bgVao/m_bgVbo``initBackgroundGeometry_()`
- `src/glwidget.cpp`
- `GLWidget::initPrograms_()`:编译/链接背景 program
- `GLWidget::initBackgroundGeometry_()`:创建全屏 quad VAO/VBO
- `GLWidget::paintGL()`:先画背景(关闭深度写入),再画 3D 内容
---
## 渲染顺序(为什么不会影响 3D 深度)
背景绘制发生在 `GLWidget::paintGL()` 的最前面:
1. `glClear(...)` 清空颜色/深度
2. **绘制背景**(屏幕空间)
- `glDisable(GL_DEPTH_TEST);`
- `glDepthMask(GL_FALSE);`(不写深度)
3. 恢复深度状态
- `glDepthMask(GL_TRUE);`
- `glEnable(GL_DEPTH_TEST);`
4. 再绘制 panel / dots正常 3D 深度测试)
因此:背景永远在最底层,而且不会把深度缓冲弄脏。
---
## 全屏 quad背景几何
`GLWidget::initBackgroundGeometry_()` 创建一个覆盖整个屏幕的矩形(两个三角形):
- 顶点坐标是 NDC裁剪空间
- (-1,-1) 到 (1,1)
- 顶点 shader`shaders/bg.vert`)仅仅把它输出到 `gl_Position`
这样不需要任何相机矩阵,也不会“跟着相机”动。
---
## 网格线怎么画出来的bg.frag
`shaders/bg.frag` 主要做了三件事:
### 1) 背景渐变底色
- 使用 `uv = gl_FragCoord.xy / uViewport` 得到 0..1 的屏幕坐标
- 在 y 方向做一个轻微渐变(上更亮、下稍灰)
### 2) 细网格 + 粗网格(分割线)
`uMinorStep` / `uMajorStep`(单位:像素)控制网格间距:
- `uMinorStep`:细分格子(更淡)
- `uMajorStep`:粗分格子(更明显)
网格线本质是对 `fract(coord / step)` 做“距离最近线”的计算,然后用 `fwidth` 做抗锯齿:
- `fwidth` 会随着屏幕像素密度和视角变化自动调整边缘过渡,避免锯齿
### 3) 轻微 vignette
四角略暗、中心略亮,让画面更聚焦、更像 3D 软件视口。
---
## HiDPI 注意点(为什么要乘 devicePixelRatio
Qt 的 `width()/height()` 是“逻辑像素”;而 `gl_FragCoord` 是“物理像素”。
所以背景在 C++ 里传入:
- `uViewport = (width * dpr, height * dpr)`
- 网格 step 也乘 `dpr`
否则在高 DPI 屏幕上网格会显得“变密/变粗”。
---
## 如何调整外观(常用参数)
### 调整网格密度
`src/glwidget.cpp` 里设置了:
- `uMinorStep = 24 px`(细线间距)
- `uMajorStep = 120 px`(粗线间距)
改这两个值就能让网格更密/更稀。
### 调整颜色/强度/科技感
`shaders/bg.frag` 里可以改:
- `topCol/botCol`:背景渐变颜色
- `minorCol/majorCol`:网格线颜色
- `mix(...)` 的系数:线条深浅
- vignette 强度:`dot(p,p)` 前面的系数
---
## 可选增强(如果你想更像 Blender/Unity
- 加“坐标轴线”X 红、Z 蓝或灰色加深)并在中心画十字
- 增加 UI 开关:显示/隐藏网格、调 step、调强度
- 增加“地平线”或 “ground plane” 的淡淡雾化效果

66
CMakeLists.txt Normal file
View File

@@ -0,0 +1,66 @@
cmake_minimum_required(VERSION 4.0)
project(TactileIpc3D LANGUAGES CXX)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_AUTOMOC ON)
set(CMAKE_AUTORCC ON)
set(CMAKE_AUTOUIC ON)
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/src)
find_package(Qt6 COMPONENTS
Core
Gui
Widgets
QuickWidgets
OpenGLWidgets
REQUIRED
)
qt_standard_project_setup()
add_executable(TactileIpc3D
main.cpp
resources.qrc
src/backend.h
src/backend.cpp
src/glwidget.cpp
src/glwidget.h
)
target_link_libraries(TactileIpc3D
Qt::Core
Qt::Gui
Qt::Widgets
Qt::QuickWidgets
Qt::OpenGLWidgets
)
#if (WIN32 AND NOT DEFINED CMAKE_TOOLCHAIN_FILE)
# set(DEBUG_SUFFIX)
# if (MSVC AND CMAKE_BUILD_TYPE MATCHES "Debug")
# set(DEBUG_SUFFIX "d")
# endif ()
# set(QT_INSTALL_PATH "${CMAKE_PREFIX_PATH}")
# if (NOT EXISTS "${QT_INSTALL_PATH}/bin")
# set(QT_INSTALL_PATH "${QT_INSTALL_PATH}/..")
# if (NOT EXISTS "${QT_INSTALL_PATH}/bin")
# set(QT_INSTALL_PATH "${QT_INSTALL_PATH}/..")
# endif ()
# endif ()
# if (EXISTS "${QT_INSTALL_PATH}/plugins/platforms/qwindows${DEBUG_SUFFIX}.dll")
# add_custom_command(TARGET ${PROJECT_NAME} POST_BUILD
# COMMAND ${CMAKE_COMMAND} -E make_directory
# "$<TARGET_FILE_DIR:${PROJECT_NAME}>/plugins/platforms/")
# add_custom_command(TARGET ${PROJECT_NAME} POST_BUILD
# COMMAND ${CMAKE_COMMAND} -E copy
# "${QT_INSTALL_PATH}/plugins/platforms/qwindows${DEBUG_SUFFIX}.dll"
# "$<TARGET_FILE_DIR:${PROJECT_NAME}>/plugins/platforms/")
# endif ()
# foreach (QT_LIB Core Gui Widgets)
# add_custom_command(TARGET ${PROJECT_NAME} POST_BUILD
# COMMAND ${CMAKE_COMMAND} -E copy
# "${QT_INSTALL_PATH}/bin/Qt6${QT_LIB}${DEBUG_SUFFIX}.dll"
# "$<TARGET_FILE_DIR:${PROJECT_NAME}>")
# endforeach (QT_LIB)
#endif ()

259
README.md Normal file
View File

@@ -0,0 +1,259 @@
# TactileIpc3D圆点传感点绘制说明
这份 README 专门把“圆点dots是怎么画出来的”单独拎出来讲清楚**CPU 端准备数据**、到 **GPU 端着色器如何把一个 quad 变成很多个圆点**
---
## 关键文件(只看这几个就够)
- C++ 侧
- `src/glwidget.cpp`
- `GLWidget::initDotGeometry_()`:创建 dots 的 VAO/VBO/instanceVBO并声明 attribute 布局
- `GLWidget::updateInstanceBufferIfNeeded_()`:把每个点的 `(offsetX, offsetZ, value)` 上传到 GPU
- `GLWidget::paintGL()`:设置 uniforms然后 `glDrawArraysInstanced()` 一次性画出 N 个点
- GLSL 侧shader
- `shaders/dots.vert`:把“单位 quad”放到每个点的位置并乘上 `uMVP`
- `shaders/dots.frag`:在像素级别把 quad “裁剪”为圆形,并根据 value 上色
---
## 总体思路:一个 quad + instanced rendering
我们并没有为每个点生成一个圆形网格(那样会很重),而是:
1. **只建一个单位 quad两个三角形**,共 6 个顶点。
2.**Instanced Rendering**:一条 draw call 画很多个 instance。
3. 每个 instance 在 GPU 上拿到自己的 **位置偏移** + **传感值**,从而变成不同位置/不同颜色的圆点。
对应的 OpenGL draw call
```cpp
glDrawArraysInstanced(GL_TRIANGLES, 0, 6, m_instanceCount);
```
- `0..6`:每个点用 6 个顶点(两个三角形)组成 quad
- `m_instanceCount`要画多少个点rows*cols
---
## 1) Dot 的“基础几何”:单位 quadVBO, per-vertex
`GLWidget::initDotGeometry_()` 里,先创建一个单位 quad。它在局部空间的范围是 `[-1, 1]`
```cpp
struct V { float x, y; float u, v; };
V quad[6] = {
{-1,-1, 0,0}, { 1,-1, 1,0}, { 1, 1, 1,1},
{-1,-1, 0,0}, { 1, 1, 1,1}, {-1, 1, 0,1},
};
```
这里的含义:
- `x,y`:这个 quad 的“局部顶点坐标”,后续会乘以 `uDotRadius` 变成实际大小
- `u,v`UV 坐标fragment shader 用它来判断像素是否在圆内(圆外就 `discard`
然后绑定 attribute
```cpp
// location 0: quad 顶点位置 (x,y)
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(V), (void*)0);
// location 1: UV (u,v)
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, sizeof(V), (void*)(2 * sizeof(float)));
```
这必须和 `shaders/dots.vert` 的声明对应:
```glsl
layout(location = 0) in vec2 qQuadPos;
layout(location = 1) in vec2 aUV;
```
---
## 2) Instance 数据每个点一条记录instanceVBO, per-instance
每个点instance需要独有的数据。我们用 3 个 float 表示:
- `offsetX`
- `offsetZ`
- `value`(传感值,用于上色)
在 C++ 里分配 instance VBO
```cpp
glGenBuffers(1, &m_instanceVbo);
glBindBuffer(GL_ARRAY_BUFFER, m_instanceVbo);
glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 3 * qMax(1, dotCount()), nullptr, GL_DYNAMIC_DRAW);
```
然后把它绑定到 attribute location 2/3并设置 divisor=1
```cpp
// location 2: vec2 iOffsetXZ每个 instance 使用一次)
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);
glVertexAttribDivisor(2, 1);
// location 3: float iValue每个 instance 使用一次)
glEnableVertexAttribArray(3);
glVertexAttribPointer(3, 1, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)(2 * sizeof(float)));
glVertexAttribDivisor(3, 1);
```
`glVertexAttribDivisor(..., 1)` 是 instancing 的关键:
- divisor=0默认每个顶点取一条数据per-vertex
- divisor=1每画一个 instance 才更新一次per-instance
对应 shader 里的声明:
```glsl
layout(location = 2) in vec2 iOffsetXZ;
layout(location = 3) in float iValue;
```
---
## 3) 每帧如何更新 dots 的位置和值(上传 instance buffer
`GLWidget::updateInstanceBufferIfNeeded_()` 里,代码会把点阵居中摆放,并把 value 写进去:
```cpp
const float w = (m_cols - 1) * m_pitch;
const float h = (m_rows - 1) * m_pitch;
for (int i = 0; i < n; ++i) {
const int r = (m_cols > 0) ? (i / m_cols) : 0;
const int c = (m_cols > 0) ? (i % m_cols) : 0;
const float x = (c * m_pitch) - w * 0.5f;
const float z = (r * m_pitch) - h * 0.5f;
inst[i * 3 + 0] = x; // offsetX
inst[i * 3 + 1] = z; // offsetZ
inst[i * 3 + 2] = valuesCopy[i]; // value
}
```
最后把 `inst` 上传到 GPU
```cpp
glBindBuffer(GL_ARRAY_BUFFER, m_instanceVbo);
glBufferSubData(GL_ARRAY_BUFFER, 0, inst.size() * sizeof(float), inst.constData());
```
---
## 4) Vertex Shader把 quad “放到每个点的位置”
`shaders/dots.vert`(简化后的核心逻辑):
```glsl
layout(location = 0) in vec2 qQuadPos; // 单位 quad 顶点
layout(location = 1) in vec2 aUV; // UV
layout(location = 2) in vec2 iOffsetXZ; // 每个点的 offsetX,Z
layout(location = 3) in float iValue; // 每个点的 value
out vec2 vUV;
out float vValue;
uniform mat4 uMVP;
uniform float uDotRadius;
uniform float uBaseY;
void main() {
vUV = aUV;
vValue = iValue;
// dot 中心点(世界坐标)
vec3 world = vec3(iOffsetXZ.x, uBaseY, iOffsetXZ.y);
// 把单位 quad 按半径缩放,并铺在 XZ 平面上
world.x += qQuadPos.x * uDotRadius;
world.z += qQuadPos.y * uDotRadius;
// 世界坐标 -> 裁剪空间
gl_Position = uMVP * vec4(world, 1.0);
}
```
这里要理解的点:
- `qQuadPos` 是局部空间([-1,1]),乘 `uDotRadius` 才是实际大小
- `iOffsetXZ` 是每个点的平移(让同一个 quad 出现在不同位置)
- `uMVP` 把世界坐标变换到屏幕(不然你会“啥也看不到”)
---
## 5) Fragment Shader把 quad “裁剪成圆”,并用 value 上色
`shaders/dots.frag`(核心逻辑):
```glsl
in vec2 vUV;
in float vValue;
out vec4 FragColor;
uniform float uMinV;
uniform float uMaxV;
void main() {
// vUV: [0,1] -> [-1,1]
vec2 p = vUV * 2.0 - 1.0;
float r2 = dot(p, p);
if (r2 > 1.0) discard; // 圆外丢弃像素
float t = clamp((vValue - uMinV) / max(1e-6, (uMaxV - uMinV)), 0.0, 1.0);
vec3 heat = mix(vec3(0, 1, 0), vec3(1, 0, 0), t); // 绿->红
FragColor = vec4(heat, 1.0);
}
```
这样一个 quad 就“看起来像圆点”了。
---
## 6) 真正开始画:设置 uniforms + draw
`GLWidget::paintGL()` 里,绘制 dots 的部分大概是:
```cpp
m_dotsProg->bind();
m_dotsProg->setUniformValue("uMVP", m_mvp);
m_dotsProg->setUniformValue("uDotRadius", m_dotRadius);
m_dotsProg->setUniformValue("uBaseY", (m_panelH * 0.5f) + 0.001f);
m_dotsProg->setUniformValue("uMinV", float(m_min));
m_dotsProg->setUniformValue("uMaxV", float(m_max));
glBindVertexArray(m_dotsVao);
glDrawArraysInstanced(GL_TRIANGLES, 0, 6, m_instanceCount);
glBindVertexArray(0);
m_dotsProg->release();
```
> `uBaseY` 加 `0.001f` 是为了避免 dots 和 panel 顶面完全重合产生 z-fighting闪烁
---
## 常见“看不到点”的原因(排查清单)
1. **vertex shader 没写 `gl_Position`**(会直接编译失败/链接失败)
2. **shader 文件没读到**Qt Resource 一定要用 `:/shaders/xxx.vert` 这种路径)
3. **`m_instanceCount == 0`** 或 `dotCount()==0`rows/cols 没设置)
4. **忘了 `glVertexAttribDivisor(2/3, 1)`**instance 数据会“按顶点乱跳”)
5. **uniform 类型不匹配**(例如 shader 里是 `float`C++ 却用 `int` 设置)
6. **相机没对准**`uMVP` 不正确/相机离得太近或太远)
---
## 想继续改进?
- 想让 dot 大小随 value 变化:在 `dots.vert` 里用 `iValue``uDotRadius`(比如乘一个比例)
- 想要更柔和的圆边:用 `smoothstep` 做 alpha 边缘 + 开启 blending
- 想要真正的 3D 圆柱/球:就不能靠 discard 了,需要真正的几何或法线光照

BIN
images/metal.jpeg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

74
main.cpp Normal file
View File

@@ -0,0 +1,74 @@
#include <QApplication>
#include <QPushButton>
#include <QMainWindow>
#include <QSplitter>
#include <QQuickWidget>
#include <QQmlContext>
#include <QQuickWindow>
#include <QSGRendererInterface>
#include <QTimer>
#include <QRandomGenerator>
#include "backend.h"
#include "backend.h"
#include "glwidget.h"
int main(int argc, char *argv[]) {
QQuickWindow::setGraphicsApi(QSGRendererInterface::OpenGL);
// 统一OpenGL格式
QSurfaceFormat fmt;
fmt.setVersion(3, 3);
fmt.setProfile(QSurfaceFormat::CoreProfile);
fmt.setDepthBufferSize(24);
fmt.setStencilBufferSize(8);
fmt.setSamples(4);
fmt.setSwapInterval(1);
QSurfaceFormat::setDefaultFormat(fmt);
QApplication a(argc, argv);
auto *win = new QMainWindow;
auto *splitter = new QSplitter;
splitter->setOrientation(Qt::Horizontal);
auto *quick = new QQuickWidget;
quick->setResizeMode(QQuickWidget::SizeRootObjectToView);
Backend backend;
quick->rootContext()->setContextProperty("backend", &backend);
quick->setSource(QUrl("qrc:/qml/Main.qml"));
auto *glw = new GLWidget;
glw->setSpec(8, 11, 0.1f, 0.03f);
glw->setPanelThickness(0.08f);
glw->setRange(backend.minValue(), backend.maxValue());
glw->setRenderModeString(backend.renderMode());
glw->setLabelModeString(backend.labelMode());
QObject::connect(&backend, &Backend::rangeChanged, glw, &GLWidget::setRange);
QObject::connect(&backend, &Backend::renderModeValueChanged, glw, &GLWidget::setRenderModeString);
QObject::connect(&backend, &Backend::labelModeValueChanged, glw, &GLWidget::setLabelModeString);
auto *t = new QTimer(win);
t->setTimerType(Qt::PreciseTimer);
t->setInterval(10);
QObject::connect(t, &QTimer::timeout, glw, [glw] {
const int n = glw->dotCount();
QVector<float> v;
v.resize(n);
for (int i = 0; i < n; ++i) {
// TODO: value
v[i] = 100.0f + float(QRandomGenerator::global()->generateDouble()) * (2000.0f - 100.0f);
}
glw->submitValues(v);
});
splitter->addWidget(quick);
splitter->addWidget(glw);
splitter->setStretchFactor(0, 0);
splitter->setStretchFactor(1, 1);
win->setCentralWidget(splitter);
win->resize(1100, 650);
win->show();
t->start();
return QApplication::exec();
}

6
qml/Main.qml Normal file
View File

@@ -0,0 +1,6 @@
import QtQuick
import "content"
App {
}

18
qml/content/App.qml Normal file
View File

@@ -0,0 +1,18 @@
import QtQuick
import QtQuick.Window
import QtQuick.Controls.Material
import "./"
Rectangle {
// width: Constants.width
// height: Constants.height
width: 360
// minimumWidth: 800
// minimumHeight: 600
visible: true
ControlPanel {
anchors.fill: parent
}
}

View File

@@ -0,0 +1,131 @@
import QtQuick
import QtQuick3D
import QtQuick.Controls.Material
import QtQuick.Controls
import QtQuick.Layouts
import QtQml
import "."
Pane {
id: root
Material.theme: darkModeToggle.checked ? Material.Dark : Material.Light
Material.accent: Material.Green
leftPadding: 18
rightPadding: 18
topPadding: 18
bottomPadding: 18
ColumnLayout {
anchors.fill: parent
spacing: 14
Toggle {
id: darkModeToggle
text: qsTr("Dark mode")
}
GroupBox {
title: qsTr("Render")
Layout.fillWidth: true
ColumnLayout {
anchors.fill: parent
spacing: 10
RowLayout {
Layout.fillWidth: true
Label { text: qsTr("Mode"); Layout.alignment: Qt.AlignVCenter }
ComboBox {
id: renderModeBox
Layout.fillWidth: true
model: ["dataViz", "realistic"]
Component.onCompleted: currentIndex = backend.renderMode === "realistic" ? 1 : 0
onActivated: backend.renderMode = currentText
Connections {
target: backend
function onRenderModeChanged() {
renderModeBox.currentIndex = backend.renderMode === "realistic" ? 1 : 0
}
}
}
}
RowLayout {
Layout.fillWidth: true
Label { text: qsTr("Labels"); Layout.alignment: Qt.AlignVCenter }
ComboBox {
id: labelModeBox
Layout.fillWidth: true
model: ["off", "hover", "always"]
Component.onCompleted: {
if (backend.labelMode === "always") labelModeBox.currentIndex = 2
else if (backend.labelMode === "hover") labelModeBox.currentIndex = 1
else labelModeBox.currentIndex = 0
}
onActivated: backend.labelMode = currentText
Connections {
target: backend
function onLabelModeChanged() {
if (backend.labelMode === "always") labelModeBox.currentIndex = 2
else if (backend.labelMode === "hover") labelModeBox.currentIndex = 1
else labelModeBox.currentIndex = 0
}
}
}
}
Toggle {
id: legendToggle
text: qsTr("Legend")
checked: backend.showLegend
onCheckedChanged: backend.showLegend = checked
}
}
}
GroupBox {
title: qsTr("Scale")
Layout.fillWidth: true
ColumnLayout {
anchors.fill: parent
spacing: 10
RowLayout {
Layout.fillWidth: true
Label { text: qsTr("Min"); Layout.alignment: Qt.AlignVCenter }
SpinBox {
id: minBox
Layout.fillWidth: true
from: -999999
to: 999999
value: backend.minValue
onValueModified: backend.minValue = value
}
}
RowLayout {
Layout.fillWidth: true
Label { text: qsTr("Max"); Layout.alignment: Qt.AlignVCenter }
SpinBox {
id: maxBox
Layout.fillWidth: true
from: -999999
to: 999999
value: backend.maxValue
onValueModified: backend.maxValue = value
}
}
Legend {
Layout.alignment: Qt.AlignHCenter
visible: backend.showLegend
minValue: backend.minValue
maxValue: backend.maxValue
}
}
}
Item { Layout.fillHeight: true }
}
}

View File

@@ -0,0 +1,20 @@
import QtQuick
import QtQuick.Controls
Slider {
property string lableText: qsTr("Text")
stepSize: 1
Label {
text: parent.lableText
anchors.left: parent.left
anchors.bottom: parent.top
bottomPadding: -12
}
Label {
text: parent.value
anchors.right: parent.right
anchors.bottom: parent.top
bottomPadding: -12
}
}

49
qml/content/Legend.qml Normal file
View File

@@ -0,0 +1,49 @@
import QtQuick
import QtQuick.Controls
import QtQuick.Layouts
Item {
id: root
property int minValue: 0
property int maxValue: 100
implicitWidth: 90
implicitHeight: 220
ColumnLayout {
anchors.fill: parent
spacing: 6
Label {
text: root.maxValue
font.pixelSize: 12
opacity: 0.9
Layout.alignment: Qt.AlignHCenter
}
Rectangle {
Layout.alignment: Qt.AlignHCenter
Layout.fillHeight: true
width: 26
radius: 6
border.width: 1
border.color: Qt.rgba(1, 1, 1, 0.18)
gradient: Gradient {
// must match shaders/dots.frag:dataColorRamp (high at top)
GradientStop { position: 0.00; color: Qt.rgba(1.00, 0.22, 0.10, 1.0) } // c3
GradientStop { position: 0.34; color: Qt.rgba(1.00, 0.92, 0.22, 1.0) } // c2
GradientStop { position: 0.67; color: Qt.rgba(0.10, 0.95, 0.35, 1.0) } // c1
GradientStop { position: 1.00; color: Qt.rgba(0.10, 0.75, 1.00, 1.0) } // c0
}
}
Label {
text: root.minValue
font.pixelSize: 12
opacity: 0.9
Layout.alignment: Qt.AlignHCenter
}
}
}

18
qml/content/Toggle.qml Normal file
View File

@@ -0,0 +1,18 @@
import QtQuick
import QtQuick.Controls
Item {
property string text
property alias checked: toggleIndicator.checked
Label {
id: toggleText
text: parent.text
anchors.verticalCenter: toggleIndicator.verticalCenter
}
Switch {
id: toggleIndicator
anchors.left: toggleText.right
anchors.leftMargin: 8
}
}

17
resources.qrc Normal file
View File

@@ -0,0 +1,17 @@
<RCC>
<qresource prefix="/">
<file>qml/Main.qml</file>
<file>qml/content/App.qml</file>
<file>qml/content/ControlPanel.qml</file>
<file>qml/content/Legend.qml</file>
<file>qml/content/LabeledSlider.qml</file>
<file>qml/content/Toggle.qml</file>
<file>shaders/dots.frag</file>
<file>shaders/dots.vert</file>
<file>shaders/bg.frag</file>
<file>shaders/bg.vert</file>
<file>shaders/panel.frag</file>
<file>shaders/panel.vert</file>
<file>images/metal.jpeg</file>
</qresource>
</RCC>

48
shaders/bg.frag Normal file
View File

@@ -0,0 +1,48 @@
#version 330 core
out vec4 FragColor;
// 视口大小(像素,建议传入 framebuffer 尺寸HiDPI 下要乘 devicePixelRatio
uniform vec2 uViewport;
// 以像素为单位的网格间距:细网格/粗网格
uniform float uMinorStep;
uniform float uMajorStep;
// 生成抗锯齿网格线(返回 0..11 表示在线上)
float gridLine(float stepPx) {
vec2 coord = gl_FragCoord.xy;
vec2 q = coord / stepPx;
// 距离最近网格线的归一化距离,再用 fwidth 做抗锯齿
vec2 g = abs(fract(q - 0.5) - 0.5) / fwidth(q);
float line = 1.0 - min(min(g.x, g.y), 1.0);
return line;
}
void main() {
vec2 viewport = max(uViewport, vec2(1.0));
vec2 uv = gl_FragCoord.xy / viewport; // 0..1
// 背景渐变:上更亮、下稍灰,常见 3D 软件的“科技感”底色
vec3 topCol = vec3(0.99, 0.99, 1.00);
vec3 botCol = vec3(0.94, 0.95, 0.98);
vec3 col = mix(botCol, topCol, uv.y);
// 网格线:细线 + 粗线(每隔一段更深一点)
float minor = gridLine(max(uMinorStep, 1.0));
float major = gridLine(max(uMajorStep, 1.0));
vec3 minorCol = vec3(0.80, 0.82, 0.87);
vec3 majorCol = vec3(0.70, 0.73, 0.80);
col = mix(col, minorCol, minor * 0.22);
col = mix(col, majorCol, major * 0.35);
// 轻微 vignette四角略暗让画面更“聚焦”
vec2 p = uv * 2.0 - 1.0;
float v = clamp(1.0 - dot(p, p) * 0.12, 0.0, 1.0);
col *= mix(1.0, v, 0.35);
FragColor = vec4(col, 1.0);
}

8
shaders/bg.vert Normal file
View File

@@ -0,0 +1,8 @@
#version 330 core
// 全屏背景:直接在裁剪空间画一个矩形(不受相机/旋转影响)
layout(location = 0) in vec2 aPos; // NDC: [-1,1]
void main() {
gl_Position = vec4(aPos, 0.0, 1.0);
}

153
shaders/dots.frag Normal file
View File

@@ -0,0 +1,153 @@
#version 330 core
in vec2 vUV;
in float vValue;
in vec3 vWorldPos;
out vec4 FragColor;
uniform float uMinV;
uniform float uMaxV;
uniform sampler2D uDotTex;
uniform int uHasData; // 0 = no data, 1 = has data
uniform vec3 uCameraPos;
uniform float uDotRadius;
uniform int uRenderMode; // 0=realistic, 1=dataViz
const float PI = 3.14159265359;
float saturate(float x) { return clamp(x, 0.0, 1.0); }
vec3 dataColorRamp(float t) {
t = saturate(t);
vec3 c0 = vec3(0.10, 0.75, 1.00); // cyan-blue (low)
vec3 c1 = vec3(0.10, 0.95, 0.35); // green
vec3 c2 = vec3(1.00, 0.92, 0.22); // yellow
vec3 c3 = vec3(1.00, 0.22, 0.10); // red (high)
if (t < 0.33) return mix(c0, c1, t / 0.33);
if (t < 0.66) return mix(c1, c2, (t - 0.33) / 0.33);
return mix(c2, c3, (t - 0.66) / 0.34);
}
vec3 fresnelSchlick(float cosTheta, vec3 F0) {
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
}
float D_GGX(float NdotH, float roughness) {
float a = max(0.04, roughness);
float alpha = a * a;
float alpha2 = alpha * alpha;
float denom = (NdotH * NdotH) * (alpha2 - 1.0) + 1.0;
return alpha2 / (PI * denom * denom + 1e-7);
}
float G_SchlickGGX(float NdotV, float roughness) {
float r = roughness + 1.0;
float k = (r * r) / 8.0;
return NdotV / (NdotV * (1.0 - k) + k + 1e-7);
}
float G_Smith(float NdotV, float NdotL, float roughness) {
float ggx1 = G_SchlickGGX(NdotV, roughness);
float ggx2 = G_SchlickGGX(NdotL, roughness);
return ggx1 * ggx2;
}
float D_GGX_Aniso(vec3 N, vec3 H, vec3 T, vec3 B, float ax, float ay) {
float NdotH = saturate(dot(N, H));
float TdotH = dot(T, H);
float BdotH = dot(B, H);
float ax2 = ax * ax;
float ay2 = ay * ay;
float denom = (TdotH * TdotH) / (ax2 + 1e-7) + (BdotH * BdotH) / (ay2 + 1e-7) + NdotH * NdotH;
return 1.0 / (PI * ax * ay * denom * denom + 1e-7);
}
vec3 evalLight(
vec3 N,
vec3 V,
vec3 L,
vec3 lightColor,
vec3 baseColor,
float metallic,
float roughness,
float aniso,
vec3 brushDir
) {
float NdotL = saturate(dot(N, L));
float NdotV = saturate(dot(N, V));
if (NdotL <= 0.0 || NdotV <= 0.0) return vec3(0.0);
vec3 H = normalize(V + L);
float NdotH = saturate(dot(N, H));
float VdotH = saturate(dot(V, H));
vec3 F0 = mix(vec3(0.04), baseColor, metallic);
vec3 F = fresnelSchlick(VdotH, F0);
float D = D_GGX(NdotH, roughness);
if (aniso > 0.001) {
vec3 T = normalize(brushDir - N * dot(brushDir, N));
vec3 B = normalize(cross(N, T));
float alpha = max(0.04, roughness);
float a = alpha * alpha;
float ax = mix(a, a * 0.30, aniso);
float ay = mix(a, a * 2.00, aniso);
D = D_GGX_Aniso(N, H, T, B, ax, ay);
}
float G = G_Smith(NdotV, NdotL, roughness);
vec3 spec = (D * G * F) / max(4.0 * NdotV * NdotL, 1e-6);
vec3 kD = (vec3(1.0) - F) * (1.0 - metallic);
vec3 diff = kD * baseColor / PI;
return (diff + spec) * lightColor * NdotL;
}
void main() {
vec2 p = vUV * 2.0 - 1.0;
float r = length(p);
if (r > 1.0) discard;
float r01 = saturate(r);
// Industrial engineering model: simple plated metal pad (brass/gold-ish).
// When no data, keep a bright gold base. When data is present, render the
// data color directly (no remaining gold tint), while preserving depth cues.
vec3 metalBase = vec3(0.98, 0.82, 0.30);
float value01 = clamp((vValue - uMinV) / max(1e-6, (uMaxV - uMinV)), 0.0, 1.0);
vec3 dataCol = dataColorRamp(value01);
bool hasData = (uHasData != 0);
vec3 baseColor = hasData ? dataCol : metalBase;
// Mostly flat, with a slight bevel near the edge to catch highlights.
float slope = mix(0.06, 0.28, smoothstep(0.55, 1.0, r01));
vec3 N = normalize(vec3(p.x * slope, 1.0, p.y * slope));
vec3 V = normalize(uCameraPos - vWorldPos);
float metallic = hasData ? 0.0 : 0.90;
float roughness = hasData ? 0.78 : ((uRenderMode == 1) ? 0.70 : 0.55);
vec3 keyL = normalize(vec3(0.55, 1.00, 0.25));
vec3 fillL = normalize(vec3(-0.30, 0.70, -0.80));
vec3 keyC = vec3(1.00, 0.98, 0.95) * 1.8;
vec3 fillC = vec3(0.85, 0.90, 1.00) * 0.9;
vec3 Lo = vec3(0.0);
Lo += evalLight(N, V, keyL, keyC, baseColor, metallic, roughness, 0.0, vec3(1.0, 0.0, 0.0));
Lo += evalLight(N, V, fillL, fillC, baseColor, metallic, roughness, 0.0, vec3(1.0, 0.0, 0.0));
vec3 F0 = mix(vec3(0.04), baseColor, metallic);
vec3 ambient = baseColor * 0.10 + F0 * 0.04;
float edgeAO = smoothstep(0.88, 1.0, r01);
float ao = 1.0 - edgeAO * 0.10;
// Subtle boundary ring (engineering-model crispness, not a UI outline).
float ring = smoothstep(0.82, 0.92, r01) - smoothstep(0.92, 1.00, r01);
vec3 col = (ambient + Lo) * ao;
col = mix(col, col * 0.82, ring * 0.35);
FragColor = vec4(clamp(col, 0.0, 1.0), 1.0);
}

31
shaders/dots.vert Normal file
View File

@@ -0,0 +1,31 @@
#version 330 core
layout(location = 0) in vec2 qQuadPos; // 单位 quad 的局部顶点坐标(范围 [-1,1]
layout(location = 1) in vec2 aUV; // UV用于 fragment shader 把 quad 变成圆形)
layout(location = 2) in vec2 iOffsetXZ; // 每个点的偏移(世界坐标 XZ
layout(location = 3) in float iValue; // 每个点的数值(用于颜色映射)
out vec2 vUV;
out float vValue;
out vec3 vWorldPos;
uniform mat4 uMVP; // Projection * View * Model这里 Model 约等于单位矩阵)
uniform float uDotRadius; // dot 半径(世界坐标单位)
uniform float uBaseY; // dot 的高度(通常 = panel 顶面 y + 一点点偏移)
void main() {
vUV = aUV;
vValue = iValue;
// 先确定 dot 的中心点(世界坐标)
vec3 world = vec3(iOffsetXZ.x, uBaseY, iOffsetXZ.y);
// 再把单位 quad 按半径缩放并加到中心点上(让 quad 落在 XZ 平面)
world.x += qQuadPos.x * uDotRadius;
world.z += qQuadPos.y * uDotRadius;
// 输出裁剪空间坐标(最终会进行透视除法与视口映射,变成屏幕上的像素)
vWorldPos = world;
gl_Position = uMVP * vec4(world, 1.0);
}

183
shaders/panel.frag Normal file
View File

@@ -0,0 +1,183 @@
#version 330 core
in vec3 vWorldPos;
in vec3 vWorldNormal;
out vec4 FragColor;
uniform vec3 uCameraPos;
uniform float uPanelW;
uniform float uPanelH;
uniform float uPanelD;
uniform int uRows;
uniform int uCols;
uniform float uPitch;
uniform float uDotRadius;
uniform int uRenderMode; // 0=realistic, 1=dataViz
const float PI = 3.14159265359;
float saturate(float x) { return clamp(x, 0.0, 1.0); }
float hash12(vec2 p) {
vec3 p3 = fract(vec3(p.xyx) * 0.1031);
p3 += dot(p3, p3.yzx + 33.33);
return fract((p3.x + p3.y) * p3.z);
}
float noise2d(vec2 p) {
vec2 i = floor(p);
vec2 f = fract(p);
float a = hash12(i);
float b = hash12(i + vec2(1.0, 0.0));
float c = hash12(i + vec2(0.0, 1.0));
float d = hash12(i + vec2(1.0, 1.0));
vec2 u = f * f * (3.0 - 2.0 * f);
return mix(a, b, u.x) + (c - a) * u.y * (1.0 - u.x) + (d - b) * u.x * u.y;
}
float fbm(vec2 p) {
float v = 0.0;
float a = 0.5;
for (int i = 0; i < 4; ++i) {
v += a * noise2d(p);
p *= 2.0;
a *= 0.5;
}
return v;
}
vec3 fresnelSchlick(float cosTheta, vec3 F0) {
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
}
float D_GGX(float NdotH, float roughness) {
float a = max(0.04, roughness);
float alpha = a * a;
float alpha2 = alpha * alpha;
float denom = (NdotH * NdotH) * (alpha2 - 1.0) + 1.0;
return alpha2 / (PI * denom * denom + 1e-7);
}
float G_SchlickGGX(float NdotV, float roughness) {
float r = roughness + 1.0;
float k = (r * r) / 8.0;
return NdotV / (NdotV * (1.0 - k) + k + 1e-7);
}
float G_Smith(float NdotV, float NdotL, float roughness) {
float ggx1 = G_SchlickGGX(NdotV, roughness);
float ggx2 = G_SchlickGGX(NdotL, roughness);
return ggx1 * ggx2;
}
float D_GGX_Aniso(vec3 N, vec3 H, vec3 T, vec3 B, float ax, float ay) {
float NdotH = saturate(dot(N, H));
float TdotH = dot(T, H);
float BdotH = dot(B, H);
float ax2 = ax * ax;
float ay2 = ay * ay;
float denom = (TdotH * TdotH) / (ax2 + 1e-7) + (BdotH * BdotH) / (ay2 + 1e-7) + NdotH * NdotH;
return 1.0 / (PI * ax * ay * denom * denom + 1e-7);
}
vec3 evalLight(
vec3 N,
vec3 V,
vec3 L,
vec3 lightColor,
vec3 baseColor,
float metallic,
float roughness,
float aniso,
vec3 brushDir
) {
float NdotL = saturate(dot(N, L));
float NdotV = saturate(dot(N, V));
if (NdotL <= 0.0 || NdotV <= 0.0) return vec3(0.0);
vec3 H = normalize(V + L);
float NdotH = saturate(dot(N, H));
float VdotH = saturate(dot(V, H));
vec3 F0 = mix(vec3(0.04), baseColor, metallic);
vec3 F = fresnelSchlick(VdotH, F0);
float D = D_GGX(NdotH, roughness);
if (aniso > 0.001) {
vec3 T = normalize(brushDir - N * dot(brushDir, N));
vec3 B = normalize(cross(N, T));
float alpha = max(0.04, roughness);
float a = alpha * alpha;
float ax = mix(a, a * 0.35, aniso);
float ay = mix(a, a * 1.80, aniso);
D = D_GGX_Aniso(N, H, T, B, ax, ay);
}
float G = G_Smith(NdotV, NdotL, roughness);
vec3 spec = (D * G * F) / max(4.0 * NdotV * NdotL, 1e-6);
vec3 kD = (vec3(1.0) - F) * (1.0 - metallic);
vec3 diff = kD * baseColor / PI;
return (diff + spec) * lightColor * NdotL;
}
float nearestDotDistanceXZ(vec2 xz) {
if (uPitch <= 0.0 || uRows <= 0 || uCols <= 0) return 1e6;
int colsM1 = max(uCols - 1, 0);
int rowsM1 = max(uRows - 1, 0);
float halfGridW = float(colsM1) * uPitch * 0.5;
float halfGridD = float(rowsM1) * uPitch * 0.5;
vec2 g = (xz + vec2(halfGridW, halfGridD)) / max(1e-6, uPitch);
vec2 gi = floor(g + 0.5);
gi = clamp(gi, vec2(0.0), vec2(float(colsM1), float(rowsM1)));
vec2 c = gi * uPitch - vec2(halfGridW, halfGridD);
return length(xz - c);
}
void main() {
// panel 先用一个固定颜色(后续可以加光照/材质)
vec3 N = normalize(vWorldNormal);
vec3 V = normalize(uCameraPos - vWorldPos);
float isTop = step(0.75, N.y);
// ------------------------------------------------------------
// Industrial engineering model: neutral matte gray panel (support layer only)
// ------------------------------------------------------------
vec3 topBase = vec3(0.30, 0.31, 0.32);
vec3 sideBase = vec3(0.27, 0.28, 0.29);
vec3 baseColor = mix(sideBase, topBase, isTop);
vec2 xz = vWorldPos.xz;
float dotContact = 0.0;
if (isTop > 0.5 && uDotRadius > 0.0) {
float d = nearestDotDistanceXZ(xz);
float w = max(0.002, uDotRadius * 0.22);
dotContact = 1.0 - smoothstep(uDotRadius, uDotRadius + w, d);
}
vec3 L = normalize(vec3(0.45, 1.00, 0.20));
float diff = saturate(dot(N, L));
float lighting = 0.90 + 0.10 * diff;
float hw = max(1e-6, uPanelW * 0.5);
float hd = max(1e-6, uPanelD * 0.5);
float edgeDist = min(hw - abs(vWorldPos.x), hd - abs(vWorldPos.z));
float edgeW = max(0.002, min(hw, hd) * 0.012);
float edgeLine = (1.0 - smoothstep(edgeW, edgeW * 2.5, edgeDist)) * isTop;
float rim = pow(1.0 - saturate(dot(N, V)), 2.2) * isTop;
float ao = 1.0 - dotContact * 0.08;
vec3 col = baseColor * lighting * ao;
col += edgeLine * vec3(0.020);
col += rim * vec3(0.015);
// Slightly deepen the bottom face to read as thickness, but keep it subtle.
float isBottom = step(0.75, -N.y);
col *= mix(1.0, 0.92, isBottom);
FragColor = vec4(clamp(col, 0.0, 1.0), 1.0);
}

18
shaders/panel.vert Normal file
View File

@@ -0,0 +1,18 @@
#version 330 core
// 顶点输入(来自 VBO
layout(location=0) in vec3 aPos; // 顶点位置(当前我们直接当作“世界坐标”来用)
layout(location=1) in vec3 aN; // 法线(当前没用到,先保留)
// uMVP = Projection * View * Model
// 把顶点从“世界坐标”变换到“裁剪空间clip spaceOpenGL 用 gl_Position 来完成屏幕投影
out vec3 vWorldPos;
out vec3 vWorldNormal;
uniform mat4 uMVP;
void main() {
// Model is identity in this project; treat vertex data as world space.
vWorldPos = aPos;
vWorldNormal = aN;
gl_Position = uMVP * vec4(aPos, 1.0);
}

64
src/backend.cpp Normal file
View File

@@ -0,0 +1,64 @@
//
// Created by Lenn on 2025/12/16.
//
#include "backend.h"
static QString normalizeRenderMode_(const QString& mode) {
if (mode.compare(QStringLiteral("realistic"), Qt::CaseInsensitive) == 0)
return QStringLiteral("realistic");
return QStringLiteral("dataViz");
}
static QString normalizeLabelMode_(const QString& mode) {
if (mode.compare(QStringLiteral("hover"), Qt::CaseInsensitive) == 0)
return QStringLiteral("hover");
if (mode.compare(QStringLiteral("always"), Qt::CaseInsensitive) == 0)
return QStringLiteral("always");
return QStringLiteral("off");
}
Backend::Backend(QObject *parent)
: QObject(parent) {
}
void Backend::setMinValue(int v) {
if (m_min == v)
return;
m_min = v;
emit minValueChanged();
emit rangeChanged(m_min, m_max);
}
void Backend::setMaxValue(int v) {
if (m_max == v)
return;
m_max = v;
emit maxValueChanged();
emit rangeChanged(m_min, m_max);
}
void Backend::setRenderMode(const QString &mode) {
const QString norm = normalizeRenderMode_(mode);
if (m_renderMode == norm)
return;
m_renderMode = norm;
emit renderModeChanged();
emit renderModeValueChanged(m_renderMode);
}
void Backend::setShowLegend(bool show) {
if (m_showLegend == show)
return;
m_showLegend = show;
emit showLegendChanged();
}
void Backend::setLabelMode(const QString &mode) {
const QString norm = normalizeLabelMode_(mode);
if (m_labelMode == norm)
return;
m_labelMode = norm;
emit labelModeChanged();
emit labelModeValueChanged(m_labelMode);
}

54
src/backend.h Normal file
View File

@@ -0,0 +1,54 @@
//
// Created by Lenn on 2025/12/16.
//
#ifndef TACTILEIPC3D_BACKEND_H
#define TACTILEIPC3D_BACKEND_H
#include <qobject.h>
#include <QString>
class Backend : public QObject {
Q_OBJECT
Q_PROPERTY(int minValue READ minValue WRITE setMinValue NOTIFY minValueChanged)
Q_PROPERTY(int maxValue READ maxValue WRITE setMaxValue NOTIFY maxValueChanged)
Q_PROPERTY(QString renderMode READ renderMode WRITE setRenderMode NOTIFY renderModeChanged)
Q_PROPERTY(bool showLegend READ showLegend WRITE setShowLegend NOTIFY showLegendChanged)
Q_PROPERTY(QString labelMode READ labelMode WRITE setLabelMode NOTIFY labelModeChanged)
public:
explicit Backend(QObject* parent = nullptr);
int minValue() const { return m_min; }
int maxValue() const { return m_max; }
QString renderMode() const { return m_renderMode; }
bool showLegend() const { return m_showLegend; }
QString labelMode() const { return m_labelMode; }
public slots:
void setMinValue(int v);
void setMaxValue(int v);
void setRenderMode(const QString& mode);
void setShowLegend(bool show);
void setLabelMode(const QString& mode);
signals:
void minValueChanged();
void maxValueChanged();
void renderModeChanged();
void showLegendChanged();
void labelModeChanged();
void rangeChanged(int minV, int maxV);
void renderModeValueChanged(const QString& mode);
void labelModeValueChanged(const QString& mode);
private:
int m_min = 100;
int m_max = 2000;
QString m_renderMode = QStringLiteral("dataViz");
bool m_showLegend = true;
QString m_labelMode = QStringLiteral("off");
};
#endif //TACTILEIPC3D_BACKEND_H

851
src/glwidget.cpp Normal file
View File

@@ -0,0 +1,851 @@
//
// Created by Lenn on 2025/12/16.
//
#include "glwidget.h"
#include <QOpenGLShaderProgram>
#include <QByteArray>
#include <QtMath>
#include <QFile>
#include <QDebug>
#include <qevent.h>
#include <QVector3D>
#include <QVector2D>
#include <QVector4D>
#include <QImage>
#include <QPainter>
#include <QFontMetrics>
#include <limits>
// 读取文本文件内容(这里主要用来从 Qt Resource `:/shaders/...` 读取 shader 源码)
static QByteArray readFile(const QString& path) {
QFile f(path);
if (!f.open(QIODevice::ReadOnly)) return {};
return f.readAll();
}
// 简单的 4x4 单位矩阵(目前只用于保留的 float[16] 版本)
static void matIdentity(float m[16]) {
for (int i = 0; i < 16; i++) {
m[i] = 0;
}
m[0] = m[5] = m[10] = m[15] = 1;
}
GLWidget::GLWidget(QWidget *parent)
: QOpenGLWidget(parent) {
setMinimumSize(640, 480);
}
GLWidget::~GLWidget() {
makeCurrent();
delete m_bgProg;
delete m_panelProg;
delete m_dotsProg;
if (m_panelIbo)
glDeleteBuffers(1, &m_panelIbo);
if (m_panelVbo)
glDeleteBuffers(1, &m_panelVbo);
if (m_panelVao)
glDeleteVertexArrays(1, &m_panelVao);
if (m_dotsVao)
glDeleteVertexArrays(1, &m_dotsVao);
if (m_dotsVbo)
glDeleteBuffers(1, &m_dotsVbo);
if (m_instanceVbo)
glDeleteBuffers(1, &m_instanceVbo);
if (m_bgVbo)
glDeleteBuffers(1, &m_bgVbo);
if (m_bgVao)
glDeleteVertexArrays(1, &m_bgVao);
if (m_dotTex)
glDeleteTextures(1, &m_dotTex);
doneCurrent();
}
void GLWidget::setPanelSize(float w, float h, float d) {
m_panelW = w;
m_panelH = h;
m_panelD = d;
m_panelGeometryDirty = true;
update();
}
void GLWidget::setPanelThickness(float h) {
if (qFuzzyCompare(m_panelH, h))
return;
m_panelH = h;
m_panelGeometryDirty = true;
update();
}
void GLWidget::setSpec(int rows, int cols, float pitch, float dotRaius) {
m_rows = qMax(0, rows);
m_cols = qMax(0, cols);
m_pitch = qMax(0.0f, pitch);
m_dotRadius = qMax(0.0f, dotRaius);
// 自动根据点阵尺寸调整 panel 的尺寸(保证圆点不会越过顶面边界)。
// 约定:点中心覆盖的范围是 (cols-1)*pitch / (rows-1)*pitch面板需要额外留出 dotRadius 的边缘空间。
const float gridW = float(qMax(0, m_cols - 1)) * m_pitch;
const float gridD = float(qMax(0, m_rows - 1)) * m_pitch;
m_panelW = gridW + 2.0f * m_dotRadius;
m_panelD = gridD + 2.0f * m_dotRadius;
m_panelGeometryDirty = true;
m_dotsGeometryDirty = true;
QMutexLocker lk(&m_dataMutex);
m_latestValues.resize(dotCount());
for (int i = 0; i < m_latestValues.size(); ++i) {
m_latestValues[i] = m_min;
}
m_valuesDirty = true;
m_hasData = false;
update();
}
void GLWidget::submitValues(const QVector<float> &values) {
if (values.size() != dotCount()) return;
{
QMutexLocker lk(&m_dataMutex);
m_latestValues = values;
m_valuesDirty = true;
m_hasData = true;
}
update();
}
void GLWidget::setRange(int minV, int maxV) {
m_min = minV;
m_max = maxV;
update();
}
void GLWidget::setYaw(float yawDeg) {
if (qFuzzyCompare(m_camYawDeg, yawDeg))
return;
m_camYawDeg = yawDeg;
emit yawChanged();
update();
}
void GLWidget::setRenderModeString(const QString &mode) {
RenderMode next = DataViz;
if (mode.compare(QStringLiteral("realistic"), Qt::CaseInsensitive) == 0) {
next = Realistic;
} else if (mode.compare(QStringLiteral("dataViz"), Qt::CaseInsensitive) == 0) {
next = DataViz;
}
if (m_renderMode == next)
return;
m_renderMode = next;
update();
}
void GLWidget::setLabelModeString(const QString &mode) {
LabelMode next = LabelsOff;
if (mode.compare(QStringLiteral("hover"), Qt::CaseInsensitive) == 0) {
next = LabelsHover;
} else if (mode.compare(QStringLiteral("always"), Qt::CaseInsensitive) == 0) {
next = LabelsAlways;
} else if (mode.compare(QStringLiteral("off"), Qt::CaseInsensitive) == 0) {
next = LabelsOff;
}
if (m_labelMode == next)
return;
m_labelMode = next;
if (m_labelMode == LabelsOff)
m_hoveredIndex = -1;
update();
}
void GLWidget::initializeGL() {
initializeOpenGLFunctions();
// 基础状态:开启深度测试,否则 3D 物体的遮挡关系会不正确
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
initPrograms_();
initDotTexture_();
initBackgroundGeometry_();
initPanelGeometry_();
initDotGeometry_();
m_panelGeometryDirty = false;
m_dotsGeometryDirty = false;
matIdentity(m_modelPanel);
matIdentity(m_view);
matIdentity(m_proj);
}
void GLWidget::resizeGL(int w, int h) {
glViewport(0, 0, w, h);
}
void GLWidget::paintGL() {
glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// 如果点阵规格/面板尺寸发生变化,需要在有 GL 上下文时重建几何体 buffer。
if (m_panelGeometryDirty) {
initPanelGeometry_();
m_panelGeometryDirty = false;
}
if (m_dotsGeometryDirty) {
initDotGeometry_();
m_dotsGeometryDirty = false;
m_valuesDirty = true; // instanceVBO 重新分配后需要重新上传数据
}
// --- 背景:屏幕空间网格(不随相机旋转)---
if (m_bgProg && m_bgVao) {
const float dpr = devicePixelRatioF();
const QVector2D viewport(float(width()) * dpr, float(height()) * dpr);
glDisable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
m_bgProg->bind();
m_bgProg->setUniformValue("uViewport", viewport);
m_bgProg->setUniformValue("uMinorStep", 24.0f * dpr);
m_bgProg->setUniformValue("uMajorStep", 120.0f * dpr);
glBindVertexArray(m_bgVao);
glDrawArrays(GL_TRIANGLES, 0, 6);
glBindVertexArray(0);
m_bgProg->release();
glDepthMask(GL_TRUE);
glEnable(GL_DEPTH_TEST);
}
// 1) 更新相机/投影矩阵MVP决定如何把 3D 世界投影到屏幕
updateMatrices_();
// 2) 如果外部提交了新数据,就把 CPU 生成的 instance 数据更新到 GPU
updateInstanceBufferIfNeeded_();
if (m_panelProg) {
m_panelProg->bind();
// uniforms每次 draw 前设置的一组“常量参数”(对当前 draw call 的所有顶点/片元都一致)
// uMVP: Model-View-Projection 矩阵(把顶点从世界坐标 -> 裁剪空间gl_Position 必须输出裁剪空间坐标)
m_panelProg->setUniformValue("uMVP", m_mvp);
m_panelProg->setUniformValue("uCameraPos", m_cameraPos);
m_panelProg->setUniformValue("uPanelW", m_panelW);
m_panelProg->setUniformValue("uPanelH", m_panelH);
m_panelProg->setUniformValue("uPanelD", m_panelD);
m_panelProg->setUniformValue("uRows", m_rows);
m_panelProg->setUniformValue("uCols", m_cols);
m_panelProg->setUniformValue("uPitch", m_pitch);
m_panelProg->setUniformValue("uDotRadius", m_dotRadius);
m_panelProg->setUniformValue("uRenderMode", int(m_renderMode));
glBindVertexArray(m_panelVao);
glDrawElements(GL_TRIANGLES, m_panelIndexCount, GL_UNSIGNED_INT, nullptr);
glBindVertexArray(0);
m_panelProg->release();
}
if (m_dotsProg) {
m_dotsProg->bind();
// uniforms每次 draw 前设置的一组“常量参数”(对当前 draw call 的所有 instance 都一致)
// uMVP: 同上;用于把每个 dot 的世界坐标变换到屏幕
m_dotsProg->setUniformValue("uMVP", m_mvp);
m_dotsProg->setUniformValue("uRenderMode", int(m_renderMode));
// uDotRadius: dot 的半径(世界坐标单位)
m_dotsProg->setUniformValue("uDotRadius", m_dotRadius);
// uBaseY: dot 的高度(放在 panel 顶面上方一点点,避免 z-fighting/闪烁)
m_dotsProg->setUniformValue("uBaseY", (m_panelH * 0.5f) + 0.001f);
// uMinV/uMaxV: 传感值范围,用于 fragment shader 把 value 映射成颜色
m_dotsProg->setUniformValue("uMinV", float(m_min));
m_dotsProg->setUniformValue("uMaxV", float(m_max));
const int hasData = (m_hasData.load() || m_dotTex == 0) ? 1 : 0;
m_dotsProg->setUniformValue("uHasData", hasData);
m_dotsProg->setUniformValue("uCameraPos", m_cameraPos);
m_dotsProg->setUniformValue("uDotTex", 0);
if (m_dotTex) {
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, m_dotTex);
}
glBindVertexArray(m_dotsVao);
glDrawArraysInstanced(GL_TRIANGLES, 0, 6, m_instanceCount);
glBindVertexArray(0);
if (m_dotTex) {
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, 0);
}
m_dotsProg->release();
}
if (m_labelMode != LabelsOff && dotCount() > 0) {
QVector<float> valuesCopy;
{
QMutexLocker lk(&m_dataMutex);
valuesCopy = m_latestValues;
}
auto projectToScreen = [&](const QVector3D& world, QPointF& out) -> bool {
const QVector4D clip = m_mvp * QVector4D(world, 1.0f);
if (clip.w() <= 1e-6f)
return false;
const QVector3D ndc = clip.toVector3D() / clip.w();
if (ndc.z() < -1.2f || ndc.z() > 1.2f)
return false;
out.setX((ndc.x() * 0.5f + 0.5f) * float(width()));
out.setY((1.0f - (ndc.y() * 0.5f + 0.5f)) * float(height()));
return true;
};
const float baseY = (m_panelH * 0.5f) + 0.001f;
const float w = (m_cols - 1) * m_pitch;
const float h = (m_rows - 1) * m_pitch;
QPainter painter(this);
painter.setRenderHint(QPainter::Antialiasing, true);
painter.setRenderHint(QPainter::TextAntialiasing, true);
QFont font = painter.font();
font.setPixelSize(11);
painter.setFont(font);
const QFontMetrics fm(font);
auto drawLabel = [&](const QPointF& anchor, const QPointF& offset, const QString& text) {
QRectF box = fm.boundingRect(text);
box.adjust(-6.0, -3.0, 6.0, 3.0);
box.moveCenter(anchor + offset);
const float margin = 4.0f;
if (box.left() < margin) box.moveLeft(margin);
if (box.top() < margin) box.moveTop(margin);
if (box.right() > width() - margin) box.moveRight(width() - margin);
if (box.bottom() > height() - margin) box.moveBottom(height() - margin);
painter.setPen(Qt::NoPen);
painter.setBrush(QColor(0, 0, 0, 150));
painter.drawRoundedRect(box, 4.0, 4.0);
painter.setPen(QColor(255, 255, 255, 235));
painter.drawText(box, Qt::AlignCenter, text);
};
auto dotWorldCenter = [&](int i) -> QVector3D {
const int rr = (m_cols > 0) ? (i / m_cols) : 0;
const int cc = (m_cols > 0) ? (i % m_cols) : 0;
const float x = (cc * m_pitch) - w * 0.5f;
const float z = (rr * m_pitch) - h * 0.5f;
return QVector3D(x, baseY, z);
};
auto dotRadiusPx = [&](const QVector3D& worldCenter, const QPointF& centerPx) -> float {
QPointF edge;
if (!projectToScreen(worldCenter + QVector3D(m_dotRadius, 0.0f, 0.0f), edge))
return 0.0f;
const float dx = float(edge.x() - centerPx.x());
const float dy = float(edge.y() - centerPx.y());
return std::sqrt(dx * dx + dy * dy);
};
if (m_labelMode == LabelsAlways && valuesCopy.size() == dotCount()) {
painter.setPen(QColor(255, 255, 255, 220));
for (int i = 0; i < dotCount(); ++i) {
QPointF centerPx;
const QVector3D world = dotWorldCenter(i);
if (!projectToScreen(world, centerPx))
continue;
const float rPx = dotRadiusPx(world, centerPx);
if (rPx < 12.0f)
continue;
const QString text = QString::number(int(valuesCopy[i] + 0.5f));
drawLabel(centerPx, QPointF(0.0, 0.0), text);
}
}
if (m_hoveredIndex >= 0 && m_hoveredIndex < dotCount() && valuesCopy.size() == dotCount()) {
QPointF centerPx;
const QVector3D world = dotWorldCenter(m_hoveredIndex);
if (projectToScreen(world, centerPx)) {
const float rPx = dotRadiusPx(world, centerPx);
painter.setBrush(Qt::NoBrush);
painter.setPen(QPen(QColor(255, 255, 255, 210), 1.5));
painter.drawEllipse(centerPx, rPx * 1.08f, rPx * 1.08f);
if (m_labelMode == LabelsHover) {
const QString text = QString::number(int(valuesCopy[m_hoveredIndex] + 0.5f));
drawLabel(centerPx, QPointF(0.0, -rPx - 12.0f), text);
}
}
}
}
}
void GLWidget::mousePressEvent(QMouseEvent *event) {
m_lastPos = event->pos();
if (event->button() == Qt::RightButton) {
m_rightDown = true;
event->accept();
return;
}
QOpenGLWidget::mousePressEvent(event);
}
void GLWidget::mouseMoveEvent(QMouseEvent *event) {
const QPoint delta = event->pos() - m_lastPos;
m_lastPos = event->pos();
if (m_rightDown) {
m_camYawDeg += delta.x() * 0.3f;
m_camPitchDeg = qBound(-89.0f, m_camPitchDeg + delta.y() * 0.3f, 89.0f);
emit yawChanged();
update();
event->accept();
return;
}
if (m_labelMode != LabelsOff && dotCount() > 0) {
auto projectToScreen = [&](const QVector3D& world, QPointF& out) -> bool {
const QVector4D clip = m_mvp * QVector4D(world, 1.0f);
if (clip.w() <= 1e-6f)
return false;
const QVector3D ndc = clip.toVector3D() / clip.w();
if (ndc.z() < -1.2f || ndc.z() > 1.2f)
return false;
out.setX((ndc.x() * 0.5f + 0.5f) * float(width()));
out.setY((1.0f - (ndc.y() * 0.5f + 0.5f)) * float(height()));
return true;
};
const QPoint mousePos = event->pos();
const float baseY = (m_panelH * 0.5f) + 0.001f;
const float w = (m_cols - 1) * m_pitch;
const float h = (m_rows - 1) * m_pitch;
int best = -1;
float bestDist2 = std::numeric_limits<float>::infinity();
for (int i = 0; i < dotCount(); ++i) {
const int rr = (m_cols > 0) ? (i / m_cols) : 0;
const int cc = (m_cols > 0) ? (i % m_cols) : 0;
const float x = (cc * m_pitch) - w * 0.5f;
const float z = (rr * m_pitch) - h * 0.5f;
QPointF center;
const QVector3D worldCenter(x, baseY, z);
if (!projectToScreen(worldCenter, center))
continue;
QPointF edge;
if (!projectToScreen(worldCenter + QVector3D(m_dotRadius, 0.0f, 0.0f), edge))
continue;
const float radDx = float(edge.x() - center.x());
const float radDy = float(edge.y() - center.y());
const float radPx = std::sqrt(radDx * radDx + radDy * radDy);
const float threshold = radPx + 6.0f;
const float dx = float(mousePos.x()) - float(center.x());
const float dy = float(mousePos.y()) - float(center.y());
const float dist2 = dx * dx + dy * dy;
if (dist2 <= threshold * threshold && dist2 < bestDist2) {
best = i;
bestDist2 = dist2;
}
}
if (best != m_hoveredIndex) {
m_hoveredIndex = best;
update();
}
}
QOpenGLWidget::mouseMoveEvent(event);
}
void GLWidget::mouseReleaseEvent(QMouseEvent *event) {
if (event->button() == Qt::RightButton) {
m_rightDown = false;
event->accept();
return;
}
QOpenGLWidget::mouseReleaseEvent(event);
}
void GLWidget::wheelEvent(QWheelEvent *event) {
const float steps = event->angleDelta().y() / 120.0f;
const float factor = std::pow(0.9f, steps);
m_zoom_ = qBound(0.2f, m_zoom_ * factor, 45.0f);
update();
event->accept();
}
void GLWidget::initBackgroundGeometry_() {
if (m_bgVbo) {
glDeleteBuffers(1, &m_bgVbo);
m_bgVbo = 0;
}
if (m_bgVao) {
glDeleteVertexArrays(1, &m_bgVao);
m_bgVao = 0;
}
// 全屏 quad两个三角形坐标直接是裁剪空间 NDC [-1,1]
const float verts[] = {
-1.0f, -1.0f,
1.0f, -1.0f,
1.0f, 1.0f,
-1.0f, -1.0f,
1.0f, 1.0f,
-1.0f, 1.0f,
};
glGenVertexArrays(1, &m_bgVao);
glBindVertexArray(m_bgVao);
glGenBuffers(1, &m_bgVbo);
glBindBuffer(GL_ARRAY_BUFFER, m_bgVbo);
glBufferData(GL_ARRAY_BUFFER, sizeof(verts), verts, GL_STATIC_DRAW);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(float), (void*)0);
glBindVertexArray(0);
}
void GLWidget::initPanelGeometry_() {
// panel目前只画“顶面矩形”y 固定在 +panelH/2
if (m_panelIbo) {
glDeleteBuffers(1, &m_panelIbo);
m_panelIbo = 0;
}
if (m_panelVbo) {
glDeleteBuffers(1, &m_panelVbo);
m_panelVbo = 0;
}
if (m_panelVao) {
glDeleteVertexArrays(1, &m_panelVao);
m_panelVao = 0;
}
const float y = m_panelH * 0.5f;
const float hw = m_panelW * 0.5;
const float hd = m_panelD * 0.5f;
struct V {
float x, y, z;
float nx, ny, nz;
};
V verts[24] = {
// +Y 顶面 (normal 0, +1, 0)
{-hw, +y, -hd, 0, +1, 0}, // 0
{+hw, +y, -hd, 0, +1, 0}, // 1
{+hw, +y, +hd, 0, +1, 0}, // 2
{-hw, +y, +hd, 0, +1, 0}, // 3
// +Z 前面 (normal 0, 0, +1)
{-hw, +y, +hd, 0, 0, +1}, // 4
{+hw, +y, +hd, 0, 0, +1}, // 5
{+hw, -y, +hd, 0, 0, +1}, // 6
{-hw, -y, +hd, 0, 0, +1}, // 7
// -Y 底面 (normal 0, -1, 0)
{-hw, -y, +hd, 0, -1, 0}, // 8
{+hw, -y, +hd, 0, -1, 0}, // 9
{+hw, -y, -hd, 0, -1, 0}, // 10
{-hw, -y, -hd, 0, -1, 0}, // 11
// -Z 后面 (normal 0, 0, -1)
{+hw, +y, -hd, 0, 0, -1}, // 12
{-hw, +y, -hd, 0, 0, -1}, // 13
{-hw, -y, -hd, 0, 0, -1}, // 14
{+hw, -y, -hd, 0, 0, -1}, // 15
// -X 左面 (normal -1, 0, 0)
{-hw, +y, -hd, -1, 0, 0}, // 16
{-hw, +y, +hd, -1, 0, 0}, // 17
{-hw, -y, +hd, -1, 0, 0}, // 18
{-hw, -y, -hd, -1, 0, 0}, // 19
// +X 右面 (normal +1, 0, 0)
{+hw, +y, +hd, +1, 0, 0}, // 20
{+hw, +y, -hd, +1, 0, 0}, // 21
{+hw, -y, -hd, +1, 0, 0}, // 22
{+hw, -y, +hd, +1, 0, 0}, // 23
};
unsigned int idx[36] = {
0, 1, 2, 0, 2, 3, // top
4, 5, 6, 4, 6, 7, // front
8, 9, 10, 8, 10,11, // bottom
12,13,14, 12,14,15, // back
16,17,18, 16,18,19, // left
20,21,22, 20,22,23 // right
};
m_panelIndexCount = 36;
glGenVertexArrays(1, &m_panelVao);
glBindVertexArray(m_panelVao);
glGenBuffers(1, &m_panelVbo);
glBindBuffer(GL_ARRAY_BUFFER, m_panelVbo);
glBufferData(GL_ARRAY_BUFFER, sizeof(verts), verts, GL_STATIC_DRAW);
glGenBuffers(1, &m_panelIbo);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_panelIbo);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(idx), idx, GL_STATIC_DRAW);
// attribute layout:
// location 0: position (x,y,z)
// location 1: normal (nx,ny,nz) —— 当前 shader 没用到,先留着
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(V), (void*)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(V), (void*)(3*sizeof(float)));
glBindVertexArray(0);
}
void GLWidget::initDotGeometry_() {
// dot使用 instanced rendering 画很多个“圆点”(本质是一个 quad + fragment shader 里 discard 成圆)
// vertex buffer 里只有一个单位 quadinstance buffer 里存每个点的位置和数值。
if (m_instanceVbo) {
glDeleteBuffers(1, &m_instanceVbo);
m_instanceVbo = 0;
}
if (m_dotsVbo) {
glDeleteBuffers(1, &m_dotsVbo);
m_dotsVbo = 0;
}
if (m_dotsVao) {
glDeleteVertexArrays(1, &m_dotsVao);
m_dotsVao = 0;
}
struct V {
float x, y;
float u, v;
};
V quad[6] = {
{-1,-1, 0,0},
{ 1,-1, 1,0},
{ 1, 1, 1,1},
{-1,-1, 0,0},
{ 1, 1, 1,1},
{-1, 1, 0,1},
};
glGenVertexArrays(1, &m_dotsVao);
glBindVertexArray(m_dotsVao);
glGenBuffers(1, &m_dotsVbo);
glBindBuffer(GL_ARRAY_BUFFER, m_dotsVbo);
glBufferData(GL_ARRAY_BUFFER, sizeof(quad), quad, GL_STATIC_DRAW);
// attribute layout:
// location 0: quad 顶点位置 (x,y),范围 [-1,1]
// location 1: UV (u,v),用于 fragment shader 生成圆形
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(V), (void*)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, sizeof(V), (void*)(2 * sizeof(float)));
// instance buffer每个点 3 个 floatoffsetX, offsetZ, value
// layout location 2/3 对应 shader 里的 iOffsetXZ / iValue
glGenBuffers(1, &m_instanceVbo);
glBindBuffer(GL_ARRAY_BUFFER, m_instanceVbo);
glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 3 * qMax(1, dotCount()), nullptr, GL_DYNAMIC_DRAW);
// location 2: vec2 iOffsetXZ每个 instance 一次divisor=1
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);
glVertexAttribDivisor(2, 1);
// location 3: float iValue每个 instance 一次divisor=1
glEnableVertexAttribArray(3);
glVertexAttribPointer(3, 1, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)(2 * sizeof(float)));
glVertexAttribDivisor(3, 1);
glBindVertexArray(0);
}
void GLWidget::initDotTexture_() {
if (m_dotTex) {
glDeleteTextures(1, &m_dotTex);
m_dotTex = 0;
}
const QString path = QStringLiteral(":/images/metal.jpeg");
QImage img(path);
if (img.isNull()) {
qWarning() << "dot texture load failed:" << path;
return;
}
QImage rgba = img.convertToFormat(QImage::Format_RGBA8888);
glGenTextures(1, &m_dotTex);
glBindTexture(GL_TEXTURE_2D, m_dotTex);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glTexImage2D(
GL_TEXTURE_2D,
0,
GL_RGBA8,
rgba.width(),
rgba.height(),
0,
GL_RGBA,
GL_UNSIGNED_BYTE,
rgba.constBits()
);
glGenerateMipmap(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
}
void GLWidget::initPrograms_() {
// Qt Resource 里打包的 shader 文件路径:使用 `:/` 前缀(不是文件系统路径)
const QString vsd_path = QStringLiteral(":/shaders/dots.vert");
const QString fsd_path = QStringLiteral(":/shaders/dots.frag");
const QString vsb_path = QStringLiteral(":/shaders/bg.vert");
const QString fsb_path = QStringLiteral(":/shaders/bg.frag");
const QString vsp_path = QStringLiteral(":/shaders/panel.vert");
const QString fsp_path = QStringLiteral(":/shaders/panel.frag");
{
auto *p = new QOpenGLShaderProgram;
const bool okV = p->addShaderFromSourceCode(QOpenGLShader::Vertex, readFile(vsb_path));
const bool okF = p->addShaderFromSourceCode(QOpenGLShader::Fragment, readFile(fsb_path));
const bool okL = okV && okF && p->link();
if (!okL) {
qWarning() << "bg program build failed:" << vsb_path << fsb_path << p->log();
delete p;
p = nullptr;
}
m_bgProg = p;
}
{
auto *p = new QOpenGLShaderProgram;
const bool okV = p->addShaderFromSourceCode(QOpenGLShader::Vertex, readFile(vsp_path));
const bool okF = p->addShaderFromSourceCode(QOpenGLShader::Fragment, readFile(fsp_path));
const bool okL = okV && okF && p->link();
if (!okL) {
qWarning() << "panel program build failed:" << vsp_path << fsp_path << p->log();
delete p;
p = nullptr;
}
m_panelProg = p;
}
{
auto *p = new QOpenGLShaderProgram;
const bool okV = p->addShaderFromSourceCode(QOpenGLShader::Vertex, readFile(vsd_path));
const bool okF = p->addShaderFromSourceCode(QOpenGLShader::Fragment, readFile(fsd_path));
const bool okL = okV && okF && p->link();
if (!okL) {
qWarning() << "dots program build failed:" << vsd_path << fsd_path << p->log();
delete p;
p = nullptr;
}
m_dotsProg = p;
}
}
void GLWidget::updateInstanceBufferIfNeeded_() {
if (dotCount() <= 0) {
m_instanceCount = 0;
return;
}
QVector<float> valuesCopy;
bool dirty = false;
{
QMutexLocker lk(&m_dataMutex);
dirty = m_valuesDirty;
if (dirty) {
valuesCopy = m_latestValues;
m_valuesDirty = false;
}
}
if (!dirty)
return;
const int n = dotCount();
m_instanceCount = n;
QVector<float> inst;
// 每个点 3 个 floatoffsetX, offsetZ, value对应 dots.vert: iOffsetXZ + iValue
inst.resize(n * 3);
const float w = (m_cols - 1) * m_pitch;
const float h = (m_rows - 1) * m_pitch;
// 把点阵居中到原点附近x/z 以中心对称)
for (int i = 0; i < n; ++i) {
const int r = (m_cols > 0) ? (i / m_cols) : 0;
const int c = (m_cols > 0) ? (i % m_cols) : 0;
const float x = (c * m_pitch) - w * 0.5f;
const float z = (r * m_pitch) - h * 0.5f;
inst[i * 3 + 0] = x;
inst[i * 3 + 1] = z;
inst[i * 3 + 2] = (i < valuesCopy.size()) ? valuesCopy[i] : m_min;
}
// 把 CPU 生成的 instance 数据上传到 GPU后续 draw 时由 VAO 里的 attribute 2/3 读取)
glBindBuffer(GL_ARRAY_BUFFER, m_instanceVbo);
glBufferSubData(GL_ARRAY_BUFFER, 0, inst.size() * sizeof(float), inst.constData());
}
void GLWidget::updateMatrices_() {
// MVP = Projection * View * Model
//
// OpenGL 的顶点最终要写到 gl_Position裁剪空间所以我们需要一个矩阵把“世界坐标”变成“屏幕可见”的坐标。
// 这里为了入门简单:
// - panel/dots 顶点数据直接当作世界坐标Model=Identity
// - View 用 lookAt 放一个相机
// - Projection 用透视投影perspective
const int w = width();
const int h = height();
if (w <= 0 || h <= 0) {
m_mvp.setToIdentity();
return;
}
const float aspect = float(w) / float(h);
const float radius = 0.5f * qSqrt(m_panelW * m_panelW + m_panelD * m_panelD);
const float distance = qMax(0.5f, radius * 2.5f);
// 让相机看向 panel 的中心点
const QVector3D center(0.0f, m_panelH * 0.5f, 0.0f);
// yaw/pitch 控制相机绕目标点“环绕”orbit camera
const float yawRad = qDegreesToRadians(m_camYawDeg);
const float pitchRad = qDegreesToRadians(m_camPitchDeg);
const float cosPitch = qCos(pitchRad);
const float sinPitch = qSin(pitchRad);
const QVector3D eye = center + QVector3D(
distance * cosPitch * qCos(yawRad),
distance * sinPitch,
distance * cosPitch * qSin(yawRad)
);
m_cameraPos = eye;
QMatrix4x4 view;
view.lookAt(eye, center, QVector3D(0.0f, 1.0f, 0.0f));
QMatrix4x4 proj;
// fov=45°near=0.01far=足够大(保证 panel + dots 在裁剪范围内)
proj.perspective(m_zoom_, aspect, 0.01f, qMax(10.0f, distance * 10.0f));
m_mvp = proj * view;
}

151
src/glwidget.h Normal file
View File

@@ -0,0 +1,151 @@
//
// Created by Lenn on 2025/12/16.
//
#ifndef TACTILEIPC3D_GLWIDGET_H
#define TACTILEIPC3D_GLWIDGET_H
#include <QOpenGLWidget>
#include <QOpenGLFunctions>
#include <QMutex>
#include <QOpenGLShaderProgram>
#include <QOpenGLFunctions_3_3_Core>
#include <QMatrix4x4>
#include <QVector3D>
#include <QString>
#include <atomic>
class GLWidget : public QOpenGLWidget, protected QOpenGLFunctions_3_3_Core {
Q_OBJECT
Q_PROPERTY(float yaw READ yaw WRITE setYaw NOTIFY yawChanged)
public:
enum RenderMode {
Realistic = 0,
DataViz = 1,
};
Q_ENUM(RenderMode)
enum LabelMode {
LabelsOff = 0,
LabelsHover = 1,
LabelsAlways = 2,
};
Q_ENUM(LabelMode)
explicit GLWidget(QWidget* parent = nullptr);
~GLWidget();
// panel 的物理尺寸(单位随你:米/毫米都行,只要全程一致)
void setPanelSize(float w, float h, float d);
void setPanelThickness(float h);
// rows/cols: 传感点阵行列pitch: 点与点的间距dotRaius: 单个点的“显示半径”
void setSpec(int rows, int cols, float pitch, float dotRaius);
// 总点数 = 行 * 列
int dotCount() const { return m_cols * m_rows; }
// 提交一帧传感值(数量必须等于 dotCount在 paintGL 里用 instanced 的方式绘制
void submitValues(const QVector<float>& values);
float yaw() const { return m_camYawDeg; }
public slots:
// 值域范围,用于 shader 里把 value 映射到颜色(绿->红)
void setRange(int minV, int maxV);
void setYaw(float yawDeg);
void setRenderModeString(const QString& mode);
void setLabelModeString(const QString& mode);
signals:
void yawChanged();
protected:
void initializeGL() override;
void resizeGL(int w, int h) override;
void paintGL() override;
void mousePressEvent(QMouseEvent *event) override;
void mouseMoveEvent(QMouseEvent *event) override;
void mouseReleaseEvent(QMouseEvent *event) override;
void wheelEvent(QWheelEvent *event) override;
private:
void initPanelGeometry_();
void initDotGeometry_();
void initBackgroundGeometry_();
void initPrograms_();
void initDotTexture_();
void updateInstanceBufferIfNeeded_();
void updateMatrices_();
private:
// 传感值范围(用于颜色映射)
int m_min = 0;
int m_max = 1000;
// 点阵规格
int m_rows = 3;
int m_cols = 4;
// panel: 一个长方体/板子(当前只画顶面矩形)
float m_panelW = 1.2f;
float m_panelH = 0.08f;
float m_panelD = 0.08f;
// 点阵布局参数
float m_pitch = 0.1f;
float m_dotRadius = 0.03f;
// 传感数据GUI/定时器线程提交GL 线程绘制)
QMutex m_dataMutex;
QVector<float> m_latestValues;
bool m_valuesDirty = false;
std::atomic<bool> m_hasData{false};
// shader program编译/链接后的可执行 GPU 程序)
QOpenGLShaderProgram* m_bgProg = nullptr;
QOpenGLShaderProgram* m_panelProg = nullptr;
QOpenGLShaderProgram* m_dotsProg = nullptr;
unsigned int m_dotTex = 0;
// panel 的 VAO/VBO/IBOVAO: 顶点格式/绑定状态VBO: 顶点数据IBO: 索引数据)
unsigned int m_panelVao = 0;
unsigned int m_panelVbo = 0;
unsigned int m_panelIbo = 0;
int m_panelIndexCount = 0;
bool m_panelGeometryDirty = false;
// dots 的 VAO/VBO + instance VBOinstance VBO 每个点一条offsetXZ + value
unsigned int m_dotsVao = 0;
unsigned int m_dotsVbo = 0;
unsigned int m_instanceVbo = 0;
int m_instanceCount = 0;
bool m_dotsGeometryDirty = false;
unsigned int m_bgVao = 0;
unsigned int m_bgVbo = 0;
// MVP = Projection * View * Model。
// 这里 panel/dots 顶点基本已经是“世界坐标”,所以我们用 proj*view 即可model 先省略)。
QMatrix4x4 m_mvp;
QVector3D m_cameraPos{0.0f, 0.0f, 1.0f};
RenderMode m_renderMode = DataViz;
LabelMode m_labelMode = LabelsOff;
int m_hoveredIndex = -1;
// 早期/预留的矩阵数组(现在主要使用 QMatrix4x4 的 m_mvp这些暂时保留做对照/扩展)
float m_proj[16]{};
float m_view[16]{};
float m_modelPanel[16]{};
float m_zoom_ = 45.0;
float m_camYawDeg = 45.0f;
float m_camPitchDeg = 35.0f;
std::atomic<bool> m_rightDown{false};
QPoint m_lastPos;
};
#endif //TACTILEIPC3D_GLWIDGET_H