pyqt_data_analysis/libdataanalysis/2-线性回归代码实现/LinearRegression/temp-plot.html

11 lines
2.9 MiB
HTML
Raw Normal View History

2024-06-08 19:26:36 +08:00
<html><head><meta charset="utf-8" /></head><body><script type="text/javascript">window.PlotlyConfig = {MathJaxConfig: 'local'};</script><script type="text/javascript">/**
* plotly.js v1.45.2
* Copyright 2012-2019, Plotly, Inc.
* All rights reserved.
* Licensed under the MIT license
*/
!function(t){if("object"==typeof exports&&"undefined"!=typeof module)module.exports=t();else if("function"==typeof define&&define.amd)define([],t);else{("undefined"!=typeof window?window:"undefined"!=typeof global?global:"undefined"!=typeof self?self:this).Plotly=t()}}(function(){return function(){return function t(e,r,n){function i(o,s){if(!r[o]){if(!e[o]){var l="function"==typeof require&&require;if(!s&&l)return l(o,!0);if(a)return a(o,!0);var c=new Error("Cannot find module '"+o+"'");throw c.code="MODULE_NOT_FOUND",c}var u=r[o]={exports:{}};e[o][0].call(u.exports,function(t){return i(e[o][1][t]||t)},u,u.exports,t,e,r,n)}return r[o].exports}for(var a="function"==typeof require&&require,o=0;o<n.length;o++)i(n[o]);return i}}()({1:[function(t,e,r){"use strict";var n=t("../src/lib"),i={"X,X div":"direction:ltr;font-family:'Open Sans', verdana, arial, sans-serif;margin:0;padding:0;","X input,X button":"font-family:'Open Sans', verdana, arial, sans-serif;","X input:focus,X button:focus":"outline:none;","X a":"text-decoration:none;","X a:hover":"text-decoration:none;","X .crisp":"shape-rendering:crispEdges;","X .user-select-none":"-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none;user-select:none;","X svg":"overflow:hidden;","X svg a":"fill:#447adb;","X svg a:hover":"fill:#3c6dc5;","X .main-svg":"position:absolute;top:0;left:0;pointer-events:none;","X .main-svg .draglayer":"pointer-events:all;","X .cursor-default":"cursor:default;","X .cursor-pointer":"cursor:pointer;","X .cursor-crosshair":"cursor:crosshair;","X .cursor-move":"cursor:move;","X .cursor-col-resize":"cursor:col-resize;","X .cursor-row-resize":"cursor:row-resize;","X .cursor-ns-resize":"cursor:ns-resize;","X .cursor-ew-resize":"cursor:ew-resize;","X .cursor-sw-resize":"cursor:sw-resize;","X .cursor-s-resize":"cursor:s-resize;","X .cursor-se-resize":"cursor:se-resize;","X .cursor-w-resize":"cursor:w-resize;","X .cursor-e-resize":"cursor:e-resize;","X .cursor-nw-resize":"cursor:nw-resize;","X .cursor-n-resize":"cursor:n-resize;","X .cursor-ne-resize":"cursor:ne-resize;","X .cursor-grab":"cursor:-webkit-grab;cursor:grab;","X .modebar":"position:absolute;top:2px;right:2px;z-index:1001;","X .ease-bg":"-webkit-transition:background-color 0.3s ease 0s;-moz-transition:background-color 0.3s ease 0s;-ms-transition:background-color 0.3s ease 0s;-o-transition:background-color 0.3s ease 0s;transition:background-color 0.3s ease 0s;","X .modebar--hover>:not(.watermark)":"opacity:0;-webkit-transition:opacity 0.3s ease 0s;-moz-transition:opacity 0.3s ease 0s;-ms-transition:opacity 0.3s ease 0s;-o-transition:opacity 0.3s ease 0s;transition:opacity 0.3s ease 0s;","X:hover .modebar--hover .modebar-group":"opacity:1;","X .modebar-group":"float:left;display:inline-block;box-sizing:border-box;padding-left:8px;position:relative;vertical-align:middle;white-space:nowrap;","X .modebar-btn":"position:relative;font-size:16px;padding:3px 4px;height:22px;cursor:pointer;line-height:normal;box-sizing:border-box;","X .modebar-btn svg":"position:relative;top:2px;","X .modebar.vertical":"display:flex;flex-direction:column;flex-wrap:wrap;align-content:flex-end;max-height:100%;","X .modebar.vertical svg":"top:-1px;","X .modebar.vertical .modebar-group":"display:block;float:none;padding-left:0px;padding-bottom:8px;","X .modebar.vertical .modebar-group .modebar-btn":"display:block;text-align:center;","X [data-title]:before,X [data-title]:after":"position:absolute;-webkit-transform:translate3d(0, 0, 0);-moz-transform:translate3d(0, 0, 0);-ms-transform:translate3d(0, 0, 0);-o-transform:translate3d(0, 0, 0);transform:translate3d(0, 0, 0);display:none;opacity:0;z-index:1001;pointer-events:none;top:110%;right:50%;","X [data-title]:hover:before,X [data-title]:hover:after":"display:block;opacity:1;","X [data-title]:before":"content:'';position:absolute;background:transparent;border:6px solid transparent;z-index:1002;margin-top:-12px;border-bottom-color:#69738a;margin-right:-6px;","X [data-title]:after":"content:attr(data-title);background:#69738a;color:white;padding:8px
if (document.getElementById("77a4745e-827c-483f-8edf-ac844503eb03")) {
Plotly.newPlot("77a4745e-827c-483f-8edf-ac844503eb03", [{"marker": {"line": {"color": "rgb(255, 255, 255)", "width": 1}, "opacity": 1, "size": 10}, "mode": "markers", "name": "Training Set", "x": [1.12112903594971, 1.3151752948761002, 1.28177809715271, 0.479309022426605, 0.36842092871666, 1.35268235206604, 0.09162256866693501, 1.3753824234008798, 1.18529546260834, 1.44163393974304, 0.982409417629242, 1.4336265325546298, 0.925579309463501, 1.1982102394104, 0.667224824428558, 1.26074862480164, 0.716249227523804, 1.38439786434174, 0.381430715322495, 1.5357066392898602, 1.3208793401718102, 0.89465194940567, 1.12209415435791, 1.1531838178634601, 0.9910123944282528, 1.1307767629623402, 1.40167844295502, 1.12786877155304, 1.32539355754852, 1.63295245170593, 1.2860119342803997, 0.30544471740722695, 0.39724862575531, 1.0272358655929599, 0.6484572887420649, 0.511135876178741, 0.23430564999580397, 1.69227766990662, 0.36711055040359497, 1.4884122610092199, 0.368610262870789, 0.996192753314972, 1.07498753070831, 0.560479462146759, 1.1893955469131499, 1.34327983856201, 1.4844149351120002, 1.44357192516327, 0.737299203872681, 0.950612664222717, 1.48238301277161, 1.3559380769729599, 0.476180493831635, 0.479820191860199, 0.16192533075809498, 1.4870972633361799, 0.233442038297653, 1.47920441627502, 0.401477217674255, 0.777153134346008, 0.885416388511658, 1.22255623340607, 1.54625928401947, 0.24454993009567302, 1.29178786277771, 0.339233845472336, 1.40570604801178, 0.524713635444641, 1.0352252721786501, 1.480633020401, 0.5962200760841371, 1.09186446666718, 0.9097844958305359, 1.2845562696456898, 1.1536017656326298, 0.786441087722778, 0.833756566047668, 1.3469113111496, 1.3412059545516999, 0.8089642524719242, 1.00726580619812, 1.1018030643463101, 0.85769921541214, 1.55167484283447, 0.907975316047668, 1.4637807607650801, 1.05469870567322, 1.2175596952438401, 1.1614590883255, 1.48792338371277, 0.37584653496742204, 0.0921023488044739, 0.6595166921615601, 0.43108540773391707, 0.7268835306167599, 0.8781145811080929, 1.36135590076447, 0.730573117733002, 0.0, 0.872001945972443, 0.564305365085602, 1.74194359779358, 1.15655755996704, 1.49438726902008, 1.6263433694839498, 0.43801298737525896, 0.964434325695038, 1.3950666189193701, 0.932537317276001, 1.07937383651733, 1.8707656860351598, 1.10970628261566, 1.1027104854583702, 0.0226431842893362, 1.5649795532226598, 0.305808693170547, 1.3145823478698702, 0.11904179304838199, 0.995538592338562, 1.41691517829895, 0.7885475754737851, 1.43092346191406, 1.07062232494354, 1.00082039833069], "y": [0.194989055395126, 0.498465299606323, 0.373783111572266, 0.37792226672172496, 0.318697690963745, 0.49094617366790794, 0.0599007532000542, 0.40598860383033797, 0.49451920390129106, 0.508190035820007, 0.204403176903725, 0.361466586589813, 0.474307239055634, 0.31232857704162603, 0.423026293516159, 0.32570791244506797, 0.25471106171608, 0.408781230449677, 0.443185955286026, 0.5731103420257571, 0.479131430387497, 0.12297477573156401, 0.505196332931519, 0.412730008363724, 0.418421149253845, 0.41827192902565, 0.257921665906906, 0.580200731754303, 0.295817464590073, 0.49633759260177596, 0.17586351931095098, 0.38042613863945, 0.147062435746193, 0.39414396882057207, 0.0960980430245399, 0.390017777681351, 0.48079109191894503, 0.549840569496155, 0.514492034912109, 0.536746919155121, 0.0303698573261499, 0.381498634815216, 0.28851598501205394, 0.45276376605033897, 0.491247326135635, 0.588767051696777, 0.601607382297516, 0.6179508566856379, 0.447551846504211, 0.309410035610199, 0.626006722450256, 0.35511153936386103, 0.306613743305206, 0.44030594825744607, 0.36365869641304, 0.567766189575195, 0.466914653778076, 0.611100912094116, 0.106179520487785, 0.0815394446253777, 0.5015376806259161, 0.255772292613983, 0.505740523338318, 0.348587512969971, 0.520342111587524, 0.408842742443085, 0.6140621304512021, 0.47156670689582797, 0.45000287890434293, 0.6271626353263849, 0.454943388700485, 0.233335807919502, 0.432452529668808, 0.43745428323745705, 0.39815583825111406, 0.6582486629486078, 0.5587329268455511, 0.47120362520217896, 0.572575
}
</script><script type="text/javascript">window.addEventListener("resize", function(){if (document.getElementById("77a4745e-827c-483f-8edf-ac844503eb03")) {Plotly.Plots.resize(document.getElementById("77a4745e-827c-483f-8edf-ac844503eb03"));};})</script></body></html>