6/9/2024
This commit is contained in:
parent
c1d9ee6118
commit
6f6a1820ca
308
MainWindow.ui
308
MainWindow.ui
|
@ -55,20 +55,6 @@
|
||||||
</property>
|
</property>
|
||||||
</widget>
|
</widget>
|
||||||
</item>
|
</item>
|
||||||
<item>
|
|
||||||
<widget class="QPushButton" name="pushButton_4">
|
|
||||||
<property name="text">
|
|
||||||
<string>PushButton</string>
|
|
||||||
</property>
|
|
||||||
</widget>
|
|
||||||
</item>
|
|
||||||
<item>
|
|
||||||
<widget class="QPushButton" name="pushButton_5">
|
|
||||||
<property name="text">
|
|
||||||
<string>PushButton</string>
|
|
||||||
</property>
|
|
||||||
</widget>
|
|
||||||
</item>
|
|
||||||
</layout>
|
</layout>
|
||||||
</item>
|
</item>
|
||||||
<item>
|
<item>
|
||||||
|
@ -77,110 +63,224 @@
|
||||||
<number>0</number>
|
<number>0</number>
|
||||||
</property>
|
</property>
|
||||||
<widget class="QWidget" name="page">
|
<widget class="QWidget" name="page">
|
||||||
<layout class="QVBoxLayout" name="verticalLayout_4">
|
<layout class="QVBoxLayout" name="verticalLayout_5">
|
||||||
<item>
|
<item>
|
||||||
<widget class="QTableWidget" name="tableWidget_linear_regression"/>
|
<widget class="QTableWidget" name="tableWidget_linear_regression"/>
|
||||||
</item>
|
</item>
|
||||||
<item>
|
<item>
|
||||||
<layout class="QVBoxLayout" name="verticalLayout_3">
|
<layout class="QHBoxLayout" name="horizontalLayout_5">
|
||||||
<item>
|
<item>
|
||||||
<layout class="QHBoxLayout" name="horizontalLayout_3">
|
<layout class="QVBoxLayout" name="verticalLayout_4">
|
||||||
<property name="spacing">
|
|
||||||
<number>0</number>
|
|
||||||
</property>
|
|
||||||
<item>
|
<item>
|
||||||
<widget class="QCheckBox" name="checkBox_linear_regression_data_cleaning">
|
<layout class="QHBoxLayout" name="horizontalLayout_3">
|
||||||
<property name="text">
|
<item>
|
||||||
<string>数据清洗</string>
|
<widget class="QGroupBox" name="groupBox">
|
||||||
</property>
|
<property name="title">
|
||||||
</widget>
|
<string>标签</string>
|
||||||
|
</property>
|
||||||
|
<layout class="QGridLayout" name="gridLayout">
|
||||||
|
<item row="0" column="0">
|
||||||
|
<widget class="QLabel" name="label_linear_regression_original">
|
||||||
|
<property name="text">
|
||||||
|
<string>原始数据</string>
|
||||||
|
</property>
|
||||||
|
</widget>
|
||||||
|
</item>
|
||||||
|
<item row="0" column="1">
|
||||||
|
<widget class="QLineEdit" name="lineEdit_linear_regression_original">
|
||||||
|
<property name="sizePolicy">
|
||||||
|
<sizepolicy hsizetype="Minimum" vsizetype="Minimum">
|
||||||
|
<horstretch>0</horstretch>
|
||||||
|
<verstretch>0</verstretch>
|
||||||
|
</sizepolicy>
|
||||||
|
</property>
|
||||||
|
<property name="placeholderText">
|
||||||
|
<string>原始数据Title</string>
|
||||||
|
</property>
|
||||||
|
</widget>
|
||||||
|
</item>
|
||||||
|
<item row="1" column="0">
|
||||||
|
<widget class="QLabel" name="label_linear_regression_target">
|
||||||
|
<property name="text">
|
||||||
|
<string>目标数据</string>
|
||||||
|
</property>
|
||||||
|
</widget>
|
||||||
|
</item>
|
||||||
|
<item row="1" column="1">
|
||||||
|
<widget class="QLineEdit" name="lineEdit_linear_regression_target">
|
||||||
|
<property name="sizePolicy">
|
||||||
|
<sizepolicy hsizetype="Minimum" vsizetype="Fixed">
|
||||||
|
<horstretch>0</horstretch>
|
||||||
|
<verstretch>0</verstretch>
|
||||||
|
</sizepolicy>
|
||||||
|
</property>
|
||||||
|
<property name="placeholderText">
|
||||||
|
<string>目标数据Title</string>
|
||||||
|
</property>
|
||||||
|
</widget>
|
||||||
|
</item>
|
||||||
|
</layout>
|
||||||
|
</widget>
|
||||||
|
</item>
|
||||||
|
<item>
|
||||||
|
<widget class="QGroupBox" name="groupBox_2">
|
||||||
|
<property name="title">
|
||||||
|
<string>学习参数</string>
|
||||||
|
</property>
|
||||||
|
<layout class="QGridLayout" name="gridLayout_2">
|
||||||
|
<item row="0" column="0">
|
||||||
|
<widget class="QLabel" name="label_linear_regression_iter">
|
||||||
|
<property name="text">
|
||||||
|
<string>迭代次数</string>
|
||||||
|
</property>
|
||||||
|
</widget>
|
||||||
|
</item>
|
||||||
|
<item row="1" column="0">
|
||||||
|
<widget class="QLabel" name="label_linear_regression_rate">
|
||||||
|
<property name="text">
|
||||||
|
<string>学习率</string>
|
||||||
|
</property>
|
||||||
|
</widget>
|
||||||
|
</item>
|
||||||
|
<item row="0" column="1">
|
||||||
|
<widget class="QSpinBox" name="spinBox_linear_regression_iter">
|
||||||
|
<property name="minimum">
|
||||||
|
<number>1</number>
|
||||||
|
</property>
|
||||||
|
<property name="maximum">
|
||||||
|
<number>10000</number>
|
||||||
|
</property>
|
||||||
|
<property name="value">
|
||||||
|
<number>500</number>
|
||||||
|
</property>
|
||||||
|
</widget>
|
||||||
|
</item>
|
||||||
|
<item row="1" column="1">
|
||||||
|
<widget class="QDoubleSpinBox" name="doubleSpinBox_linear_regression_rate">
|
||||||
|
<property name="maximum">
|
||||||
|
<double>1.000000000000000</double>
|
||||||
|
</property>
|
||||||
|
<property name="singleStep">
|
||||||
|
<double>0.010000000000000</double>
|
||||||
|
</property>
|
||||||
|
<property name="value">
|
||||||
|
<double>0.030000000000000</double>
|
||||||
|
</property>
|
||||||
|
</widget>
|
||||||
|
</item>
|
||||||
|
</layout>
|
||||||
|
</widget>
|
||||||
|
</item>
|
||||||
|
<item>
|
||||||
|
<widget class="QGroupBox" name="groupBox_3">
|
||||||
|
<property name="title">
|
||||||
|
<string>特征变换</string>
|
||||||
|
</property>
|
||||||
|
<layout class="QGridLayout" name="gridLayout_3">
|
||||||
|
<item row="1" column="0">
|
||||||
|
<widget class="QLabel" name="label_linear_regression_ploynmial">
|
||||||
|
<property name="text">
|
||||||
|
<string>多项式变换</string>
|
||||||
|
</property>
|
||||||
|
</widget>
|
||||||
|
</item>
|
||||||
|
<item row="0" column="0">
|
||||||
|
<widget class="QLabel" name="label_linear_regression_sinusoid">
|
||||||
|
<property name="text">
|
||||||
|
<string>正弦变换</string>
|
||||||
|
</property>
|
||||||
|
</widget>
|
||||||
|
</item>
|
||||||
|
<item row="0" column="1">
|
||||||
|
<widget class="QSpinBox" name="spinBox_linear_regression_sinusoid"/>
|
||||||
|
</item>
|
||||||
|
<item row="1" column="1">
|
||||||
|
<widget class="QSpinBox" name="spinBox_linear_regression_ploynmial"/>
|
||||||
|
</item>
|
||||||
|
</layout>
|
||||||
|
</widget>
|
||||||
|
</item>
|
||||||
|
</layout>
|
||||||
</item>
|
</item>
|
||||||
<item>
|
<item>
|
||||||
<widget class="QCheckBox" name="checkBox_linear_regression_normalize">
|
<layout class="QHBoxLayout" name="horizontalLayout_4">
|
||||||
<property name="text">
|
<item>
|
||||||
<string>数据归一化</string>
|
<widget class="QLabel" name="label_linear_regression_train_percent">
|
||||||
</property>
|
<property name="text">
|
||||||
</widget>
|
<string>学习数据比例</string>
|
||||||
</item>
|
</property>
|
||||||
<item>
|
</widget>
|
||||||
<widget class="QPushButton" name="pushButton_linear_regression_preview">
|
</item>
|
||||||
<property name="text">
|
<item>
|
||||||
<string>开始预处理</string>
|
<widget class="QDoubleSpinBox" name="doubleSpinBox_linear_regression_train_percent">
|
||||||
</property>
|
<property name="sizePolicy">
|
||||||
</widget>
|
<sizepolicy hsizetype="Minimum" vsizetype="Fixed">
|
||||||
|
<horstretch>0</horstretch>
|
||||||
|
<verstretch>0</verstretch>
|
||||||
|
</sizepolicy>
|
||||||
|
</property>
|
||||||
|
<property name="minimum">
|
||||||
|
<double>0.100000000000000</double>
|
||||||
|
</property>
|
||||||
|
<property name="maximum">
|
||||||
|
<double>1.000000000000000</double>
|
||||||
|
</property>
|
||||||
|
<property name="singleStep">
|
||||||
|
<double>0.100000000000000</double>
|
||||||
|
</property>
|
||||||
|
<property name="value">
|
||||||
|
<double>0.800000000000000</double>
|
||||||
|
</property>
|
||||||
|
</widget>
|
||||||
|
</item>
|
||||||
|
<item>
|
||||||
|
<widget class="QPushButton" name="pushButton_linear_regression_begin">
|
||||||
|
<property name="text">
|
||||||
|
<string>开始拟合</string>
|
||||||
|
</property>
|
||||||
|
</widget>
|
||||||
|
</item>
|
||||||
|
<item>
|
||||||
|
<widget class="QProgressBar" name="progressBar_linear_regression">
|
||||||
|
<property name="value">
|
||||||
|
<number>24</number>
|
||||||
|
</property>
|
||||||
|
</widget>
|
||||||
|
</item>
|
||||||
|
</layout>
|
||||||
</item>
|
</item>
|
||||||
</layout>
|
</layout>
|
||||||
</item>
|
</item>
|
||||||
<item>
|
<item>
|
||||||
<widget class="QProgressBar" name="progressBar_linear_regression">
|
<widget class="QGroupBox" name="groupBox_4">
|
||||||
<property name="value">
|
<property name="title">
|
||||||
<number>24</number>
|
<string>结果处理</string>
|
||||||
</property>
|
</property>
|
||||||
|
<layout class="QVBoxLayout" name="verticalLayout_3">
|
||||||
|
<item>
|
||||||
|
<widget class="QPushButton" name="pushButton_linear_regression_preview">
|
||||||
|
<property name="text">
|
||||||
|
<string>开始预测</string>
|
||||||
|
</property>
|
||||||
|
</widget>
|
||||||
|
</item>
|
||||||
|
<item>
|
||||||
|
<widget class="QPushButton" name="pushButton_linear_regression_show">
|
||||||
|
<property name="text">
|
||||||
|
<string>显示结果</string>
|
||||||
|
</property>
|
||||||
|
</widget>
|
||||||
|
</item>
|
||||||
|
<item>
|
||||||
|
<widget class="QPushButton" name="pushButton_linear_regression_save">
|
||||||
|
<property name="text">
|
||||||
|
<string>保存数据</string>
|
||||||
|
</property>
|
||||||
|
</widget>
|
||||||
|
</item>
|
||||||
|
</layout>
|
||||||
</widget>
|
</widget>
|
||||||
</item>
|
</item>
|
||||||
<item>
|
|
||||||
<layout class="QGridLayout" name="gridLayout">
|
|
||||||
<item row="0" column="0">
|
|
||||||
<widget class="QLabel" name="label_linear_regression_original">
|
|
||||||
<property name="text">
|
|
||||||
<string>原始数据</string>
|
|
||||||
</property>
|
|
||||||
</widget>
|
|
||||||
</item>
|
|
||||||
<item row="0" column="1">
|
|
||||||
<widget class="QLineEdit" name="lineEdit"/>
|
|
||||||
</item>
|
|
||||||
<item row="0" column="2">
|
|
||||||
<widget class="QLabel" name="label_linear_regression_original_col">
|
|
||||||
<property name="text">
|
|
||||||
<string>列</string>
|
|
||||||
</property>
|
|
||||||
</widget>
|
|
||||||
</item>
|
|
||||||
<item row="1" column="0">
|
|
||||||
<widget class="QLabel" name="label_linear_regression_target">
|
|
||||||
<property name="text">
|
|
||||||
<string>目标数据</string>
|
|
||||||
</property>
|
|
||||||
</widget>
|
|
||||||
</item>
|
|
||||||
<item row="1" column="1">
|
|
||||||
<widget class="QLineEdit" name="lineEdit_linear_regression_target"/>
|
|
||||||
</item>
|
|
||||||
<item row="1" column="2">
|
|
||||||
<widget class="QLabel" name="label_linear_regression_target_col">
|
|
||||||
<property name="text">
|
|
||||||
<string>列</string>
|
|
||||||
</property>
|
|
||||||
</widget>
|
|
||||||
</item>
|
|
||||||
</layout>
|
|
||||||
</item>
|
|
||||||
<item>
|
|
||||||
<layout class="QHBoxLayout" name="horizontalLayout_4">
|
|
||||||
<item>
|
|
||||||
<widget class="QPushButton" name="pushButton_linear_regression_begin">
|
|
||||||
<property name="text">
|
|
||||||
<string>开始拟合</string>
|
|
||||||
</property>
|
|
||||||
</widget>
|
|
||||||
</item>
|
|
||||||
<item>
|
|
||||||
<widget class="QPushButton" name="pushButton_linear_regression_save">
|
|
||||||
<property name="text">
|
|
||||||
<string>保存数据</string>
|
|
||||||
</property>
|
|
||||||
</widget>
|
|
||||||
</item>
|
|
||||||
<item>
|
|
||||||
<widget class="QPushButton" name="pushButton_linear_regression_show">
|
|
||||||
<property name="text">
|
|
||||||
<string>显示结果</string>
|
|
||||||
</property>
|
|
||||||
</widget>
|
|
||||||
</item>
|
|
||||||
</layout>
|
|
||||||
</item>
|
|
||||||
</layout>
|
</layout>
|
||||||
</item>
|
</item>
|
||||||
</layout>
|
</layout>
|
||||||
|
@ -201,7 +301,7 @@
|
||||||
<x>0</x>
|
<x>0</x>
|
||||||
<y>0</y>
|
<y>0</y>
|
||||||
<width>800</width>
|
<width>800</width>
|
||||||
<height>23</height>
|
<height>24</height>
|
||||||
</rect>
|
</rect>
|
||||||
</property>
|
</property>
|
||||||
<widget class="QMenu" name="menu_file">
|
<widget class="QMenu" name="menu_file">
|
||||||
|
|
104
MainWindows.py
104
MainWindows.py
|
@ -1,11 +1,12 @@
|
||||||
import Ui_MainWindow
|
import Ui_MainWindow
|
||||||
from PyQt5.QtCore import QFile, QFileInfo, pyqtSlot, pyqtSignal
|
from PyQt5.QtCore import QFile, QFileInfo, pyqtSlot, pyqtSignal
|
||||||
from PyQt5 import QtGui, QtWidgets, QtCore
|
from PyQt5 import QtGui, QtWidgets, QtCore
|
||||||
from PyQt5.QtWidgets import QPushButton, QTableWidgetItem
|
from PyQt5.QtWidgets import QPushButton, QTableWidgetItem, QInputDialog, QLabel
|
||||||
from PyQt5.QtGui import QIcon, QPixmap
|
from PyQt5.QtGui import QIcon, QPixmap
|
||||||
from data_set_read import Data_Read
|
from data_set_read import Data_Read
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import openpyxl as pyx
|
import openpyxl as pyx
|
||||||
|
from libdataanalysis.LinearRegression.linear_regression import LinearRegression
|
||||||
|
|
||||||
class MainWindows:
|
class MainWindows:
|
||||||
def __init__(self) -> None:
|
def __init__(self) -> None:
|
||||||
|
@ -20,16 +21,22 @@ class MainWindows:
|
||||||
self.MainWindow.setWindowTitle("Data Analysis By Python")
|
self.MainWindow.setWindowTitle("Data Analysis By Python")
|
||||||
self.MainWindow.setWindowIcon(QIcon(QPixmap(":/src/image/icon.jpg")))
|
self.MainWindow.setWindowIcon(QIcon(QPixmap(":/src/image/icon.jpg")))
|
||||||
self.ui.progressBar_linear_regression.setValue(0)
|
self.ui.progressBar_linear_regression.setValue(0)
|
||||||
|
self.statusLable = QLabel("准备完成!")
|
||||||
|
self.ui.statusbar.addWidget(self.statusLable, 1)
|
||||||
|
|
||||||
def file_object_init(self):
|
def file_object_init(self):
|
||||||
self.ui.pushButton_filepath.clicked.connect(self.pushButton_filepath_clicked)
|
self.ui.pushButton_filepath.clicked.connect(self.pushButton_filepath_clicked)
|
||||||
self.ui.pushButton_filepath_clear.clicked.connect(self.pushButton_filepath_clear_clicked)
|
self.ui.pushButton_filepath_clear.clicked.connect(self.pushButton_filepath_clear_clicked)
|
||||||
self.ui.pushButton_linear_regression.clicked.connect(lambda checked: self.ui.stackedWidget.setCurrentIndex(0))
|
self.ui.pushButton_linear_regression.clicked.connect(lambda checked: self.ui.stackedWidget.setCurrentIndex(0))
|
||||||
self.ui.pushButton_Kmeans.clicked.connect(lambda checked: self.ui.stackedWidget.setCurrentIndex(1))
|
self.ui.pushButton_Kmeans.clicked.connect(lambda checked: self.ui.stackedWidget.setCurrentIndex(1))
|
||||||
|
self.ui.actionNumber_Head.triggered.connect(self.action_Number_Head_triggered)
|
||||||
|
self.ui.pushButton_linear_regression_begin.clicked.connect(self.pushButton_linear_regression_begin_clicked)
|
||||||
|
|
||||||
def pushButton_filepath_clicked(self):
|
def pushButton_filepath_clicked(self):
|
||||||
file_path = QtWidgets.QFileDialog.getOpenFileName(self.MainWindow, "Open File", ".", "All Files(*);;csv Files(*.csv);;Old Excel Files(*.xls);;New Excel Files(*.xlsx)")
|
file_path = QtWidgets.QFileDialog.getOpenFileName(self.MainWindow, "Open File", ".", "All Files(*);;csv Files(*.csv);;Old Excel Files(*.xls);;New Excel Files(*.xlsx)")
|
||||||
print(file_path[0])
|
if file_path[0] is None:
|
||||||
|
return
|
||||||
|
self.file_path = file_path[0]
|
||||||
info = QFileInfo(file_path[0])
|
info = QFileInfo(file_path[0])
|
||||||
suffix = info.suffix()
|
suffix = info.suffix()
|
||||||
if suffix == "csv":
|
if suffix == "csv":
|
||||||
|
@ -41,29 +48,88 @@ class MainWindows:
|
||||||
|
|
||||||
if self.ui.stackedWidget.currentIndex() == 0:
|
if self.ui.stackedWidget.currentIndex() == 0:
|
||||||
self.tableWidget_linear_regression_show()
|
self.tableWidget_linear_regression_show()
|
||||||
#data_show = self.data_read.get_head_data(self.head_num)
|
|
||||||
# self.tableWidget_linear_regression_show(data_show)
|
|
||||||
# if file_path is not None:
|
|
||||||
# self.ui.lineEdit_filepath.setText(file_path)
|
|
||||||
|
|
||||||
def tableWidget_linear_regression_show(self):
|
def tableWidget_linear_regression_show(self):
|
||||||
# self.ui.tableWidget_linear_regression.clear()
|
|
||||||
# # self.ui.tableWidget_linear_regression.setRowCount(data_frame.shape[0])
|
|
||||||
# # self.ui.tableWidget_linear_regression.setColumnCount(data_frame.shape[1])
|
|
||||||
# # for row_index, row in data_frame.iterrows():
|
|
||||||
# # for col_index, data in enumerate(row):
|
|
||||||
# # item = QTableWidgetItem(str(data))
|
|
||||||
# # self.ui.tableWidget_linear_regression.setItem(row_index, col_index, item)
|
|
||||||
self.ui.tableWidget_linear_regression.clear()
|
self.ui.tableWidget_linear_regression.clear()
|
||||||
workbook = pyx.load_workbook(self.ui.lineEdit_filepath.text())
|
data_file = QFileInfo(self.ui.lineEdit_filepath.text())
|
||||||
sheet = workbook.worksheets[0]
|
suffix = data_file.suffix()
|
||||||
|
if suffix == "csv":
|
||||||
|
self.set_csv_headers(data_file.absoluteFilePath())
|
||||||
|
elif suffix == "xlsx" or suffix == "xls":
|
||||||
|
self.set_excel_headers(data_file.absoluteFilePath())
|
||||||
|
|
||||||
|
def set_excel_headers(self, file_path):
|
||||||
|
wb = pyx.load_workbook(file_path)
|
||||||
|
sheet = wb.active
|
||||||
self.ui.tableWidget_linear_regression.setRowCount(self.head_num)
|
self.ui.tableWidget_linear_regression.setRowCount(self.head_num)
|
||||||
self.ui.tableWidget_linear_regression.setColumnCount(sheet.max_column)
|
self.ui.tableWidget_linear_regression.setColumnCount(sheet.max_column)
|
||||||
for row in sheet.iter_rows(min_row=1, max_row=self.head_num, max_col=sheet.max_column, values_only=True):
|
row_count = 0
|
||||||
print(row)
|
if sheet.max_row < self.head_num:
|
||||||
|
max_row = sheet.max_row
|
||||||
|
else:
|
||||||
|
max_row = self.head_num
|
||||||
|
for row in sheet.iter_rows(min_row=1, max_row=max_row, max_col=sheet.max_column, values_only=True):
|
||||||
for col, data in enumerate(row, start=0):
|
for col, data in enumerate(row, start=0):
|
||||||
item = QTableWidgetItem(str(data) if data is not None else "")
|
item = QTableWidgetItem(str(data))
|
||||||
self.ui.tableWidget_linear_regression.setItem(row[0] - 1, col, item) # 注意行索引从0开始,但Excel从1开始
|
self.ui.tableWidget_linear_regression.setItem(row_count, col, item)
|
||||||
|
row_count += 1
|
||||||
|
wb.close()
|
||||||
|
self.statusLable.setText("加载完成!")
|
||||||
|
|
||||||
|
def set_csv_headers(self, file_path):
|
||||||
|
with open(file_path, "r") as file:
|
||||||
|
for i in range(0, self.head_num):
|
||||||
|
if i == 0:
|
||||||
|
line = file.readline()
|
||||||
|
line_stripped = line.rstrip()
|
||||||
|
data_list = line_stripped.split(",")
|
||||||
|
self.ui.tableWidget_linear_regression.setRowCount(self.head_num)
|
||||||
|
self.ui.tableWidget_linear_regression.setColumnCount(len(data_list))
|
||||||
|
for j in range(0, len(data_list)):
|
||||||
|
item = QTableWidgetItem(str(data_list[j]))
|
||||||
|
self.ui.tableWidget_linear_regression.setItem(i, j, item)
|
||||||
|
else:
|
||||||
|
line = file.readline()
|
||||||
|
line_stripped = line.rstrip()
|
||||||
|
data_list = line_stripped.split(",")
|
||||||
|
for j in range(0, len(data_list)):
|
||||||
|
item = QTableWidgetItem(str(data_list[j]))
|
||||||
|
self.ui.tableWidget_linear_regression.setItem(i, j, item)
|
||||||
|
file.close()
|
||||||
|
self.statusLable.setText("加载完成!")
|
||||||
|
|
||||||
def pushButton_filepath_clear_clicked(self):
|
def pushButton_filepath_clear_clicked(self):
|
||||||
self.ui.lineEdit_filepath.clear()
|
self.ui.lineEdit_filepath.clear()
|
||||||
|
|
||||||
|
def action_Number_Head_triggered(self):
|
||||||
|
nb_head = QtWidgets.QInputDialog.getInt(self.MainWindow, "Head Number", "设置头行数", 10, 1, 20, 1)
|
||||||
|
if nb_head[1] == True:
|
||||||
|
self.head_num = nb_head[0]
|
||||||
|
|
||||||
|
def pushButton_linear_regression_begin_clicked(self):
|
||||||
|
if self.ui.lineEdit_linear_regression_original.text is None or self.ui.lineEdit_linear_regression_target is None:
|
||||||
|
self.ui.statusbar.s
|
||||||
|
info = QFileInfo(self.file_path)
|
||||||
|
suffix = info.suffix()
|
||||||
|
if suffix == "csv":
|
||||||
|
data = pd.read_csv(self.file_path)
|
||||||
|
elif suffix == "xls" or suffix == "xlsx":
|
||||||
|
data = pd.read_excel(self.file_path)
|
||||||
|
|
||||||
|
x = data[self.ui.lineEdit_linear_regression_original.text().split(",")].values
|
||||||
|
y = data[self.ui.lineEdit_linear_regression_target.text()].values
|
||||||
|
|
||||||
|
num_iterations = self.ui.spinBox_linear_regression_iter.value()
|
||||||
|
learning_rate = self.ui.doubleSpinBox_linear_regression_rate.value()
|
||||||
|
polynomial_degress = self.ui.spinBox_linear_regression_ploynmial.value()
|
||||||
|
sinusoid_degress = self.ui.spinBox_linear_regression_sinusoid.value()
|
||||||
|
normalize_data = True
|
||||||
|
|
||||||
|
linear_regression = LinearRegression(x, y, polynomial_degress, sinusoid_degress, normalize_data)
|
||||||
|
(theta, cost_history) = linear_regression.train(
|
||||||
|
learning_rate,
|
||||||
|
num_iterations
|
||||||
|
)
|
||||||
|
msg = "开始损失: {:.2f},结束损失: {:.2f}".format(cost_history[0], cost_history[-1])
|
||||||
|
|
||||||
|
self.statusLable.setText(msg)
|
Binary file not shown.
|
@ -2,75 +2,35 @@
|
||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
"id": "initial_id",
|
"id": "initial_id",
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"collapsed": true,
|
|
||||||
"ExecuteTime": {
|
"ExecuteTime": {
|
||||||
"end_time": "2024-06-08T09:52:47.287637Z",
|
"end_time": "2024-06-08T09:52:47.287637Z",
|
||||||
"start_time": "2024-06-08T09:52:46.348111Z"
|
"start_time": "2024-06-08T09:52:46.348111Z"
|
||||||
}
|
},
|
||||||
|
"collapsed": true
|
||||||
},
|
},
|
||||||
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"import numpy as np\n",
|
"import numpy as np\n",
|
||||||
"import matplotlib.pyplot as plt\n",
|
"import matplotlib.pyplot as plt\n",
|
||||||
"import pandas as pd"
|
"import pandas as pd"
|
||||||
],
|
]
|
||||||
"outputs": [],
|
|
||||||
"execution_count": 1
|
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 2,
|
||||||
|
"id": "613252be66c5c97d",
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"ExecuteTime": {
|
"ExecuteTime": {
|
||||||
"end_time": "2024-06-08T09:53:28.061215Z",
|
"end_time": "2024-06-08T09:53:28.061215Z",
|
||||||
"start_time": "2024-06-08T09:53:28.039931Z"
|
"start_time": "2024-06-08T09:53:28.039931Z"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"cell_type": "code",
|
|
||||||
"source": [
|
|
||||||
"df = pd.read_csv(\"./data/world-happiness-report-2017.csv\")\n",
|
|
||||||
"df.head(10)"
|
|
||||||
],
|
|
||||||
"id": "613252be66c5c97d",
|
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"text/plain": [
|
|
||||||
" Country Happiness.Rank Happiness.Score Whisker.high Whisker.low \\\n",
|
|
||||||
"0 Norway 1 7.537 7.594445 7.479556 \n",
|
|
||||||
"1 Denmark 2 7.522 7.581728 7.462272 \n",
|
|
||||||
"2 Iceland 3 7.504 7.622030 7.385970 \n",
|
|
||||||
"3 Switzerland 4 7.494 7.561772 7.426227 \n",
|
|
||||||
"4 Finland 5 7.469 7.527542 7.410458 \n",
|
|
||||||
"5 Netherlands 6 7.377 7.427426 7.326574 \n",
|
|
||||||
"6 Canada 7 7.316 7.384403 7.247597 \n",
|
|
||||||
"7 New Zealand 8 7.314 7.379510 7.248490 \n",
|
|
||||||
"8 Sweden 9 7.284 7.344095 7.223905 \n",
|
|
||||||
"9 Australia 10 7.284 7.356651 7.211349 \n",
|
|
||||||
"\n",
|
|
||||||
" Economy..GDP.per.Capita. Family Health..Life.Expectancy. Freedom \\\n",
|
|
||||||
"0 1.616463 1.533524 0.796667 0.635423 \n",
|
|
||||||
"1 1.482383 1.551122 0.792566 0.626007 \n",
|
|
||||||
"2 1.480633 1.610574 0.833552 0.627163 \n",
|
|
||||||
"3 1.564980 1.516912 0.858131 0.620071 \n",
|
|
||||||
"4 1.443572 1.540247 0.809158 0.617951 \n",
|
|
||||||
"5 1.503945 1.428939 0.810696 0.585384 \n",
|
|
||||||
"6 1.479204 1.481349 0.834558 0.611101 \n",
|
|
||||||
"7 1.405706 1.548195 0.816760 0.614062 \n",
|
|
||||||
"8 1.494387 1.478162 0.830875 0.612924 \n",
|
|
||||||
"9 1.484415 1.510042 0.843887 0.601607 \n",
|
|
||||||
"\n",
|
|
||||||
" Generosity Trust..Government.Corruption. Dystopia.Residual \n",
|
|
||||||
"0 0.362012 0.315964 2.277027 \n",
|
|
||||||
"1 0.355280 0.400770 2.313707 \n",
|
|
||||||
"2 0.475540 0.153527 2.322715 \n",
|
|
||||||
"3 0.290549 0.367007 2.276716 \n",
|
|
||||||
"4 0.245483 0.382612 2.430182 \n",
|
|
||||||
"5 0.470490 0.282662 2.294804 \n",
|
|
||||||
"6 0.435540 0.287372 2.187264 \n",
|
|
||||||
"7 0.500005 0.382817 2.046456 \n",
|
|
||||||
"8 0.385399 0.384399 2.097538 \n",
|
|
||||||
"9 0.477699 0.301184 2.065211 "
|
|
||||||
],
|
|
||||||
"text/html": [
|
"text/html": [
|
||||||
"<div>\n",
|
"<div>\n",
|
||||||
"<style scoped>\n",
|
"<style scoped>\n",
|
||||||
|
@ -258,6 +218,43 @@
|
||||||
" </tbody>\n",
|
" </tbody>\n",
|
||||||
"</table>\n",
|
"</table>\n",
|
||||||
"</div>"
|
"</div>"
|
||||||
|
],
|
||||||
|
"text/plain": [
|
||||||
|
" Country Happiness.Rank Happiness.Score Whisker.high Whisker.low \\\n",
|
||||||
|
"0 Norway 1 7.537 7.594445 7.479556 \n",
|
||||||
|
"1 Denmark 2 7.522 7.581728 7.462272 \n",
|
||||||
|
"2 Iceland 3 7.504 7.622030 7.385970 \n",
|
||||||
|
"3 Switzerland 4 7.494 7.561772 7.426227 \n",
|
||||||
|
"4 Finland 5 7.469 7.527542 7.410458 \n",
|
||||||
|
"5 Netherlands 6 7.377 7.427426 7.326574 \n",
|
||||||
|
"6 Canada 7 7.316 7.384403 7.247597 \n",
|
||||||
|
"7 New Zealand 8 7.314 7.379510 7.248490 \n",
|
||||||
|
"8 Sweden 9 7.284 7.344095 7.223905 \n",
|
||||||
|
"9 Australia 10 7.284 7.356651 7.211349 \n",
|
||||||
|
"\n",
|
||||||
|
" Economy..GDP.per.Capita. Family Health..Life.Expectancy. Freedom \\\n",
|
||||||
|
"0 1.616463 1.533524 0.796667 0.635423 \n",
|
||||||
|
"1 1.482383 1.551122 0.792566 0.626007 \n",
|
||||||
|
"2 1.480633 1.610574 0.833552 0.627163 \n",
|
||||||
|
"3 1.564980 1.516912 0.858131 0.620071 \n",
|
||||||
|
"4 1.443572 1.540247 0.809158 0.617951 \n",
|
||||||
|
"5 1.503945 1.428939 0.810696 0.585384 \n",
|
||||||
|
"6 1.479204 1.481349 0.834558 0.611101 \n",
|
||||||
|
"7 1.405706 1.548195 0.816760 0.614062 \n",
|
||||||
|
"8 1.494387 1.478162 0.830875 0.612924 \n",
|
||||||
|
"9 1.484415 1.510042 0.843887 0.601607 \n",
|
||||||
|
"\n",
|
||||||
|
" Generosity Trust..Government.Corruption. Dystopia.Residual \n",
|
||||||
|
"0 0.362012 0.315964 2.277027 \n",
|
||||||
|
"1 0.355280 0.400770 2.313707 \n",
|
||||||
|
"2 0.475540 0.153527 2.322715 \n",
|
||||||
|
"3 0.290549 0.367007 2.276716 \n",
|
||||||
|
"4 0.245483 0.382612 2.430182 \n",
|
||||||
|
"5 0.470490 0.282662 2.294804 \n",
|
||||||
|
"6 0.435540 0.287372 2.187264 \n",
|
||||||
|
"7 0.500005 0.382817 2.046456 \n",
|
||||||
|
"8 0.385399 0.384399 2.097538 \n",
|
||||||
|
"9 0.477699 0.301184 2.065211 "
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"execution_count": 2,
|
"execution_count": 2,
|
||||||
|
@ -265,15 +262,83 @@
|
||||||
"output_type": "execute_result"
|
"output_type": "execute_result"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"execution_count": 2
|
"source": [
|
||||||
|
"df = pd.read_csv(\"./data/world-happiness-report-2017.csv\")\n",
|
||||||
|
"df.head(10)"
|
||||||
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"metadata": {},
|
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
|
"execution_count": 4,
|
||||||
|
"id": "3065eaa0832b900b",
|
||||||
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"execution_count": null,
|
"source": [
|
||||||
"source": "",
|
"import openpyxl as pyx\n",
|
||||||
"id": "3065eaa0832b900b"
|
"wb = pyx.load_workbook(\"./data.xlsx\")\n",
|
||||||
|
"sheet = wb.active"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 14,
|
||||||
|
"id": "b80ffab6",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"(<Cell 'Sheet1'.A1>, <Cell 'Sheet1'.B1>, <Cell 'Sheet1'.C1>, <Cell 'Sheet1'.D1>, <Cell 'Sheet1'.E1>, <Cell 'Sheet1'.F1>, <Cell 'Sheet1'.G1>, <Cell 'Sheet1'.H1>)\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"rows = sheet.rows\n",
|
||||||
|
"for index in rows:\n",
|
||||||
|
" print(index)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 18,
|
||||||
|
"id": "693e6a84",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class']\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"with open(\"../data/iris.csv\") as file:\n",
|
||||||
|
" first_line = file.readline()\n",
|
||||||
|
"first_line = first_line.rstrip()\n",
|
||||||
|
"title_list = first_line.split(\",\")\n",
|
||||||
|
"print(title_list)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 19,
|
||||||
|
"id": "6de1fc87",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"['1111']\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"str = \"1111\"\n",
|
||||||
|
"print(str.split(\",\"))"
|
||||||
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
|
@ -285,14 +350,14 @@
|
||||||
"language_info": {
|
"language_info": {
|
||||||
"codemirror_mode": {
|
"codemirror_mode": {
|
||||||
"name": "ipython",
|
"name": "ipython",
|
||||||
"version": 2
|
"version": 3
|
||||||
},
|
},
|
||||||
"file_extension": ".py",
|
"file_extension": ".py",
|
||||||
"mimetype": "text/x-python",
|
"mimetype": "text/x-python",
|
||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython2",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "2.7.6"
|
"version": "3.11.4"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
176
Ui_MainWindow.py
176
Ui_MainWindow.py
|
@ -1,6 +1,6 @@
|
||||||
# -*- coding: utf-8 -*-
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
# Form implementation generated from reading ui file 'MainWindow.ui'
|
# Form implementation generated from reading ui file '/Users/lennlouis/lenn_ws/python_ws/pyqt_data_analysis/MainWindow.ui'
|
||||||
#
|
#
|
||||||
# Created by: PyQt5 UI code generator 5.15.9
|
# Created by: PyQt5 UI code generator 5.15.9
|
||||||
#
|
#
|
||||||
|
@ -43,77 +43,133 @@ class Ui_MainWindow(object):
|
||||||
self.pushButton_Kmeans = QtWidgets.QPushButton(self.widget)
|
self.pushButton_Kmeans = QtWidgets.QPushButton(self.widget)
|
||||||
self.pushButton_Kmeans.setObjectName("pushButton_Kmeans")
|
self.pushButton_Kmeans.setObjectName("pushButton_Kmeans")
|
||||||
self.horizontalLayout_2.addWidget(self.pushButton_Kmeans)
|
self.horizontalLayout_2.addWidget(self.pushButton_Kmeans)
|
||||||
self.pushButton_4 = QtWidgets.QPushButton(self.widget)
|
|
||||||
self.pushButton_4.setObjectName("pushButton_4")
|
|
||||||
self.horizontalLayout_2.addWidget(self.pushButton_4)
|
|
||||||
self.pushButton_5 = QtWidgets.QPushButton(self.widget)
|
|
||||||
self.pushButton_5.setObjectName("pushButton_5")
|
|
||||||
self.horizontalLayout_2.addWidget(self.pushButton_5)
|
|
||||||
self.verticalLayout.addLayout(self.horizontalLayout_2)
|
self.verticalLayout.addLayout(self.horizontalLayout_2)
|
||||||
self.stackedWidget = QtWidgets.QStackedWidget(self.widget)
|
self.stackedWidget = QtWidgets.QStackedWidget(self.widget)
|
||||||
self.stackedWidget.setObjectName("stackedWidget")
|
self.stackedWidget.setObjectName("stackedWidget")
|
||||||
self.page = QtWidgets.QWidget()
|
self.page = QtWidgets.QWidget()
|
||||||
self.page.setObjectName("page")
|
self.page.setObjectName("page")
|
||||||
self.verticalLayout_4 = QtWidgets.QVBoxLayout(self.page)
|
self.verticalLayout_5 = QtWidgets.QVBoxLayout(self.page)
|
||||||
self.verticalLayout_4.setObjectName("verticalLayout_4")
|
self.verticalLayout_5.setObjectName("verticalLayout_5")
|
||||||
self.tableWidget_linear_regression = QtWidgets.QTableWidget(self.page)
|
self.tableWidget_linear_regression = QtWidgets.QTableWidget(self.page)
|
||||||
self.tableWidget_linear_regression.setObjectName("tableWidget_linear_regression")
|
self.tableWidget_linear_regression.setObjectName("tableWidget_linear_regression")
|
||||||
self.tableWidget_linear_regression.setColumnCount(0)
|
self.tableWidget_linear_regression.setColumnCount(0)
|
||||||
self.tableWidget_linear_regression.setRowCount(0)
|
self.tableWidget_linear_regression.setRowCount(0)
|
||||||
self.verticalLayout_4.addWidget(self.tableWidget_linear_regression)
|
self.verticalLayout_5.addWidget(self.tableWidget_linear_regression)
|
||||||
self.verticalLayout_3 = QtWidgets.QVBoxLayout()
|
self.horizontalLayout_5 = QtWidgets.QHBoxLayout()
|
||||||
self.verticalLayout_3.setObjectName("verticalLayout_3")
|
self.horizontalLayout_5.setObjectName("horizontalLayout_5")
|
||||||
|
self.verticalLayout_4 = QtWidgets.QVBoxLayout()
|
||||||
|
self.verticalLayout_4.setObjectName("verticalLayout_4")
|
||||||
self.horizontalLayout_3 = QtWidgets.QHBoxLayout()
|
self.horizontalLayout_3 = QtWidgets.QHBoxLayout()
|
||||||
self.horizontalLayout_3.setSpacing(0)
|
|
||||||
self.horizontalLayout_3.setObjectName("horizontalLayout_3")
|
self.horizontalLayout_3.setObjectName("horizontalLayout_3")
|
||||||
self.checkBox_linear_regression_data_cleaning = QtWidgets.QCheckBox(self.page)
|
self.groupBox = QtWidgets.QGroupBox(self.page)
|
||||||
self.checkBox_linear_regression_data_cleaning.setObjectName("checkBox_linear_regression_data_cleaning")
|
self.groupBox.setObjectName("groupBox")
|
||||||
self.horizontalLayout_3.addWidget(self.checkBox_linear_regression_data_cleaning)
|
self.gridLayout = QtWidgets.QGridLayout(self.groupBox)
|
||||||
self.checkBox_linear_regression_normalize = QtWidgets.QCheckBox(self.page)
|
|
||||||
self.checkBox_linear_regression_normalize.setObjectName("checkBox_linear_regression_normalize")
|
|
||||||
self.horizontalLayout_3.addWidget(self.checkBox_linear_regression_normalize)
|
|
||||||
self.pushButton_linear_regression_preview = QtWidgets.QPushButton(self.page)
|
|
||||||
self.pushButton_linear_regression_preview.setObjectName("pushButton_linear_regression_preview")
|
|
||||||
self.horizontalLayout_3.addWidget(self.pushButton_linear_regression_preview)
|
|
||||||
self.verticalLayout_3.addLayout(self.horizontalLayout_3)
|
|
||||||
self.progressBar_linear_regression = QtWidgets.QProgressBar(self.page)
|
|
||||||
self.progressBar_linear_regression.setProperty("value", 24)
|
|
||||||
self.progressBar_linear_regression.setObjectName("progressBar_linear_regression")
|
|
||||||
self.verticalLayout_3.addWidget(self.progressBar_linear_regression)
|
|
||||||
self.gridLayout = QtWidgets.QGridLayout()
|
|
||||||
self.gridLayout.setObjectName("gridLayout")
|
self.gridLayout.setObjectName("gridLayout")
|
||||||
self.label_linear_regression_original = QtWidgets.QLabel(self.page)
|
self.label_linear_regression_original = QtWidgets.QLabel(self.groupBox)
|
||||||
self.label_linear_regression_original.setObjectName("label_linear_regression_original")
|
self.label_linear_regression_original.setObjectName("label_linear_regression_original")
|
||||||
self.gridLayout.addWidget(self.label_linear_regression_original, 0, 0, 1, 1)
|
self.gridLayout.addWidget(self.label_linear_regression_original, 0, 0, 1, 1)
|
||||||
self.lineEdit = QtWidgets.QLineEdit(self.page)
|
self.lineEdit_linear_regression_original = QtWidgets.QLineEdit(self.groupBox)
|
||||||
self.lineEdit.setObjectName("lineEdit")
|
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Minimum)
|
||||||
self.gridLayout.addWidget(self.lineEdit, 0, 1, 1, 1)
|
sizePolicy.setHorizontalStretch(0)
|
||||||
self.label_linear_regression_original_col = QtWidgets.QLabel(self.page)
|
sizePolicy.setVerticalStretch(0)
|
||||||
self.label_linear_regression_original_col.setObjectName("label_linear_regression_original_col")
|
sizePolicy.setHeightForWidth(self.lineEdit_linear_regression_original.sizePolicy().hasHeightForWidth())
|
||||||
self.gridLayout.addWidget(self.label_linear_regression_original_col, 0, 2, 1, 1)
|
self.lineEdit_linear_regression_original.setSizePolicy(sizePolicy)
|
||||||
self.label_linear_regression_target = QtWidgets.QLabel(self.page)
|
self.lineEdit_linear_regression_original.setObjectName("lineEdit_linear_regression_original")
|
||||||
|
self.gridLayout.addWidget(self.lineEdit_linear_regression_original, 0, 1, 1, 1)
|
||||||
|
self.label_linear_regression_target = QtWidgets.QLabel(self.groupBox)
|
||||||
self.label_linear_regression_target.setObjectName("label_linear_regression_target")
|
self.label_linear_regression_target.setObjectName("label_linear_regression_target")
|
||||||
self.gridLayout.addWidget(self.label_linear_regression_target, 1, 0, 1, 1)
|
self.gridLayout.addWidget(self.label_linear_regression_target, 1, 0, 1, 1)
|
||||||
self.lineEdit_linear_regression_target = QtWidgets.QLineEdit(self.page)
|
self.lineEdit_linear_regression_target = QtWidgets.QLineEdit(self.groupBox)
|
||||||
|
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed)
|
||||||
|
sizePolicy.setHorizontalStretch(0)
|
||||||
|
sizePolicy.setVerticalStretch(0)
|
||||||
|
sizePolicy.setHeightForWidth(self.lineEdit_linear_regression_target.sizePolicy().hasHeightForWidth())
|
||||||
|
self.lineEdit_linear_regression_target.setSizePolicy(sizePolicy)
|
||||||
self.lineEdit_linear_regression_target.setObjectName("lineEdit_linear_regression_target")
|
self.lineEdit_linear_regression_target.setObjectName("lineEdit_linear_regression_target")
|
||||||
self.gridLayout.addWidget(self.lineEdit_linear_regression_target, 1, 1, 1, 1)
|
self.gridLayout.addWidget(self.lineEdit_linear_regression_target, 1, 1, 1, 1)
|
||||||
self.label_linear_regression_target_col = QtWidgets.QLabel(self.page)
|
self.horizontalLayout_3.addWidget(self.groupBox)
|
||||||
self.label_linear_regression_target_col.setObjectName("label_linear_regression_target_col")
|
self.groupBox_2 = QtWidgets.QGroupBox(self.page)
|
||||||
self.gridLayout.addWidget(self.label_linear_regression_target_col, 1, 2, 1, 1)
|
self.groupBox_2.setObjectName("groupBox_2")
|
||||||
self.verticalLayout_3.addLayout(self.gridLayout)
|
self.gridLayout_2 = QtWidgets.QGridLayout(self.groupBox_2)
|
||||||
|
self.gridLayout_2.setObjectName("gridLayout_2")
|
||||||
|
self.label_linear_regression_iter = QtWidgets.QLabel(self.groupBox_2)
|
||||||
|
self.label_linear_regression_iter.setObjectName("label_linear_regression_iter")
|
||||||
|
self.gridLayout_2.addWidget(self.label_linear_regression_iter, 0, 0, 1, 1)
|
||||||
|
self.label_linear_regression_rate = QtWidgets.QLabel(self.groupBox_2)
|
||||||
|
self.label_linear_regression_rate.setObjectName("label_linear_regression_rate")
|
||||||
|
self.gridLayout_2.addWidget(self.label_linear_regression_rate, 1, 0, 1, 1)
|
||||||
|
self.spinBox_linear_regression_iter = QtWidgets.QSpinBox(self.groupBox_2)
|
||||||
|
self.spinBox_linear_regression_iter.setMinimum(1)
|
||||||
|
self.spinBox_linear_regression_iter.setMaximum(10000)
|
||||||
|
self.spinBox_linear_regression_iter.setProperty("value", 500)
|
||||||
|
self.spinBox_linear_regression_iter.setObjectName("spinBox_linear_regression_iter")
|
||||||
|
self.gridLayout_2.addWidget(self.spinBox_linear_regression_iter, 0, 1, 1, 1)
|
||||||
|
self.doubleSpinBox_linear_regression_rate = QtWidgets.QDoubleSpinBox(self.groupBox_2)
|
||||||
|
self.doubleSpinBox_linear_regression_rate.setMaximum(1.0)
|
||||||
|
self.doubleSpinBox_linear_regression_rate.setSingleStep(0.01)
|
||||||
|
self.doubleSpinBox_linear_regression_rate.setProperty("value", 0.03)
|
||||||
|
self.doubleSpinBox_linear_regression_rate.setObjectName("doubleSpinBox_linear_regression_rate")
|
||||||
|
self.gridLayout_2.addWidget(self.doubleSpinBox_linear_regression_rate, 1, 1, 1, 1)
|
||||||
|
self.horizontalLayout_3.addWidget(self.groupBox_2)
|
||||||
|
self.groupBox_3 = QtWidgets.QGroupBox(self.page)
|
||||||
|
self.groupBox_3.setObjectName("groupBox_3")
|
||||||
|
self.gridLayout_3 = QtWidgets.QGridLayout(self.groupBox_3)
|
||||||
|
self.gridLayout_3.setObjectName("gridLayout_3")
|
||||||
|
self.label_linear_regression_ploynmial = QtWidgets.QLabel(self.groupBox_3)
|
||||||
|
self.label_linear_regression_ploynmial.setObjectName("label_linear_regression_ploynmial")
|
||||||
|
self.gridLayout_3.addWidget(self.label_linear_regression_ploynmial, 1, 0, 1, 1)
|
||||||
|
self.label_linear_regression_sinusoid = QtWidgets.QLabel(self.groupBox_3)
|
||||||
|
self.label_linear_regression_sinusoid.setObjectName("label_linear_regression_sinusoid")
|
||||||
|
self.gridLayout_3.addWidget(self.label_linear_regression_sinusoid, 0, 0, 1, 1)
|
||||||
|
self.spinBox_linear_regression_sinusoid = QtWidgets.QSpinBox(self.groupBox_3)
|
||||||
|
self.spinBox_linear_regression_sinusoid.setObjectName("spinBox_linear_regression_sinusoid")
|
||||||
|
self.gridLayout_3.addWidget(self.spinBox_linear_regression_sinusoid, 0, 1, 1, 1)
|
||||||
|
self.spinBox_linear_regression_ploynmial = QtWidgets.QSpinBox(self.groupBox_3)
|
||||||
|
self.spinBox_linear_regression_ploynmial.setObjectName("spinBox_linear_regression_ploynmial")
|
||||||
|
self.gridLayout_3.addWidget(self.spinBox_linear_regression_ploynmial, 1, 1, 1, 1)
|
||||||
|
self.horizontalLayout_3.addWidget(self.groupBox_3)
|
||||||
|
self.verticalLayout_4.addLayout(self.horizontalLayout_3)
|
||||||
self.horizontalLayout_4 = QtWidgets.QHBoxLayout()
|
self.horizontalLayout_4 = QtWidgets.QHBoxLayout()
|
||||||
self.horizontalLayout_4.setObjectName("horizontalLayout_4")
|
self.horizontalLayout_4.setObjectName("horizontalLayout_4")
|
||||||
|
self.label_linear_regression_train_percent = QtWidgets.QLabel(self.page)
|
||||||
|
self.label_linear_regression_train_percent.setObjectName("label_linear_regression_train_percent")
|
||||||
|
self.horizontalLayout_4.addWidget(self.label_linear_regression_train_percent)
|
||||||
|
self.doubleSpinBox_linear_regression_train_percent = QtWidgets.QDoubleSpinBox(self.page)
|
||||||
|
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed)
|
||||||
|
sizePolicy.setHorizontalStretch(0)
|
||||||
|
sizePolicy.setVerticalStretch(0)
|
||||||
|
sizePolicy.setHeightForWidth(self.doubleSpinBox_linear_regression_train_percent.sizePolicy().hasHeightForWidth())
|
||||||
|
self.doubleSpinBox_linear_regression_train_percent.setSizePolicy(sizePolicy)
|
||||||
|
self.doubleSpinBox_linear_regression_train_percent.setMinimum(0.1)
|
||||||
|
self.doubleSpinBox_linear_regression_train_percent.setMaximum(1.0)
|
||||||
|
self.doubleSpinBox_linear_regression_train_percent.setSingleStep(0.1)
|
||||||
|
self.doubleSpinBox_linear_regression_train_percent.setProperty("value", 0.8)
|
||||||
|
self.doubleSpinBox_linear_regression_train_percent.setObjectName("doubleSpinBox_linear_regression_train_percent")
|
||||||
|
self.horizontalLayout_4.addWidget(self.doubleSpinBox_linear_regression_train_percent)
|
||||||
self.pushButton_linear_regression_begin = QtWidgets.QPushButton(self.page)
|
self.pushButton_linear_regression_begin = QtWidgets.QPushButton(self.page)
|
||||||
self.pushButton_linear_regression_begin.setObjectName("pushButton_linear_regression_begin")
|
self.pushButton_linear_regression_begin.setObjectName("pushButton_linear_regression_begin")
|
||||||
self.horizontalLayout_4.addWidget(self.pushButton_linear_regression_begin)
|
self.horizontalLayout_4.addWidget(self.pushButton_linear_regression_begin)
|
||||||
self.pushButton_linear_regression_save = QtWidgets.QPushButton(self.page)
|
self.progressBar_linear_regression = QtWidgets.QProgressBar(self.page)
|
||||||
self.pushButton_linear_regression_save.setObjectName("pushButton_linear_regression_save")
|
self.progressBar_linear_regression.setProperty("value", 24)
|
||||||
self.horizontalLayout_4.addWidget(self.pushButton_linear_regression_save)
|
self.progressBar_linear_regression.setObjectName("progressBar_linear_regression")
|
||||||
self.pushButton_linear_regression_show = QtWidgets.QPushButton(self.page)
|
self.horizontalLayout_4.addWidget(self.progressBar_linear_regression)
|
||||||
|
self.verticalLayout_4.addLayout(self.horizontalLayout_4)
|
||||||
|
self.horizontalLayout_5.addLayout(self.verticalLayout_4)
|
||||||
|
self.groupBox_4 = QtWidgets.QGroupBox(self.page)
|
||||||
|
self.groupBox_4.setObjectName("groupBox_4")
|
||||||
|
self.verticalLayout_3 = QtWidgets.QVBoxLayout(self.groupBox_4)
|
||||||
|
self.verticalLayout_3.setObjectName("verticalLayout_3")
|
||||||
|
self.pushButton_linear_regression_preview = QtWidgets.QPushButton(self.groupBox_4)
|
||||||
|
self.pushButton_linear_regression_preview.setObjectName("pushButton_linear_regression_preview")
|
||||||
|
self.verticalLayout_3.addWidget(self.pushButton_linear_regression_preview)
|
||||||
|
self.pushButton_linear_regression_show = QtWidgets.QPushButton(self.groupBox_4)
|
||||||
self.pushButton_linear_regression_show.setObjectName("pushButton_linear_regression_show")
|
self.pushButton_linear_regression_show.setObjectName("pushButton_linear_regression_show")
|
||||||
self.horizontalLayout_4.addWidget(self.pushButton_linear_regression_show)
|
self.verticalLayout_3.addWidget(self.pushButton_linear_regression_show)
|
||||||
self.verticalLayout_3.addLayout(self.horizontalLayout_4)
|
self.pushButton_linear_regression_save = QtWidgets.QPushButton(self.groupBox_4)
|
||||||
self.verticalLayout_4.addLayout(self.verticalLayout_3)
|
self.pushButton_linear_regression_save.setObjectName("pushButton_linear_regression_save")
|
||||||
|
self.verticalLayout_3.addWidget(self.pushButton_linear_regression_save)
|
||||||
|
self.horizontalLayout_5.addWidget(self.groupBox_4)
|
||||||
|
self.verticalLayout_5.addLayout(self.horizontalLayout_5)
|
||||||
self.stackedWidget.addWidget(self.page)
|
self.stackedWidget.addWidget(self.page)
|
||||||
self.page_2 = QtWidgets.QWidget()
|
self.page_2 = QtWidgets.QWidget()
|
||||||
self.page_2.setObjectName("page_2")
|
self.page_2.setObjectName("page_2")
|
||||||
|
@ -128,7 +184,7 @@ class Ui_MainWindow(object):
|
||||||
self.verticalLayout_2.addWidget(self.widget)
|
self.verticalLayout_2.addWidget(self.widget)
|
||||||
MainWindow.setCentralWidget(self.centralwidget)
|
MainWindow.setCentralWidget(self.centralwidget)
|
||||||
self.menubar = QtWidgets.QMenuBar(MainWindow)
|
self.menubar = QtWidgets.QMenuBar(MainWindow)
|
||||||
self.menubar.setGeometry(QtCore.QRect(0, 0, 800, 23))
|
self.menubar.setGeometry(QtCore.QRect(0, 0, 800, 24))
|
||||||
self.menubar.setObjectName("menubar")
|
self.menubar.setObjectName("menubar")
|
||||||
self.menu_file = QtWidgets.QMenu(self.menubar)
|
self.menu_file = QtWidgets.QMenu(self.menubar)
|
||||||
self.menu_file.setObjectName("menu_file")
|
self.menu_file.setObjectName("menu_file")
|
||||||
|
@ -173,18 +229,23 @@ class Ui_MainWindow(object):
|
||||||
self.pushButton_filepath_clear.setText(_translate("MainWindow", "清除"))
|
self.pushButton_filepath_clear.setText(_translate("MainWindow", "清除"))
|
||||||
self.pushButton_linear_regression.setText(_translate("MainWindow", "线性回归"))
|
self.pushButton_linear_regression.setText(_translate("MainWindow", "线性回归"))
|
||||||
self.pushButton_Kmeans.setText(_translate("MainWindow", "聚类算法"))
|
self.pushButton_Kmeans.setText(_translate("MainWindow", "聚类算法"))
|
||||||
self.pushButton_4.setText(_translate("MainWindow", "PushButton"))
|
self.groupBox.setTitle(_translate("MainWindow", "标签"))
|
||||||
self.pushButton_5.setText(_translate("MainWindow", "PushButton"))
|
|
||||||
self.checkBox_linear_regression_data_cleaning.setText(_translate("MainWindow", "数据清洗"))
|
|
||||||
self.checkBox_linear_regression_normalize.setText(_translate("MainWindow", "数据归一化"))
|
|
||||||
self.pushButton_linear_regression_preview.setText(_translate("MainWindow", "开始预处理"))
|
|
||||||
self.label_linear_regression_original.setText(_translate("MainWindow", "原始数据"))
|
self.label_linear_regression_original.setText(_translate("MainWindow", "原始数据"))
|
||||||
self.label_linear_regression_original_col.setText(_translate("MainWindow", "列"))
|
self.lineEdit_linear_regression_original.setPlaceholderText(_translate("MainWindow", "原始数据Title"))
|
||||||
self.label_linear_regression_target.setText(_translate("MainWindow", "目标数据"))
|
self.label_linear_regression_target.setText(_translate("MainWindow", "目标数据"))
|
||||||
self.label_linear_regression_target_col.setText(_translate("MainWindow", "列"))
|
self.lineEdit_linear_regression_target.setPlaceholderText(_translate("MainWindow", "目标数据Title"))
|
||||||
|
self.groupBox_2.setTitle(_translate("MainWindow", "学习参数"))
|
||||||
|
self.label_linear_regression_iter.setText(_translate("MainWindow", "迭代次数"))
|
||||||
|
self.label_linear_regression_rate.setText(_translate("MainWindow", "学习率"))
|
||||||
|
self.groupBox_3.setTitle(_translate("MainWindow", "特征变换"))
|
||||||
|
self.label_linear_regression_ploynmial.setText(_translate("MainWindow", "多项式变换"))
|
||||||
|
self.label_linear_regression_sinusoid.setText(_translate("MainWindow", "正弦变换"))
|
||||||
|
self.label_linear_regression_train_percent.setText(_translate("MainWindow", "学习数据比例"))
|
||||||
self.pushButton_linear_regression_begin.setText(_translate("MainWindow", "开始拟合"))
|
self.pushButton_linear_regression_begin.setText(_translate("MainWindow", "开始拟合"))
|
||||||
self.pushButton_linear_regression_save.setText(_translate("MainWindow", "保存数据"))
|
self.groupBox_4.setTitle(_translate("MainWindow", "结果处理"))
|
||||||
|
self.pushButton_linear_regression_preview.setText(_translate("MainWindow", "开始预测"))
|
||||||
self.pushButton_linear_regression_show.setText(_translate("MainWindow", "显示结果"))
|
self.pushButton_linear_regression_show.setText(_translate("MainWindow", "显示结果"))
|
||||||
|
self.pushButton_linear_regression_save.setText(_translate("MainWindow", "保存数据"))
|
||||||
self.menu_file.setTitle(_translate("MainWindow", "文件"))
|
self.menu_file.setTitle(_translate("MainWindow", "文件"))
|
||||||
self.menu_about.setTitle(_translate("MainWindow", "关于"))
|
self.menu_about.setTitle(_translate("MainWindow", "关于"))
|
||||||
self.menu.setTitle(_translate("MainWindow", "设置"))
|
self.menu.setTitle(_translate("MainWindow", "设置"))
|
||||||
|
@ -194,4 +255,3 @@ class Ui_MainWindow(object):
|
||||||
self.actionAbout.setText(_translate("MainWindow", "About"))
|
self.actionAbout.setText(_translate("MainWindow", "About"))
|
||||||
self.actionExit.setText(_translate("MainWindow", "Exit"))
|
self.actionExit.setText(_translate("MainWindow", "Exit"))
|
||||||
self.actionNumber_Head.setText(_translate("MainWindow", "Number Head"))
|
self.actionNumber_Head.setText(_translate("MainWindow", "Number Head"))
|
||||||
|
|
||||||
|
|
|
@ -1,93 +0,0 @@
|
||||||
import numpy as np
|
|
||||||
from utils.features import prepare_for_training
|
|
||||||
|
|
||||||
class LinearRegression:
|
|
||||||
|
|
||||||
def __init__(self,data,labels,polynomial_degree = 0,sinusoid_degree = 0,normalize_data=True):
|
|
||||||
"""
|
|
||||||
1.对数据进行预处理操作
|
|
||||||
2.先得到所有的特征个数
|
|
||||||
3.初始化参数矩阵
|
|
||||||
"""
|
|
||||||
(data_processed,
|
|
||||||
features_mean,
|
|
||||||
features_deviation) = prepare_for_training(data, polynomial_degree, sinusoid_degree,normalize_data=True)
|
|
||||||
|
|
||||||
self.data = data_processed
|
|
||||||
self.labels = labels
|
|
||||||
self.features_mean = features_mean
|
|
||||||
self.features_deviation = features_deviation
|
|
||||||
self.polynomial_degree = polynomial_degree
|
|
||||||
self.sinusoid_degree = sinusoid_degree
|
|
||||||
self.normalize_data = normalize_data
|
|
||||||
|
|
||||||
num_features = self.data.shape[1]
|
|
||||||
self.theta = np.zeros((num_features,1))
|
|
||||||
|
|
||||||
def train(self,alpha,num_iterations = 500):
|
|
||||||
"""
|
|
||||||
训练模块,执行梯度下降
|
|
||||||
"""
|
|
||||||
cost_history = self.gradient_descent(alpha,num_iterations)
|
|
||||||
return self.theta,cost_history
|
|
||||||
|
|
||||||
def gradient_descent(self,alpha,num_iterations):
|
|
||||||
"""
|
|
||||||
实际迭代模块,会迭代num_iterations次
|
|
||||||
"""
|
|
||||||
cost_history = []
|
|
||||||
for _ in range(num_iterations):
|
|
||||||
self.gradient_step(alpha)
|
|
||||||
cost_history.append(self.cost_function(self.data,self.labels))
|
|
||||||
return cost_history
|
|
||||||
|
|
||||||
|
|
||||||
def gradient_step(self,alpha):
|
|
||||||
"""
|
|
||||||
梯度下降参数更新计算方法,注意是矩阵运算
|
|
||||||
"""
|
|
||||||
num_examples = self.data.shape[0]
|
|
||||||
prediction = LinearRegression.hypothesis(self.data,self.theta)
|
|
||||||
delta = prediction - self.labels
|
|
||||||
theta = self.theta
|
|
||||||
theta = theta - alpha*(1/num_examples)*(np.dot(delta.T,self.data)).T
|
|
||||||
self.theta = theta
|
|
||||||
|
|
||||||
|
|
||||||
def cost_function(self,data,labels):
|
|
||||||
"""
|
|
||||||
损失计算方法
|
|
||||||
"""
|
|
||||||
num_examples = data.shape[0]
|
|
||||||
delta = LinearRegression.hypothesis(self.data,self.theta) - labels
|
|
||||||
cost = (1/2)*np.dot(delta.T,delta)/num_examples
|
|
||||||
return cost[0][0]
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def hypothesis(data,theta):
|
|
||||||
predictions = np.dot(data,theta)
|
|
||||||
return predictions
|
|
||||||
|
|
||||||
def get_cost(self,data,labels):
|
|
||||||
data_processed = prepare_for_training(data,
|
|
||||||
self.polynomial_degree,
|
|
||||||
self.sinusoid_degree,
|
|
||||||
self.normalize_data
|
|
||||||
)[0]
|
|
||||||
|
|
||||||
return self.cost_function(data_processed,labels)
|
|
||||||
def predict(self,data):
|
|
||||||
"""
|
|
||||||
用训练的参数模型,与预测得到回归值结果
|
|
||||||
"""
|
|
||||||
data_processed = prepare_for_training(data,
|
|
||||||
self.polynomial_degree,
|
|
||||||
self.sinusoid_degree,
|
|
||||||
self.normalize_data
|
|
||||||
)[0]
|
|
||||||
|
|
||||||
predictions = LinearRegression.hypothesis(data_processed,self.theta)
|
|
||||||
|
|
||||||
return predictions
|
|
File diff suppressed because one or more lines are too long
|
@ -1,151 +0,0 @@
|
||||||
sepal_length,sepal_width,petal_length,petal_width,class
|
|
||||||
5.1,3.5,1.4,0.2,SETOSA
|
|
||||||
4.9,3.0,1.4,0.2,SETOSA
|
|
||||||
4.7,3.2,1.3,0.2,SETOSA
|
|
||||||
4.6,3.1,1.5,0.2,SETOSA
|
|
||||||
5.0,3.6,1.4,0.2,SETOSA
|
|
||||||
5.4,3.9,1.7,0.4,SETOSA
|
|
||||||
4.6,3.4,1.4,0.3,SETOSA
|
|
||||||
5.0,3.4,1.5,0.2,SETOSA
|
|
||||||
4.4,2.9,1.4,0.2,SETOSA
|
|
||||||
4.9,3.1,1.5,0.1,SETOSA
|
|
||||||
5.4,3.7,1.5,0.2,SETOSA
|
|
||||||
4.8,3.4,1.6,0.2,SETOSA
|
|
||||||
4.8,3.0,1.4,0.1,SETOSA
|
|
||||||
4.3,3.0,1.1,0.1,SETOSA
|
|
||||||
5.8,4.0,1.2,0.2,SETOSA
|
|
||||||
5.7,4.4,1.5,0.4,SETOSA
|
|
||||||
5.4,3.9,1.3,0.4,SETOSA
|
|
||||||
5.1,3.5,1.4,0.3,SETOSA
|
|
||||||
5.7,3.8,1.7,0.3,SETOSA
|
|
||||||
5.1,3.8,1.5,0.3,SETOSA
|
|
||||||
5.4,3.4,1.7,0.2,SETOSA
|
|
||||||
5.1,3.7,1.5,0.4,SETOSA
|
|
||||||
4.6,3.6,1.0,0.2,SETOSA
|
|
||||||
5.1,3.3,1.7,0.5,SETOSA
|
|
||||||
4.8,3.4,1.9,0.2,SETOSA
|
|
||||||
5.0,3.0,1.6,0.2,SETOSA
|
|
||||||
5.0,3.4,1.6,0.4,SETOSA
|
|
||||||
5.2,3.5,1.5,0.2,SETOSA
|
|
||||||
5.2,3.4,1.4,0.2,SETOSA
|
|
||||||
4.7,3.2,1.6,0.2,SETOSA
|
|
||||||
4.8,3.1,1.6,0.2,SETOSA
|
|
||||||
5.4,3.4,1.5,0.4,SETOSA
|
|
||||||
5.2,4.1,1.5,0.1,SETOSA
|
|
||||||
5.5,4.2,1.4,0.2,SETOSA
|
|
||||||
4.9,3.1,1.5,0.1,SETOSA
|
|
||||||
5.0,3.2,1.2,0.2,SETOSA
|
|
||||||
5.5,3.5,1.3,0.2,SETOSA
|
|
||||||
4.9,3.1,1.5,0.1,SETOSA
|
|
||||||
4.4,3.0,1.3,0.2,SETOSA
|
|
||||||
5.1,3.4,1.5,0.2,SETOSA
|
|
||||||
5.0,3.5,1.3,0.3,SETOSA
|
|
||||||
4.5,2.3,1.3,0.3,SETOSA
|
|
||||||
4.4,3.2,1.3,0.2,SETOSA
|
|
||||||
5.0,3.5,1.6,0.6,SETOSA
|
|
||||||
5.1,3.8,1.9,0.4,SETOSA
|
|
||||||
4.8,3.0,1.4,0.3,SETOSA
|
|
||||||
5.1,3.8,1.6,0.2,SETOSA
|
|
||||||
4.6,3.2,1.4,0.2,SETOSA
|
|
||||||
5.3,3.7,1.5,0.2,SETOSA
|
|
||||||
5.0,3.3,1.4,0.2,SETOSA
|
|
||||||
7.0,3.2,4.7,1.4,VERSICOLOR
|
|
||||||
6.4,3.2,4.5,1.5,VERSICOLOR
|
|
||||||
6.9,3.1,4.9,1.5,VERSICOLOR
|
|
||||||
5.5,2.3,4.0,1.3,VERSICOLOR
|
|
||||||
6.5,2.8,4.6,1.5,VERSICOLOR
|
|
||||||
5.7,2.8,4.5,1.3,VERSICOLOR
|
|
||||||
6.3,3.3,4.7,1.6,VERSICOLOR
|
|
||||||
4.9,2.4,3.3,1.0,VERSICOLOR
|
|
||||||
6.6,2.9,4.6,1.3,VERSICOLOR
|
|
||||||
5.2,2.7,3.9,1.4,VERSICOLOR
|
|
||||||
5.0,2.0,3.5,1.0,VERSICOLOR
|
|
||||||
5.9,3.0,4.2,1.5,VERSICOLOR
|
|
||||||
6.0,2.2,4.0,1.0,VERSICOLOR
|
|
||||||
6.1,2.9,4.7,1.4,VERSICOLOR
|
|
||||||
5.6,2.9,3.6,1.3,VERSICOLOR
|
|
||||||
6.7,3.1,4.4,1.4,VERSICOLOR
|
|
||||||
5.6,3.0,4.5,1.5,VERSICOLOR
|
|
||||||
5.8,2.7,4.1,1.0,VERSICOLOR
|
|
||||||
6.2,2.2,4.5,1.5,VERSICOLOR
|
|
||||||
5.6,2.5,3.9,1.1,VERSICOLOR
|
|
||||||
5.9,3.2,4.8,1.8,VERSICOLOR
|
|
||||||
6.1,2.8,4.0,1.3,VERSICOLOR
|
|
||||||
6.3,2.5,4.9,1.5,VERSICOLOR
|
|
||||||
6.1,2.8,4.7,1.2,VERSICOLOR
|
|
||||||
6.4,2.9,4.3,1.3,VERSICOLOR
|
|
||||||
6.6,3.0,4.4,1.4,VERSICOLOR
|
|
||||||
6.8,2.8,4.8,1.4,VERSICOLOR
|
|
||||||
6.7,3.0,5.0,1.7,VERSICOLOR
|
|
||||||
6.0,2.9,4.5,1.5,VERSICOLOR
|
|
||||||
5.7,2.6,3.5,1.0,VERSICOLOR
|
|
||||||
5.5,2.4,3.8,1.1,VERSICOLOR
|
|
||||||
5.5,2.4,3.7,1.0,VERSICOLOR
|
|
||||||
5.8,2.7,3.9,1.2,VERSICOLOR
|
|
||||||
6.0,2.7,5.1,1.6,VERSICOLOR
|
|
||||||
5.4,3.0,4.5,1.5,VERSICOLOR
|
|
||||||
6.0,3.4,4.5,1.6,VERSICOLOR
|
|
||||||
6.7,3.1,4.7,1.5,VERSICOLOR
|
|
||||||
6.3,2.3,4.4,1.3,VERSICOLOR
|
|
||||||
5.6,3.0,4.1,1.3,VERSICOLOR
|
|
||||||
5.5,2.5,4.0,1.3,VERSICOLOR
|
|
||||||
5.5,2.6,4.4,1.2,VERSICOLOR
|
|
||||||
6.1,3.0,4.6,1.4,VERSICOLOR
|
|
||||||
5.8,2.6,4.0,1.2,VERSICOLOR
|
|
||||||
5.0,2.3,3.3,1.0,VERSICOLOR
|
|
||||||
5.6,2.7,4.2,1.3,VERSICOLOR
|
|
||||||
5.7,3.0,4.2,1.2,VERSICOLOR
|
|
||||||
5.7,2.9,4.2,1.3,VERSICOLOR
|
|
||||||
6.2,2.9,4.3,1.3,VERSICOLOR
|
|
||||||
5.1,2.5,3.0,1.1,VERSICOLOR
|
|
||||||
5.7,2.8,4.1,1.3,VERSICOLOR
|
|
||||||
6.3,3.3,6.0,2.5,VIRGINICA
|
|
||||||
5.8,2.7,5.1,1.9,VIRGINICA
|
|
||||||
7.1,3.0,5.9,2.1,VIRGINICA
|
|
||||||
6.3,2.9,5.6,1.8,VIRGINICA
|
|
||||||
6.5,3.0,5.8,2.2,VIRGINICA
|
|
||||||
7.6,3.0,6.6,2.1,VIRGINICA
|
|
||||||
4.9,2.5,4.5,1.7,VIRGINICA
|
|
||||||
7.3,2.9,6.3,1.8,VIRGINICA
|
|
||||||
6.7,2.5,5.8,1.8,VIRGINICA
|
|
||||||
7.2,3.6,6.1,2.5,VIRGINICA
|
|
||||||
6.5,3.2,5.1,2.0,VIRGINICA
|
|
||||||
6.4,2.7,5.3,1.9,VIRGINICA
|
|
||||||
6.8,3.0,5.5,2.1,VIRGINICA
|
|
||||||
5.7,2.5,5.0,2.0,VIRGINICA
|
|
||||||
5.8,2.8,5.1,2.4,VIRGINICA
|
|
||||||
6.4,3.2,5.3,2.3,VIRGINICA
|
|
||||||
6.5,3.0,5.5,1.8,VIRGINICA
|
|
||||||
7.7,3.8,6.7,2.2,VIRGINICA
|
|
||||||
7.7,2.6,6.9,2.3,VIRGINICA
|
|
||||||
6.0,2.2,5.0,1.5,VIRGINICA
|
|
||||||
6.9,3.2,5.7,2.3,VIRGINICA
|
|
||||||
5.6,2.8,4.9,2.0,VIRGINICA
|
|
||||||
7.7,2.8,6.7,2.0,VIRGINICA
|
|
||||||
6.3,2.7,4.9,1.8,VIRGINICA
|
|
||||||
6.7,3.3,5.7,2.1,VIRGINICA
|
|
||||||
7.2,3.2,6.0,1.8,VIRGINICA
|
|
||||||
6.2,2.8,4.8,1.8,VIRGINICA
|
|
||||||
6.1,3.0,4.9,1.8,VIRGINICA
|
|
||||||
6.4,2.8,5.6,2.1,VIRGINICA
|
|
||||||
7.2,3.0,5.8,1.6,VIRGINICA
|
|
||||||
7.4,2.8,6.1,1.9,VIRGINICA
|
|
||||||
7.9,3.8,6.4,2.0,VIRGINICA
|
|
||||||
6.4,2.8,5.6,2.2,VIRGINICA
|
|
||||||
6.3,2.8,5.1,1.5,VIRGINICA
|
|
||||||
6.1,2.6,5.6,1.4,VIRGINICA
|
|
||||||
7.7,3.0,6.1,2.3,VIRGINICA
|
|
||||||
6.3,3.4,5.6,2.4,VIRGINICA
|
|
||||||
6.4,3.1,5.5,1.8,VIRGINICA
|
|
||||||
6.0,3.0,4.8,1.8,VIRGINICA
|
|
||||||
6.9,3.1,5.4,2.1,VIRGINICA
|
|
||||||
6.7,3.1,5.6,2.4,VIRGINICA
|
|
||||||
6.9,3.1,5.1,2.3,VIRGINICA
|
|
||||||
5.8,2.7,5.1,1.9,VIRGINICA
|
|
||||||
6.8,3.2,5.9,2.3,VIRGINICA
|
|
||||||
6.7,3.3,5.7,2.5,VIRGINICA
|
|
||||||
6.7,3.0,5.2,2.3,VIRGINICA
|
|
||||||
6.3,2.5,5.0,1.9,VIRGINICA
|
|
||||||
6.5,3.0,5.2,2.0,VIRGINICA
|
|
||||||
6.2,3.4,5.4,2.3,VIRGINICA
|
|
||||||
5.9,3.0,5.1,1.8,VIRGINICA
|
|
|
|
@ -1,119 +0,0 @@
|
||||||
param_1,param_2,validity
|
|
||||||
0.051267,0.69956,1
|
|
||||||
-0.092742,0.68494,1
|
|
||||||
-0.21371,0.69225,1
|
|
||||||
-0.375,0.50219,1
|
|
||||||
-0.51325,0.46564,1
|
|
||||||
-0.52477,0.2098,1
|
|
||||||
-0.39804,0.034357,1
|
|
||||||
-0.30588,-0.19225,1
|
|
||||||
0.016705,-0.40424,1
|
|
||||||
0.13191,-0.51389,1
|
|
||||||
0.38537,-0.56506,1
|
|
||||||
0.52938,-0.5212,1
|
|
||||||
0.63882,-0.24342,1
|
|
||||||
0.73675,-0.18494,1
|
|
||||||
0.54666,0.48757,1
|
|
||||||
0.322,0.5826,1
|
|
||||||
0.16647,0.53874,1
|
|
||||||
-0.046659,0.81652,1
|
|
||||||
-0.17339,0.69956,1
|
|
||||||
-0.47869,0.63377,1
|
|
||||||
-0.60541,0.59722,1
|
|
||||||
-0.62846,0.33406,1
|
|
||||||
-0.59389,0.005117,1
|
|
||||||
-0.42108,-0.27266,1
|
|
||||||
-0.11578,-0.39693,1
|
|
||||||
0.20104,-0.60161,1
|
|
||||||
0.46601,-0.53582,1
|
|
||||||
0.67339,-0.53582,1
|
|
||||||
-0.13882,0.54605,1
|
|
||||||
-0.29435,0.77997,1
|
|
||||||
-0.26555,0.96272,1
|
|
||||||
-0.16187,0.8019,1
|
|
||||||
-0.17339,0.64839,1
|
|
||||||
-0.28283,0.47295,1
|
|
||||||
-0.36348,0.31213,1
|
|
||||||
-0.30012,0.027047,1
|
|
||||||
-0.23675,-0.21418,1
|
|
||||||
-0.06394,-0.18494,1
|
|
||||||
0.062788,-0.16301,1
|
|
||||||
0.22984,-0.41155,1
|
|
||||||
0.2932,-0.2288,1
|
|
||||||
0.48329,-0.18494,1
|
|
||||||
0.64459,-0.14108,1
|
|
||||||
0.46025,0.012427,1
|
|
||||||
0.6273,0.15863,1
|
|
||||||
0.57546,0.26827,1
|
|
||||||
0.72523,0.44371,1
|
|
||||||
0.22408,0.52412,1
|
|
||||||
0.44297,0.67032,1
|
|
||||||
0.322,0.69225,1
|
|
||||||
0.13767,0.57529,1
|
|
||||||
-0.0063364,0.39985,1
|
|
||||||
-0.092742,0.55336,1
|
|
||||||
-0.20795,0.35599,1
|
|
||||||
-0.20795,0.17325,1
|
|
||||||
-0.43836,0.21711,1
|
|
||||||
-0.21947,-0.016813,1
|
|
||||||
-0.13882,-0.27266,1
|
|
||||||
0.18376,0.93348,0
|
|
||||||
0.22408,0.77997,0
|
|
||||||
0.29896,0.61915,0
|
|
||||||
0.50634,0.75804,0
|
|
||||||
0.61578,0.7288,0
|
|
||||||
0.60426,0.59722,0
|
|
||||||
0.76555,0.50219,0
|
|
||||||
0.92684,0.3633,0
|
|
||||||
0.82316,0.27558,0
|
|
||||||
0.96141,0.085526,0
|
|
||||||
0.93836,0.012427,0
|
|
||||||
0.86348,-0.082602,0
|
|
||||||
0.89804,-0.20687,0
|
|
||||||
0.85196,-0.36769,0
|
|
||||||
0.82892,-0.5212,0
|
|
||||||
0.79435,-0.55775,0
|
|
||||||
0.59274,-0.7405,0
|
|
||||||
0.51786,-0.5943,0
|
|
||||||
0.46601,-0.41886,0
|
|
||||||
0.35081,-0.57968,0
|
|
||||||
0.28744,-0.76974,0
|
|
||||||
0.085829,-0.75512,0
|
|
||||||
0.14919,-0.57968,0
|
|
||||||
-0.13306,-0.4481,0
|
|
||||||
-0.40956,-0.41155,0
|
|
||||||
-0.39228,-0.25804,0
|
|
||||||
-0.74366,-0.25804,0
|
|
||||||
-0.69758,0.041667,0
|
|
||||||
-0.75518,0.2902,0
|
|
||||||
-0.69758,0.68494,0
|
|
||||||
-0.4038,0.70687,0
|
|
||||||
-0.38076,0.91886,0
|
|
||||||
-0.50749,0.90424,0
|
|
||||||
-0.54781,0.70687,0
|
|
||||||
0.10311,0.77997,0
|
|
||||||
0.057028,0.91886,0
|
|
||||||
-0.10426,0.99196,0
|
|
||||||
-0.081221,1.1089,0
|
|
||||||
0.28744,1.087,0
|
|
||||||
0.39689,0.82383,0
|
|
||||||
0.63882,0.88962,0
|
|
||||||
0.82316,0.66301,0
|
|
||||||
0.67339,0.64108,0
|
|
||||||
1.0709,0.10015,0
|
|
||||||
-0.046659,-0.57968,0
|
|
||||||
-0.23675,-0.63816,0
|
|
||||||
-0.15035,-0.36769,0
|
|
||||||
-0.49021,-0.3019,0
|
|
||||||
-0.46717,-0.13377,0
|
|
||||||
-0.28859,-0.060673,0
|
|
||||||
-0.61118,-0.067982,0
|
|
||||||
-0.66302,-0.21418,0
|
|
||||||
-0.59965,-0.41886,0
|
|
||||||
-0.72638,-0.082602,0
|
|
||||||
-0.83007,0.31213,0
|
|
||||||
-0.72062,0.53874,0
|
|
||||||
-0.59389,0.49488,0
|
|
||||||
-0.48445,0.99927,0
|
|
||||||
-0.0063364,0.99927,0
|
|
||||||
0.63265,-0.030612,0
|
|
|
File diff suppressed because it is too large
Load Diff
|
@ -1,251 +0,0 @@
|
||||||
y,x
|
|
||||||
97.58776,1.000000
|
|
||||||
97.76344,2.000000
|
|
||||||
96.56705,3.000000
|
|
||||||
92.52037,4.000000
|
|
||||||
91.15097,5.000000
|
|
||||||
95.21728,6.000000
|
|
||||||
90.21355,7.000000
|
|
||||||
89.29235,8.000000
|
|
||||||
91.51479,9.000000
|
|
||||||
89.60966,10.000000
|
|
||||||
86.56187,11.00000
|
|
||||||
85.55316,12.00000
|
|
||||||
87.13054,13.00000
|
|
||||||
85.67940,14.00000
|
|
||||||
80.04851,15.00000
|
|
||||||
82.18925,16.00000
|
|
||||||
87.24081,17.00000
|
|
||||||
80.79407,18.00000
|
|
||||||
81.28570,19.00000
|
|
||||||
81.56940,20.00000
|
|
||||||
79.22715,21.00000
|
|
||||||
79.43275,22.00000
|
|
||||||
77.90195,23.00000
|
|
||||||
76.75468,24.00000
|
|
||||||
77.17377,25.00000
|
|
||||||
74.27348,26.00000
|
|
||||||
73.11900,27.00000
|
|
||||||
73.84826,28.00000
|
|
||||||
72.47870,29.00000
|
|
||||||
71.92292,30.00000
|
|
||||||
66.92176,31.00000
|
|
||||||
67.93835,32.00000
|
|
||||||
69.56207,33.00000
|
|
||||||
69.07066,34.00000
|
|
||||||
66.53983,35.00000
|
|
||||||
63.87883,36.00000
|
|
||||||
69.71537,37.00000
|
|
||||||
63.60588,38.00000
|
|
||||||
63.37154,39.00000
|
|
||||||
60.01835,40.00000
|
|
||||||
62.67481,41.00000
|
|
||||||
65.80666,42.00000
|
|
||||||
59.14304,43.00000
|
|
||||||
56.62951,44.00000
|
|
||||||
61.21785,45.00000
|
|
||||||
54.38790,46.00000
|
|
||||||
62.93443,47.00000
|
|
||||||
56.65144,48.00000
|
|
||||||
57.13362,49.00000
|
|
||||||
58.29689,50.00000
|
|
||||||
58.91744,51.00000
|
|
||||||
58.50172,52.00000
|
|
||||||
55.22885,53.00000
|
|
||||||
58.30375,54.00000
|
|
||||||
57.43237,55.00000
|
|
||||||
51.69407,56.00000
|
|
||||||
49.93132,57.00000
|
|
||||||
53.70760,58.00000
|
|
||||||
55.39712,59.00000
|
|
||||||
52.89709,60.00000
|
|
||||||
52.31649,61.00000
|
|
||||||
53.98720,62.00000
|
|
||||||
53.54158,63.00000
|
|
||||||
56.45046,64.00000
|
|
||||||
51.32276,65.00000
|
|
||||||
53.11676,66.00000
|
|
||||||
53.28631,67.00000
|
|
||||||
49.80555,68.00000
|
|
||||||
54.69564,69.00000
|
|
||||||
56.41627,70.00000
|
|
||||||
54.59362,71.00000
|
|
||||||
54.38520,72.00000
|
|
||||||
60.15354,73.00000
|
|
||||||
59.78773,74.00000
|
|
||||||
60.49995,75.00000
|
|
||||||
65.43885,76.00000
|
|
||||||
60.70001,77.00000
|
|
||||||
63.71865,78.00000
|
|
||||||
67.77139,79.00000
|
|
||||||
64.70934,80.00000
|
|
||||||
70.78193,81.00000
|
|
||||||
70.38651,82.00000
|
|
||||||
77.22359,83.00000
|
|
||||||
79.52665,84.00000
|
|
||||||
80.13077,85.00000
|
|
||||||
85.67823,86.00000
|
|
||||||
85.20647,87.00000
|
|
||||||
90.24548,88.00000
|
|
||||||
93.61953,89.00000
|
|
||||||
95.86509,90.00000
|
|
||||||
93.46992,91.00000
|
|
||||||
105.8137,92.00000
|
|
||||||
107.8269,93.00000
|
|
||||||
114.0607,94.00000
|
|
||||||
115.5019,95.00000
|
|
||||||
118.5110,96.00000
|
|
||||||
119.6177,97.00000
|
|
||||||
122.1940,98.00000
|
|
||||||
126.9903,99.00000
|
|
||||||
125.7005,100.00000
|
|
||||||
123.7447,101.00000
|
|
||||||
130.6543,102.00000
|
|
||||||
129.7168,103.00000
|
|
||||||
131.8240,104.00000
|
|
||||||
131.8759,105.00000
|
|
||||||
131.9994,106.0000
|
|
||||||
132.1221,107.0000
|
|
||||||
133.4414,108.0000
|
|
||||||
133.8252,109.0000
|
|
||||||
133.6695,110.0000
|
|
||||||
128.2851,111.0000
|
|
||||||
126.5182,112.0000
|
|
||||||
124.7550,113.0000
|
|
||||||
118.4016,114.0000
|
|
||||||
122.0334,115.0000
|
|
||||||
115.2059,116.0000
|
|
||||||
118.7856,117.0000
|
|
||||||
110.7387,118.0000
|
|
||||||
110.2003,119.0000
|
|
||||||
105.17290,120.0000
|
|
||||||
103.44720,121.0000
|
|
||||||
94.54280,122.0000
|
|
||||||
94.40526,123.0000
|
|
||||||
94.57964,124.0000
|
|
||||||
88.76605,125.0000
|
|
||||||
87.28747,126.0000
|
|
||||||
92.50443,127.0000
|
|
||||||
86.27997,128.0000
|
|
||||||
82.44307,129.0000
|
|
||||||
80.47367,130.0000
|
|
||||||
78.36608,131.0000
|
|
||||||
78.74307,132.0000
|
|
||||||
76.12786,133.0000
|
|
||||||
79.13108,134.0000
|
|
||||||
76.76062,135.0000
|
|
||||||
77.60769,136.0000
|
|
||||||
77.76633,137.0000
|
|
||||||
81.28220,138.0000
|
|
||||||
79.74307,139.0000
|
|
||||||
81.97964,140.0000
|
|
||||||
80.02952,141.0000
|
|
||||||
85.95232,142.0000
|
|
||||||
85.96838,143.0000
|
|
||||||
79.94789,144.0000
|
|
||||||
87.17023,145.0000
|
|
||||||
90.50992,146.0000
|
|
||||||
93.23373,147.0000
|
|
||||||
89.14803,148.0000
|
|
||||||
93.11492,149.0000
|
|
||||||
90.34337,150.0000
|
|
||||||
93.69421,151.0000
|
|
||||||
95.74256,152.0000
|
|
||||||
91.85105,153.0000
|
|
||||||
96.74503,154.0000
|
|
||||||
87.60996,155.0000
|
|
||||||
90.47012,156.0000
|
|
||||||
88.11690,157.0000
|
|
||||||
85.70673,158.0000
|
|
||||||
85.01361,159.0000
|
|
||||||
78.53040,160.0000
|
|
||||||
81.34148,161.0000
|
|
||||||
75.19295,162.0000
|
|
||||||
72.66115,163.0000
|
|
||||||
69.85504,164.0000
|
|
||||||
66.29476,165.0000
|
|
||||||
63.58502,166.0000
|
|
||||||
58.33847,167.0000
|
|
||||||
57.50766,168.0000
|
|
||||||
52.80498,169.0000
|
|
||||||
50.79319,170.0000
|
|
||||||
47.03490,171.0000
|
|
||||||
46.47090,172.0000
|
|
||||||
43.09016,173.0000
|
|
||||||
34.11531,174.0000
|
|
||||||
39.28235,175.0000
|
|
||||||
32.68386,176.0000
|
|
||||||
30.44056,177.0000
|
|
||||||
31.98932,178.0000
|
|
||||||
23.63330,179.0000
|
|
||||||
23.69643,180.0000
|
|
||||||
20.26812,181.0000
|
|
||||||
19.07074,182.0000
|
|
||||||
17.59544,183.0000
|
|
||||||
16.08785,184.0000
|
|
||||||
18.94267,185.0000
|
|
||||||
18.61354,186.0000
|
|
||||||
17.25800,187.0000
|
|
||||||
16.62285,188.0000
|
|
||||||
13.48367,189.0000
|
|
||||||
15.37647,190.0000
|
|
||||||
13.47208,191.0000
|
|
||||||
15.96188,192.0000
|
|
||||||
12.32547,193.0000
|
|
||||||
16.33880,194.0000
|
|
||||||
10.438330,195.0000
|
|
||||||
9.628715,196.0000
|
|
||||||
13.12268,197.0000
|
|
||||||
8.772417,198.0000
|
|
||||||
11.76143,199.0000
|
|
||||||
12.55020,200.0000
|
|
||||||
11.33108,201.0000
|
|
||||||
11.20493,202.0000
|
|
||||||
7.816916,203.0000
|
|
||||||
6.800675,204.0000
|
|
||||||
14.26581,205.0000
|
|
||||||
10.66285,206.0000
|
|
||||||
8.911574,207.0000
|
|
||||||
11.56733,208.0000
|
|
||||||
11.58207,209.0000
|
|
||||||
11.59071,210.0000
|
|
||||||
9.730134,211.0000
|
|
||||||
11.44237,212.0000
|
|
||||||
11.22912,213.0000
|
|
||||||
10.172130,214.0000
|
|
||||||
12.50905,215.0000
|
|
||||||
6.201493,216.0000
|
|
||||||
9.019605,217.0000
|
|
||||||
10.80607,218.0000
|
|
||||||
13.09625,219.0000
|
|
||||||
3.914271,220.0000
|
|
||||||
9.567886,221.0000
|
|
||||||
8.038448,222.0000
|
|
||||||
10.231040,223.0000
|
|
||||||
9.367410,224.0000
|
|
||||||
7.695971,225.0000
|
|
||||||
6.118575,226.0000
|
|
||||||
8.793207,227.0000
|
|
||||||
7.796692,228.0000
|
|
||||||
12.45065,229.0000
|
|
||||||
10.61601,230.0000
|
|
||||||
6.001003,231.0000
|
|
||||||
6.765098,232.0000
|
|
||||||
8.764653,233.0000
|
|
||||||
4.586418,234.0000
|
|
||||||
8.390783,235.0000
|
|
||||||
7.209202,236.0000
|
|
||||||
10.012090,237.0000
|
|
||||||
7.327461,238.0000
|
|
||||||
6.525136,239.0000
|
|
||||||
2.840065,240.0000
|
|
||||||
10.323710,241.0000
|
|
||||||
4.790035,242.0000
|
|
||||||
8.376431,243.0000
|
|
||||||
6.263980,244.0000
|
|
||||||
2.705892,245.0000
|
|
||||||
8.362109,246.0000
|
|
||||||
8.983507,247.0000
|
|
||||||
3.362469,248.0000
|
|
||||||
1.182678,249.0000
|
|
||||||
4.875312,250.0000
|
|
|
|
@ -1,308 +0,0 @@
|
||||||
Latency (ms),Throughput (mb/s),Anomaly
|
|
||||||
13.04681516870484,14.7411524132184,0
|
|
||||||
13.4085201853932,13.76326960024047,0
|
|
||||||
14.19591481245491,15.85318112982812,0
|
|
||||||
14.91470076531303,16.17425986715807,0
|
|
||||||
13.5766996051752,14.04284943755652,0
|
|
||||||
13.92240250750028,13.40646893666083,0
|
|
||||||
12.82213163903098,14.22318782380161,0
|
|
||||||
15.6763661470048,15.89169137219994,0
|
|
||||||
16.16287532482238,16.20299807446642,0
|
|
||||||
12.66645094909174,14.8990837351338,1
|
|
||||||
13.98454962300191,12.95800821585463,0
|
|
||||||
14.06146043109355,14.54908874282629,0
|
|
||||||
13.38988671215899,15.56202141787754,0
|
|
||||||
13.39350474623341,15.62698794188875,0
|
|
||||||
13.97900926099814,13.28061494266342,0
|
|
||||||
14.16791258723419,14.46583828507579,0
|
|
||||||
13.96176145283657,14.75182421254904,0
|
|
||||||
14.45899735355037,15.07018562997125,0
|
|
||||||
14.58476371878708,15.82743423785702,0
|
|
||||||
12.07427073619131,13.06711089796514,0
|
|
||||||
13.54912940444922,15.53827676982062,0
|
|
||||||
13.98625041879221,14.78776303583677,0
|
|
||||||
14.96991942049244,16.51830493015889,0
|
|
||||||
14.2557659665841,15.29427277420701,0
|
|
||||||
15.33425000108006,16.12469988952639,0
|
|
||||||
15.63504869777692,16.49094476663806,0
|
|
||||||
13.62081291712303,15.45947525058772,0
|
|
||||||
14.81548484709227,15.33956526603583,0
|
|
||||||
14.59318972857327,14.61238105671215,0
|
|
||||||
14.48906754712418,15.64087368177291,0
|
|
||||||
15.52704801171451,14.63568031226173,0
|
|
||||||
13.97506707358789,14.76531532927648,0
|
|
||||||
12.95364954381841,14.82328512087584,0
|
|
||||||
12.88787444214799,15.07607810133002,0
|
|
||||||
16.02178960565569,16.25746991816081,0
|
|
||||||
14.9262927071427,16.29725072434191,0
|
|
||||||
12.46559400363085,14.18321211753596,0
|
|
||||||
14.08466278107714,14.44192203204038,0
|
|
||||||
14.53717522545769,14.24224248113181,0
|
|
||||||
14.22250851601845,15.42386187610343,0
|
|
||||||
14.51908495978717,13.99871698993444,0
|
|
||||||
13.11971433616167,14.66081845898369,0
|
|
||||||
14.5108889424642,15.30465148682366,0
|
|
||||||
14.18262426407451,15.3938896849634,0
|
|
||||||
14.71651844926282,15.73369667477785,0
|
|
||||||
13.83454699853918,16.17138034441191,0
|
|
||||||
16.00076179182642,14.69232970320203,0
|
|
||||||
14.12702715242892,15.91462774747984,0
|
|
||||||
13.84578546855034,14.34139348861173,0
|
|
||||||
15.41426110064101,16.24243182463628,1
|
|
||||||
13.25273726696165,15.00861363933526,0
|
|
||||||
13.66840226015763,14.35886035673854,0
|
|
||||||
13.77534773921765,14.73808512203812,0
|
|
||||||
14.12582342640922,14.92980922624493,0
|
|
||||||
14.54724604324321,15.6333944514067,0
|
|
||||||
14.15258077112493,14.53622696521789,0
|
|
||||||
14.12648161131633,15.34467591276852,0
|
|
||||||
14.26324658304056,14.98556918087115,0
|
|
||||||
14.77324331862399,15.25299473774317,0
|
|
||||||
14.20969933686442,16.14572569071713,0
|
|
||||||
13.260655152992,15.48016214411599,0
|
|
||||||
14.25273350867239,15.03134360663839,0
|
|
||||||
12.92124446791387,13.19321540142361,0
|
|
||||||
13.852431292546,13.33213110580615,0
|
|
||||||
13.96856800302965,13.19821236714215,0
|
|
||||||
13.25206981975186,15.36846390294601,0
|
|
||||||
13.70449633962696,13.21431301976872,0
|
|
||||||
14.5087472134072,15.46051652161006,0
|
|
||||||
15.69042695638351,16.48168851978138,0
|
|
||||||
12.95598191982515,12.43703005897334,0
|
|
||||||
13.59312604041728,14.84189902611636,0
|
|
||||||
15.12874638631439,17.14981222613881,0
|
|
||||||
14.26705036670259,15.67551973639503,0
|
|
||||||
15.6614505451442,14.81146451457414,0
|
|
||||||
14.33962672797097,15.49202297710026,0
|
|
||||||
14.2761765458781,14.70590693250814,0
|
|
||||||
14.86049072335336,15.59000779027686,0
|
|
||||||
14.10414479623351,15.1805045637764,0
|
|
||||||
15.98828286381979,15.62105187028486,0
|
|
||||||
13.47473582792461,15.59307141917535,0
|
|
||||||
13.77637601475249,14.99194426684731,0
|
|
||||||
12.82770875129005,15.67136906874635,0
|
|
||||||
13.67165486007913,15.11954159126301,0
|
|
||||||
15.38704283906103,15.56936935237784,0
|
|
||||||
15.54320933642332,15.51543150058866,0
|
|
||||||
13.85306094119846,15.60672436869602,0
|
|
||||||
13.62525245784644,14.45209462876985,0
|
|
||||||
15.0157784412311,14.91664093008973,0
|
|
||||||
13.83645753449745,15.24940725360926,0
|
|
||||||
14.22694438547307,14.3479843622948,0
|
|
||||||
13.23742625416296,14.61058751286003,0
|
|
||||||
13.38482919115422,14.7331933025011,0
|
|
||||||
13.87130103241151,14.97399468636979,0
|
|
||||||
12.39445846815594,14.64448216946588,0
|
|
||||||
14.32186557845068,14.52890629439163,0
|
|
||||||
15.82965092460402,15.71619455432355,0
|
|
||||||
15.80177302202355,16.01808914480403,0
|
|
||||||
14.69751200330076,14.11198748714029,0
|
|
||||||
14.70598656653535,16.46040295414171,0
|
|
||||||
13.59156859810395,14.91975097196414,0
|
|
||||||
12.29984538869378,14.77119467910275,0
|
|
||||||
13.3990474777037,16.11912910518291,0
|
|
||||||
15.13112869806696,15.90031130320181,0
|
|
||||||
15.38581197702793,15.71453967469415,0
|
|
||||||
15.45487421920634,15.4404224240544,0
|
|
||||||
13.74951530855867,15.26803135994583,0
|
|
||||||
15.69914333094722,16.05595814533895,0
|
|
||||||
14.80580490719942,14.33258926354469,0
|
|
||||||
15.17222942648117,16.70624397729834,0
|
|
||||||
11.24915511828765,15.13295896107001,0
|
|
||||||
13.88773906521638,14.48548132472444,0
|
|
||||||
15.3258701791002,16.58524064023295,0
|
|
||||||
12.97517063349011,15.1605677140184,0
|
|
||||||
14.07427780835002,17.21973519125371,0
|
|
||||||
14.1820256369139,17.83351945487566,0
|
|
||||||
12.23970014041095,14.72866833837743,0
|
|
||||||
14.82555960703615,15.94500684833057,0
|
|
||||||
13.09763368416417,16.23036500469445,0
|
|
||||||
13.85758877756093,15.03526838191721,0
|
|
||||||
15.52502523459987,16.78653607805479,0
|
|
||||||
15.31499528329094,14.56835427536349,0
|
|
||||||
14.03034873517879,15.6633618769716,0
|
|
||||||
14.42312994571211,14.94109334872472,0
|
|
||||||
13.63615118835241,14.96411634434718,0
|
|
||||||
14.53477942776931,13.35611764012331,0
|
|
||||||
14.61566223678644,14.15241034694619,0
|
|
||||||
13.08085544352481,14.0284594118694,0
|
|
||||||
14.93928677902786,14.54933745884242,0
|
|
||||||
16.0271266262212,15.70965830468461,0
|
|
||||||
14.31925037139242,15.11762658185582,0
|
|
||||||
14.86153307492049,14.28458412390706,0
|
|
||||||
14.01432032507764,16.77971266133154,0
|
|
||||||
13.40765469906171,14.60041190939531,0
|
|
||||||
13.0795973186072,14.19389917316378,0
|
|
||||||
12.68820688788819,13.81109597020173,0
|
|
||||||
14.19232756586644,15.36498178724437,0
|
|
||||||
14.86589365075524,14.47138789706538,0
|
|
||||||
13.39350297747264,14.34389892642248,0
|
|
||||||
13.58659142682796,14.39148496395445,0
|
|
||||||
13.10219289551651,14.3760326021477,0
|
|
||||||
14.54176555566262,16.37233995317341,0
|
|
||||||
14.25602703003231,15.0423494965284,0
|
|
||||||
16.18754760471493,16.36145253974863,0
|
|
||||||
13.63292362573135,13.62886893815872,0
|
|
||||||
14.65349334618363,14.97649220824924,0
|
|
||||||
12.61911799757794,16.77214314245786,0
|
|
||||||
13.03427729514449,14.25689090988086,0
|
|
||||||
10.85940051666349,14.47914434225415,0
|
|
||||||
12.93486070587027,14.60746677979927,0
|
|
||||||
13.9922676551586,14.96212808248882,0
|
|
||||||
12.57248704338531,15.1972734968139,0
|
|
||||||
15.68266703007037,16.22123922102406,0
|
|
||||||
13.2125815156299,14.3518273677709,0
|
|
||||||
13.98975002194823,14.52445650352669,0
|
|
||||||
13.4662664096024,13.65765529406475,0
|
|
||||||
13.13166385488746,15.79882584075226,0
|
|
||||||
14.35439254719252,15.02329268379058,0
|
|
||||||
13.55329410888779,13.73218768633878,0
|
|
||||||
12.98628429130503,14.80983707085099,0
|
|
||||||
14.37264883162727,14.95148191190331,0
|
|
||||||
13.58869050224715,15.19778174710474,0
|
|
||||||
12.26002251889708,15.61364103922988,0
|
|
||||||
13.66602493759934,16.44517365387813,0
|
|
||||||
14.34554567080519,15.44883765222099,0
|
|
||||||
14.60667497581217,15.77655361118647,0
|
|
||||||
14.15369523977195,16.57440586446113,0
|
|
||||||
14.04899502017924,14.39078838248393,0
|
|
||||||
14.06857464220482,14.62364257375797,0
|
|
||||||
15.88890082127304,16.33705609429303,0
|
|
||||||
13.97601419894874,15.84206442894244,0
|
|
||||||
10.88221341356124,13.46166188373757,0
|
|
||||||
13.90920312008345,14.97657577218348,0
|
|
||||||
12.36776146202978,15.14204982137499,0
|
|
||||||
15.16765639256333,15.51933856946829,0
|
|
||||||
15.3376951724287,14.23319145087297,0
|
|
||||||
13.55057689653119,15.73044061233337,0
|
|
||||||
13.57918656724497,15.47264441338775,0
|
|
||||||
14.24479089854792,15.0850911865811,0
|
|
||||||
15.33086296717245,15.71142599198902,0
|
|
||||||
15.91714892779239,15.15651432878437,0
|
|
||||||
13.85421253890297,15.32125758133508,0
|
|
||||||
14.08736591098981,14.30728373787297,0
|
|
||||||
12.63610997338858,15.65066101888946,0
|
|
||||||
14.36282756033598,13.87195409310256,0
|
|
||||||
14.50066606012271,14.61759024545319,0
|
|
||||||
13.96984547008964,16.17341605305203,0
|
|
||||||
15.13133128099397,15.28924849061305,0
|
|
||||||
15.15300231315136,14.01362830007739,0
|
|
||||||
13.31011939341444,14.39060274697614,0
|
|
||||||
14.25712172586539,14.29705004451436,0
|
|
||||||
13.71613134707139,13.52733470384027,0
|
|
||||||
15.70094057818437,15.99611428697285,0
|
|
||||||
13.38943515399727,14.36513422537798,0
|
|
||||||
14.14088666467278,13.97440554314796,0
|
|
||||||
14.84487049785213,14.01695105963744,0
|
|
||||||
12.70489590338878,14.27293037161499,0
|
|
||||||
14.95353525235777,14.73218902472499,0
|
|
||||||
14.28114117782965,14.61262377516035,0
|
|
||||||
13.06799073973982,14.83286345035982,0
|
|
||||||
13.60279699846308,12.20295198971654,0
|
|
||||||
12.68816488185228,15.81141680713469,0
|
|
||||||
13.88291727981215,14.11808370066965,0
|
|
||||||
14.016482216113,14.33509982485053,0
|
|
||||||
15.36576550135049,15.82610475260424,0
|
|
||||||
13.57764756126836,14.88045533202498,0
|
|
||||||
13.3918924208501,14.34497756139911,0
|
|
||||||
13.69362090262048,15.92189939882443,0
|
|
||||||
12.87853442397187,13.20174479842375,0
|
|
||||||
13.69916365173765,15.41800069841461,0
|
|
||||||
14.01609081001448,15.82165925226776,0
|
|
||||||
14.5899650464961,16.38090675134464,0
|
|
||||||
15.00784342040606,15.50954333819685,0
|
|
||||||
14.05950746445452,13.75788684204651,0
|
|
||||||
14.46114683681014,13.34425721343066,0
|
|
||||||
14.64474777063343,15.03905866347516,0
|
|
||||||
13.85478898285457,15.86614260965412,0
|
|
||||||
14.2814175097121,14.02340696081207,0
|
|
||||||
14.93304554162803,14.32639552072927,0
|
|
||||||
13.7693080678919,16.51310530416839,0
|
|
||||||
13.44404345182867,15.07922662749323,0
|
|
||||||
14.0317928593353,14.40986664465888,0
|
|
||||||
13.81946840229293,15.58676798397279,0
|
|
||||||
16.50656640573653,15.22029747467542,0
|
|
||||||
12.20423230665472,14.32106064914233,0
|
|
||||||
14.8819298948981,16.36162230554352,0
|
|
||||||
15.16030999546341,15.14972042192441,0
|
|
||||||
11.78759609450762,14.55034168613148,0
|
|
||||||
12.88388298331717,14.57250347912669,0
|
|
||||||
13.62023705917705,16.42369250161395,0
|
|
||||||
14.53049363223479,15.44664319460541,0
|
|
||||||
12.64616608049998,15.10838775257841,0
|
|
||||||
15.54763373107359,16.43238820991158,0
|
|
||||||
14.4007699774828,15.21258204276164,0
|
|
||||||
15.21058389990948,14.93547994178749,0
|
|
||||||
15.06173440367518,15.11740665636805,0
|
|
||||||
14.86214589875373,14.70177771082854,0
|
|
||||||
15.40451989437227,15.34490711864667,0
|
|
||||||
13.79430574831448,14.68727111247282,0
|
|
||||||
14.63390271757003,16.30082803685785,0
|
|
||||||
12.45687580804446,15.54617986485219,0
|
|
||||||
13.99759772841731,16.73594542008409,0
|
|
||||||
12.93253733568772,12.62389976814524,0
|
|
||||||
13.70345190616539,14.71480993356161,0
|
|
||||||
13.12395594125503,15.44848980937747,0
|
|
||||||
13.81691009423219,14.09233539217894,0
|
|
||||||
13.02489337092878,14.25050251544228,0
|
|
||||||
14.53425534561566,15.76596516545384,0
|
|
||||||
13.25186260458783,16.3225231885698,0
|
|
||||||
13.23657554891477,15.33696609589177,0
|
|
||||||
12.1297131595538,12.66688846478064,0
|
|
||||||
14.3808873556303,16.03087164666765,0
|
|
||||||
15.98239721601976,15.52399453253037,0
|
|
||||||
13.75107909980303,13.64320737566979,0
|
|
||||||
13.35730012174231,13.42431786138274,0
|
|
||||||
13.08559089708043,14.86775905977197,0
|
|
||||||
13.6117330216296,14.86806413838196,0
|
|
||||||
15.1776173709485,14.15354188009321,0
|
|
||||||
14.15456588767872,15.28746897631645,0
|
|
||||||
13.22531906267953,13.9598546965538,0
|
|
||||||
13.94151500958564,14.76023193066396,0
|
|
||||||
15.39066478902675,15.71412823472551,0
|
|
||||||
13.17642606705518,13.67395694240669,0
|
|
||||||
13.38689005901117,14.66536821990745,0
|
|
||||||
15.15888821036137,14.78211270885843,0
|
|
||||||
14.55599224830758,14.04946255637684,0
|
|
||||||
14.62692885570043,14.29592015439668,0
|
|
||||||
13.28624407169681,15.6581260669439,0
|
|
||||||
13.8154823515179,14.1716943145893,0
|
|
||||||
14.3109896419094,16.25419059506493,0
|
|
||||||
13.53597112272297,15.77020127180871,0
|
|
||||||
14.80103055297733,13.81813140471321,0
|
|
||||||
13.77274485542839,14.64955360893938,0
|
|
||||||
13.76510156692244,15.02311286948475,0
|
|
||||||
14.05349835921094,13.93946896423697,0
|
|
||||||
15.30905390162218,16.04190604522437,0
|
|
||||||
13.15523771144825,16.9212211680188,0
|
|
||||||
12.69940390796505,13.99916733869651,0
|
|
||||||
14.3679922537568,16.75782353966251,0
|
|
||||||
13.2632541853177,14.09898705600851,0
|
|
||||||
11.91253508924009,14.61325734486844,0
|
|
||||||
13.37000592461161,15.18268143261131,0
|
|
||||||
15.99450697482097,15.4532938283601,0
|
|
||||||
14.15764860588238,13.77083846575649,0
|
|
||||||
14.96982662482653,15.59222552688896,0
|
|
||||||
14.75068711060737,15.46889187883478,0
|
|
||||||
13.33027919659259,14.34699591207669,0
|
|
||||||
13.05002153442813,14.68726188711367,0
|
|
||||||
13.77642646984253,14.23618563920568,0
|
|
||||||
15.17426585206286,15.5095749119089,0
|
|
||||||
14.21251759323552,15.08270517066944,0
|
|
||||||
13.82089482923982,15.61146315929325,0
|
|
||||||
14.12355955034152,14.95509753853501,0
|
|
||||||
14.54752171050364,14.85861945287413,0
|
|
||||||
14.09944359402792,16.03131199865159,0
|
|
||||||
14.57730180008498,14.25667659137451,0
|
|
||||||
14.52331832390665,14.2300499886642,0
|
|
||||||
14.30044704017983,15.26643299159799,0
|
|
||||||
14.55839285912062,15.48691913661183,0
|
|
||||||
14.22494186934392,15.86117827216267,0
|
|
||||||
12.04029344338111,13.34483350304919,0
|
|
||||||
13.07931049306772,9.347878119065356,1
|
|
||||||
21.7271340215587,4.126232224310076,1
|
|
||||||
12.4766288158932,14.4593696654036,1
|
|
||||||
19.5825727723877,10.4116189967773,1
|
|
||||||
23.33986752737173,16.29887355272053,1
|
|
||||||
18.2611884383863,17.9783089957873,1
|
|
||||||
4.752612823293772,24.35040724802435,1
|
|
|
|
@ -1,156 +0,0 @@
|
||||||
"Country","Happiness.Rank","Happiness.Score","Whisker.high","Whisker.low","Economy..GDP.per.Capita.","Family","Health..Life.Expectancy.","Freedom","Generosity","Trust..Government.Corruption.","Dystopia.Residual"
|
|
||||||
"Norway",1,7.53700017929077,7.59444482058287,7.47955553799868,1.61646318435669,1.53352355957031,0.796666502952576,0.635422587394714,0.36201223731041,0.315963834524155,2.27702665328979
|
|
||||||
"Denmark",2,7.52199983596802,7.58172806486487,7.46227160707116,1.48238301277161,1.55112159252167,0.792565524578094,0.626006722450256,0.355280488729477,0.40077006816864,2.31370735168457
|
|
||||||
"Iceland",3,7.50400018692017,7.62203047305346,7.38596990078688,1.480633020401,1.6105740070343,0.833552122116089,0.627162635326385,0.475540220737457,0.153526559472084,2.32271528244019
|
|
||||||
"Switzerland",4,7.49399995803833,7.56177242040634,7.42622749567032,1.56497955322266,1.51691174507141,0.858131289482117,0.620070576667786,0.290549278259277,0.367007285356522,2.2767162322998
|
|
||||||
"Finland",5,7.4689998626709,7.52754207581282,7.41045764952898,1.44357192516327,1.5402467250824,0.80915766954422,0.617950856685638,0.24548277258873,0.38261154294014,2.4301815032959
|
|
||||||
"Netherlands",6,7.3769998550415,7.42742584124207,7.32657386884093,1.50394463539124,1.42893922328949,0.810696125030518,0.585384488105774,0.470489829778671,0.282661825418472,2.29480409622192
|
|
||||||
"Canada",7,7.31599998474121,7.38440283536911,7.24759713411331,1.47920441627502,1.48134899139404,0.83455765247345,0.611100912094116,0.435539722442627,0.287371516227722,2.18726444244385
|
|
||||||
"New Zealand",8,7.31400012969971,7.3795104418695,7.24848981752992,1.40570604801178,1.54819512367249,0.816759705543518,0.614062130451202,0.500005125999451,0.382816702127457,2.0464563369751
|
|
||||||
"Sweden",9,7.28399991989136,7.34409487739205,7.22390496239066,1.49438726902008,1.47816216945648,0.830875158309937,0.612924098968506,0.385399252176285,0.384398728609085,2.09753799438477
|
|
||||||
"Australia",10,7.28399991989136,7.35665122494102,7.2113486148417,1.484414935112,1.51004195213318,0.84388679265976,0.601607382297516,0.477699249982834,0.301183730363846,2.06521081924438
|
|
||||||
"Israel",11,7.21299982070923,7.27985325649381,7.14614638492465,1.37538242340088,1.37628996372223,0.83840399980545,0.405988603830338,0.330082654953003,0.0852421000599861,2.80175733566284
|
|
||||||
"Costa Rica",12,7.0789999961853,7.16811166629195,6.98988832607865,1.10970628261566,1.41640365123749,0.759509265422821,0.580131649971008,0.214613229036331,0.100106589496136,2.89863920211792
|
|
||||||
"Austria",13,7.00600004196167,7.07066981211305,6.94133027181029,1.48709726333618,1.4599449634552,0.815328419208527,0.567766189575195,0.316472321748734,0.221060365438461,2.1385064125061
|
|
||||||
"United States",14,6.99300003051758,7.07465674757957,6.91134331345558,1.54625928401947,1.41992056369781,0.77428662776947,0.505740523338318,0.392578780651093,0.135638788342476,2.2181134223938
|
|
||||||
"Ireland",15,6.97700023651123,7.04335166752338,6.91064880549908,1.53570663928986,1.55823111534119,0.80978262424469,0.573110342025757,0.42785832285881,0.29838815331459,1.77386903762817
|
|
||||||
"Germany",16,6.95100021362305,7.00538156926632,6.89661885797977,1.48792338371277,1.47252035140991,0.798950731754303,0.562511384487152,0.336269170045853,0.276731938123703,2.01576995849609
|
|
||||||
"Belgium",17,6.89099979400635,6.95582075044513,6.82617883756757,1.46378076076508,1.46231269836426,0.818091869354248,0.539770722389221,0.231503337621689,0.251343131065369,2.12421035766602
|
|
||||||
"Luxembourg",18,6.86299991607666,6.92368609987199,6.80231373228133,1.74194359779358,1.45758366584778,0.845089495182037,0.59662789106369,0.283180981874466,0.31883442401886,1.61951208114624
|
|
||||||
"United Kingdom",19,6.71400022506714,6.78379176110029,6.64420868903399,1.44163393974304,1.49646008014679,0.805335938930511,0.508190035820007,0.492774158716202,0.265428066253662,1.70414352416992
|
|
||||||
"Chile",20,6.65199995040894,6.73925056010485,6.56474934071302,1.25278460979462,1.28402495384216,0.819479703903198,0.376895278692245,0.326662421226501,0.0822879821062088,2.50958585739136
|
|
||||||
"United Arab Emirates",21,6.64799976348877,6.72204730376601,6.57395222321153,1.62634336948395,1.26641023159027,0.726798236370087,0.60834527015686,0.3609419465065,0.324489563703537,1.734703540802
|
|
||||||
"Brazil",22,6.63500022888184,6.72546950161457,6.5445309561491,1.10735321044922,1.43130600452423,0.616552352905273,0.437453746795654,0.16234989464283,0.111092761158943,2.76926708221436
|
|
||||||
"Czech Republic",23,6.60900020599365,6.68386246263981,6.5341379493475,1.35268235206604,1.43388521671295,0.754444003105164,0.490946173667908,0.0881067588925362,0.0368729270994663,2.45186185836792
|
|
||||||
"Argentina",24,6.59899997711182,6.69008508607745,6.50791486814618,1.18529546260834,1.44045114517212,0.695137083530426,0.494519203901291,0.109457060694695,0.059739887714386,2.61400532722473
|
|
||||||
"Mexico",25,6.57800006866455,6.67114890769124,6.48485122963786,1.15318381786346,1.210862159729,0.709978997707367,0.412730008363724,0.120990432798862,0.132774114608765,2.83715486526489
|
|
||||||
"Singapore",26,6.57200002670288,6.63672306910157,6.50727698430419,1.69227766990662,1.35381436347961,0.949492394924164,0.549840569496155,0.345965981483459,0.46430778503418,1.21636199951172
|
|
||||||
"Malta",27,6.52699995040894,6.59839677289128,6.45560312792659,1.34327983856201,1.48841166496277,0.821944236755371,0.588767051696777,0.574730575084686,0.153066068887711,1.55686283111572
|
|
||||||
"Uruguay",28,6.4539999961853,6.54590621769428,6.36209377467632,1.21755969524384,1.41222786903381,0.719216823577881,0.57939225435257,0.175096929073334,0.178061872720718,2.17240953445435
|
|
||||||
"Guatemala",29,6.4539999961853,6.56687397271395,6.34112601965666,0.872001945972443,1.25558519363403,0.540239989757538,0.531310617923737,0.283488392829895,0.0772232785820961,2.89389109611511
|
|
||||||
"Panama",30,6.4520001411438,6.55713071614504,6.34686956614256,1.23374843597412,1.37319254875183,0.706156134605408,0.550026834011078,0.21055693924427,0.070983923971653,2.30719995498657
|
|
||||||
"France",31,6.44199991226196,6.51576780244708,6.36823202207685,1.43092346191406,1.38777685165405,0.844465851783752,0.470222115516663,0.129762306809425,0.172502428293228,2.00595474243164
|
|
||||||
"Thailand",32,6.42399978637695,6.50911685571074,6.33888271704316,1.12786877155304,1.42579245567322,0.647239029407501,0.580200731754303,0.572123110294342,0.0316127352416515,2.03950834274292
|
|
||||||
"Taiwan Province of China",33,6.42199993133545,6.49459602192044,6.34940384075046,1.43362653255463,1.38456535339355,0.793984234333038,0.361466586589813,0.258360475301743,0.0638292357325554,2.1266074180603
|
|
||||||
"Spain",34,6.40299987792969,6.4710548453033,6.33494491055608,1.38439786434174,1.53209090232849,0.888960599899292,0.408781230449677,0.190133571624756,0.0709140971302986,1.92775774002075
|
|
||||||
"Qatar",35,6.375,6.56847681432962,6.18152318567038,1.87076568603516,1.27429687976837,0.710098087787628,0.604130983352661,0.330473870038986,0.439299255609512,1.1454644203186
|
|
||||||
"Colombia",36,6.35699987411499,6.45202005416155,6.26197969406843,1.07062232494354,1.4021829366684,0.595027923583984,0.477487415075302,0.149014472961426,0.0466687418520451,2.61606812477112
|
|
||||||
"Saudi Arabia",37,6.3439998626709,6.44416661202908,6.24383311331272,1.53062355518341,1.28667759895325,0.590148329734802,0.449750572443008,0.147616013884544,0.27343225479126,2.0654296875
|
|
||||||
"Trinidad and Tobago",38,6.16800022125244,6.38153389066458,5.95446655184031,1.36135590076447,1.3802285194397,0.519983291625977,0.518630743026733,0.325296461582184,0.00896481610834599,2.05324745178223
|
|
||||||
"Kuwait",39,6.10500001907349,6.1919569888711,6.01804304927588,1.63295245170593,1.25969874858856,0.632105708122253,0.496337592601776,0.228289797902107,0.215159550309181,1.64042520523071
|
|
||||||
"Slovakia",40,6.09800004959106,6.1773484121263,6.01865168705583,1.32539355754852,1.50505924224854,0.712732911109924,0.295817464590073,0.136544480919838,0.0242108516395092,2.09777665138245
|
|
||||||
"Bahrain",41,6.08699989318848,6.17898906782269,5.99501071855426,1.48841226100922,1.32311046123505,0.653133034706116,0.536746919155121,0.172668486833572,0.257042169570923,1.65614938735962
|
|
||||||
"Malaysia",42,6.08400011062622,6.17997963652015,5.98802058473229,1.29121541976929,1.28464603424072,0.618784427642822,0.402264982461929,0.416608929634094,0.0656007081270218,2.00444889068604
|
|
||||||
"Nicaragua",43,6.07100009918213,6.18658360034227,5.95541659802198,0.737299203872681,1.28721570968628,0.653095960617065,0.447551846504211,0.301674216985703,0.130687981843948,2.51393055915833
|
|
||||||
"Ecuador",44,6.00799989700317,6.10584767535329,5.91015211865306,1.00082039833069,1.28616881370544,0.685636222362518,0.4551981985569,0.150112465023994,0.140134647488594,2.29035258293152
|
|
||||||
"El Salvador",45,6.00299978256226,6.108635122329,5.89736444279552,0.909784495830536,1.18212509155273,0.596018552780151,0.432452529668808,0.0782579854130745,0.0899809598922729,2.7145938873291
|
|
||||||
"Poland",46,5.97300004959106,6.05390834122896,5.89209175795317,1.29178786277771,1.44571197032928,0.699475347995758,0.520342111587524,0.158465966582298,0.0593078061938286,1.79772281646729
|
|
||||||
"Uzbekistan",47,5.97100019454956,6.06553757295012,5.876462816149,0.786441087722778,1.54896914958954,0.498272627592087,0.658248662948608,0.415983647108078,0.246528223156929,1.81691360473633
|
|
||||||
"Italy",48,5.96400022506714,6.04273690596223,5.88526354417205,1.39506661891937,1.44492328166962,0.853144347667694,0.256450712680817,0.17278964817524,0.0280280914157629,1.81331205368042
|
|
||||||
"Russia",49,5.96299982070923,6.03027490749955,5.89572473391891,1.28177809715271,1.46928238868713,0.547349333763123,0.373783111572266,0.0522638224065304,0.0329628810286522,2.20560741424561
|
|
||||||
"Belize",50,5.95599985122681,6.19724231779575,5.71475738465786,0.907975316047668,1.08141779899597,0.450191766023636,0.547509372234344,0.240015640854836,0.0965810716152191,2.63195562362671
|
|
||||||
"Japan",51,5.92000007629395,5.99071944460273,5.84928070798516,1.41691517829895,1.43633782863617,0.913475871086121,0.505625545978546,0.12057276815176,0.163760736584663,1.36322355270386
|
|
||||||
"Lithuania",52,5.90199995040894,5.98266964137554,5.82133025944233,1.31458234786987,1.47351610660553,0.62894994020462,0.234231784939766,0.010164656676352,0.0118656428530812,2.22844052314758
|
|
||||||
"Algeria",53,5.87200021743774,5.97828643366694,5.76571400120854,1.09186446666718,1.1462174654007,0.617584645748138,0.233335807919502,0.0694366469979286,0.146096110343933,2.56760382652283
|
|
||||||
"Latvia",54,5.84999990463257,5.92026353821158,5.77973627105355,1.26074862480164,1.40471494197845,0.638566970825195,0.325707912445068,0.153074786067009,0.0738427266478539,1.99365520477295
|
|
||||||
"South Korea",55,5.83799982070923,5.92255902826786,5.7534406131506,1.40167844295502,1.12827444076538,0.900214076042175,0.257921665906906,0.206674367189407,0.0632826685905457,1.88037800788879
|
|
||||||
"Moldova",56,5.83799982070923,5.90837083846331,5.76762880295515,0.728870630264282,1.25182557106018,0.589465200901031,0.240729048848152,0.208779126405716,0.0100912861526012,2.80780839920044
|
|
||||||
"Romania",57,5.82499980926514,5.91969415679574,5.73030546173453,1.21768391132355,1.15009129047394,0.685158312320709,0.457003742456436,0.133519917726517,0.00438790069893003,2.17683148384094
|
|
||||||
"Bolivia",58,5.82299995422363,5.9039769025147,5.74202300593257,0.833756566047668,1.22761905193329,0.473630249500275,0.558732926845551,0.22556072473526,0.0604777261614799,2.44327902793884
|
|
||||||
"Turkmenistan",59,5.82200002670288,5.88518087550998,5.75881917789578,1.13077676296234,1.49314916133881,0.437726080417633,0.41827192902565,0.24992498755455,0.259270340204239,1.83290982246399
|
|
||||||
"Kazakhstan",60,5.81899976730347,5.90364177465439,5.73435775995255,1.28455626964569,1.38436901569366,0.606041550636292,0.437454283237457,0.201964423060417,0.119282886385918,1.78489255905151
|
|
||||||
"North Cyprus",61,5.80999994277954,5.89736646488309,5.72263342067599,1.3469113111496,1.18630337715149,0.834647238254547,0.471203625202179,0.266845703125,0.155353352427483,1.54915761947632
|
|
||||||
"Slovenia",62,5.75799989700317,5.84222516000271,5.67377463400364,1.3412059545517,1.45251882076263,0.790828227996826,0.572575807571411,0.242649093270302,0.0451289787888527,1.31331729888916
|
|
||||||
"Peru",63,5.71500015258789,5.81194677859545,5.61805352658033,1.03522527217865,1.21877038478851,0.630166113376617,0.450002878904343,0.126819714903831,0.0470490865409374,2.20726943016052
|
|
||||||
"Mauritius",64,5.62900018692017,5.72986219167709,5.52813818216324,1.18939554691315,1.20956099033356,0.638007462024689,0.491247326135635,0.360933750867844,0.0421815551817417,1.6975839138031
|
|
||||||
"Cyprus",65,5.62099981307983,5.71469269931316,5.5273069268465,1.35593807697296,1.13136327266693,0.84471470117569,0.355111539363861,0.271254301071167,0.0412379764020443,1.62124919891357
|
|
||||||
"Estonia",66,5.61100006103516,5.68813987419009,5.53386024788022,1.32087934017181,1.47667109966278,0.695168316364288,0.479131430387497,0.0988908112049103,0.183248922228813,1.35750865936279
|
|
||||||
"Belarus",67,5.56899976730347,5.64611424401402,5.49188529059291,1.15655755996704,1.44494521617889,0.637714266777039,0.295400261878967,0.15513750910759,0.156313821673393,1.72323298454285
|
|
||||||
"Libya",68,5.52500009536743,5.67695380687714,5.37304638385773,1.10180306434631,1.35756433010101,0.520169019699097,0.465733230113983,0.152073666453362,0.0926102101802826,1.83501124382019
|
|
||||||
"Turkey",69,5.5,5.59486496329308,5.40513503670692,1.19827437400818,1.33775317668915,0.637605607509613,0.300740599632263,0.0466930419206619,0.0996715798974037,1.87927794456482
|
|
||||||
"Paraguay",70,5.49300003051758,5.57738126963377,5.40861879140139,0.932537317276001,1.50728487968445,0.579250693321228,0.473507791757584,0.224150657653809,0.091065913438797,1.6853334903717
|
|
||||||
"Hong Kong S.A.R., China",71,5.47200012207031,5.54959417313337,5.39440607100725,1.55167484283447,1.26279091835022,0.943062424659729,0.490968644618988,0.374465793371201,0.293933749198914,0.554633140563965
|
|
||||||
"Philippines",72,5.42999982833862,5.54533505424857,5.31466460242867,0.85769921541214,1.25391757488251,0.468009054660797,0.585214674472809,0.193513423204422,0.0993318930268288,1.97260475158691
|
|
||||||
"Serbia",73,5.39499998092651,5.49156965613365,5.29843030571938,1.06931757926941,1.25818979740143,0.65078467130661,0.208715528249741,0.220125883817673,0.0409037806093693,1.94708442687988
|
|
||||||
"Jordan",74,5.33599996566772,5.44841002240777,5.22358990892768,0.991012394428253,1.23908889293671,0.604590058326721,0.418421149253845,0.172170460224152,0.11980327218771,1.79117655754089
|
|
||||||
"Hungary",75,5.32399988174438,5.40303970918059,5.24496005430818,1.2860119342804,1.34313309192657,0.687763452529907,0.175863519310951,0.0784016624093056,0.0366369374096394,1.71645927429199
|
|
||||||
"Jamaica",76,5.31099987030029,5.58139872848988,5.04060101211071,0.925579309463501,1.36821806430817,0.641022384166718,0.474307239055634,0.233818337321281,0.0552677810192108,1.61232566833496
|
|
||||||
"Croatia",77,5.29300022125244,5.39177720457315,5.19422323793173,1.22255623340607,0.96798300743103,0.701288521289825,0.255772292613983,0.248002976179123,0.0431031100451946,1.85449242591858
|
|
||||||
"Kosovo",78,5.27899980545044,5.36484799548984,5.19315161541104,0.951484382152557,1.13785350322723,0.541452050209045,0.260287940502167,0.319931447505951,0.0574716180562973,2.01054072380066
|
|
||||||
"China",79,5.27299976348877,5.31927808977663,5.2267214372009,1.08116579055786,1.16083741188049,0.741415500640869,0.472787708044052,0.0288068410009146,0.0227942746132612,1.76493859291077
|
|
||||||
"Pakistan",80,5.26900005340576,5.35998364135623,5.17801646545529,0.72688353061676,0.672690689563751,0.402047783136368,0.23521526157856,0.315446019172668,0.124348066747189,2.79248929023743
|
|
||||||
"Indonesia",81,5.26200008392334,5.35288859814405,5.17111156970263,0.995538592338562,1.27444469928741,0.492345720529556,0.443323463201523,0.611704587936401,0.0153171354904771,1.42947697639465
|
|
||||||
"Venezuela",82,5.25,5.3700319455564,5.1299680544436,1.12843120098114,1.43133759498596,0.617144227027893,0.153997123241425,0.0650196298956871,0.0644911229610443,1.78946375846863
|
|
||||||
"Montenegro",83,5.23699998855591,5.34104444056749,5.13295553654432,1.12112903594971,1.23837649822235,0.667464673519135,0.194989055395126,0.197911024093628,0.0881741940975189,1.72919154167175
|
|
||||||
"Morocco",84,5.2350001335144,5.31834096476436,5.15165930226445,0.878114581108093,0.774864435195923,0.59771066904068,0.408158332109451,0.0322099551558495,0.0877631828188896,2.45618939399719
|
|
||||||
"Azerbaijan",85,5.23400020599365,5.29928653523326,5.16871387675405,1.15360176563263,1.15240025520325,0.540775775909424,0.398155838251114,0.0452693402767181,0.180987507104874,1.76248168945312
|
|
||||||
"Dominican Republic",86,5.23000001907349,5.34906088516116,5.11093915298581,1.07937383651733,1.40241670608521,0.574873745441437,0.55258983373642,0.186967849731445,0.113945253193378,1.31946516036987
|
|
||||||
"Greece",87,5.22700023651123,5.3252461694181,5.12875430360436,1.28948748111725,1.23941457271576,0.810198903083801,0.0957312509417534,0,0.04328977689147,1.74922156333923
|
|
||||||
"Lebanon",88,5.22499990463257,5.31888228848577,5.13111752077937,1.07498753070831,1.12962424755096,0.735081076622009,0.288515985012054,0.264450758695602,0.037513829767704,1.69507384300232
|
|
||||||
"Portugal",89,5.19500017166138,5.28504173308611,5.10495861023665,1.3151752948761,1.36704301834106,0.795843541622162,0.498465299606323,0.0951027125120163,0.0158694516867399,1.10768270492554
|
|
||||||
"Bosnia and Herzegovina",90,5.18200016021729,5.27633568674326,5.08766463369131,0.982409417629242,1.0693359375,0.705186307430267,0.204403176903725,0.328867495059967,0,1.89217257499695
|
|
||||||
"Honduras",91,5.18100023269653,5.30158279687166,5.0604176685214,0.730573117733002,1.14394497871399,0.582569479942322,0.348079860210419,0.236188873648643,0.0733454525470734,2.06581115722656
|
|
||||||
"Macedonia",92,5.17500019073486,5.27217263966799,5.07782774180174,1.06457793712616,1.20789301395416,0.644948184490204,0.325905978679657,0.25376096367836,0.0602777935564518,1.6174693107605
|
|
||||||
"Somalia",93,5.15100002288818,5.24248370990157,5.0595163358748,0.0226431842893362,0.721151351928711,0.113989137113094,0.602126955986023,0.291631311178207,0.282410323619843,3.11748456954956
|
|
||||||
"Vietnam",94,5.07399988174438,5.14728076457977,5.000718998909,0.788547575473785,1.27749133110046,0.652168989181519,0.571055591106415,0.234968051314354,0.0876332372426987,1.46231865882874
|
|
||||||
"Nigeria",95,5.07399988174438,5.20950013548136,4.93849962800741,0.783756256103516,1.21577048301697,0.0569157302379608,0.394952565431595,0.230947196483612,0.0261215660721064,2.36539053916931
|
|
||||||
"Tajikistan",96,5.04099988937378,5.11142559587956,4.970574182868,0.524713635444641,1.27146327495575,0.529235124588013,0.471566706895828,0.248997643589973,0.146377146244049,1.84904932975769
|
|
||||||
"Bhutan",97,5.01100015640259,5.07933456212282,4.94266575068235,0.885416388511658,1.34012651443481,0.495879292488098,0.501537680625916,0.474054545164108,0.173380389809608,1.14018440246582
|
|
||||||
"Kyrgyzstan",98,5.00400018692017,5.08991990312934,4.91808047071099,0.596220076084137,1.39423859119415,0.553457796573639,0.454943388700485,0.42858037352562,0.0394391790032387,1.53672313690186
|
|
||||||
"Nepal",99,4.96199989318848,5.06735607936978,4.85664370700717,0.479820191860199,1.17928326129913,0.504130780696869,0.440305948257446,0.394096165895462,0.0729755461215973,1.8912410736084
|
|
||||||
"Mongolia",100,4.95499992370605,5.0216795091331,4.88832033827901,1.02723586559296,1.4930112361908,0.557783484458923,0.394143968820572,0.338464230298996,0.0329022891819477,1.11129236221313
|
|
||||||
"South Africa",101,4.8289999961853,4.92943518772721,4.72856480464339,1.05469870567322,1.38478863239288,0.187080070376396,0.479246735572815,0.139362379908562,0.0725094974040985,1.51090860366821
|
|
||||||
"Tunisia",102,4.80499982833862,4.88436700701714,4.72563264966011,1.00726580619812,0.868351459503174,0.613212049007416,0.289680689573288,0.0496933571994305,0.0867231488227844,1.89025115966797
|
|
||||||
"Palestinian Territories",103,4.77500009536743,4.88184834256768,4.66815184816718,0.716249227523804,1.15564715862274,0.565666973590851,0.25471106171608,0.114173173904419,0.0892826020717621,1.8788902759552
|
|
||||||
"Egypt",104,4.7350001335144,4.82513378962874,4.64486647740006,0.989701807498932,0.997471392154694,0.520187258720398,0.282110154628754,0.128631442785263,0.114381365478039,1.70216107368469
|
|
||||||
"Bulgaria",105,4.71400022506714,4.80369470641017,4.62430574372411,1.1614590883255,1.43437945842743,0.708217680454254,0.289231717586517,0.113177694380283,0.0110515309497714,0.996139287948608
|
|
||||||
"Sierra Leone",106,4.70900011062622,4.85064333498478,4.56735688626766,0.36842092871666,0.984136044979095,0.00556475389748812,0.318697690963745,0.293040901422501,0.0710951760411263,2.66845989227295
|
|
||||||
"Cameroon",107,4.69500017166138,4.79654085725546,4.5934594860673,0.564305365085602,0.946018218994141,0.132892116904259,0.430388748645782,0.236298456788063,0.0513066314160824,2.3336455821991
|
|
||||||
"Iran",108,4.69199991226196,4.79822470769286,4.58577511683106,1.15687310695648,0.711551249027252,0.639333188533783,0.249322608113289,0.387242913246155,0.048761073499918,1.49873495101929
|
|
||||||
"Albania",109,4.64400005340576,4.75246400639415,4.53553610041738,0.996192753314972,0.803685247898102,0.731159746646881,0.381498634815216,0.201312944293022,0.0398642159998417,1.49044156074524
|
|
||||||
"Bangladesh",110,4.60799980163574,4.68982165828347,4.52617794498801,0.586682975292206,0.735131740570068,0.533241033554077,0.478356659412384,0.172255352139473,0.123717859387398,1.97873616218567
|
|
||||||
"Namibia",111,4.57399988174438,4.77035474091768,4.37764502257109,0.964434325695038,1.0984708070755,0.33861181139946,0.520303547382355,0.0771337449550629,0.0931469723582268,1.4818902015686
|
|
||||||
"Kenya",112,4.55299997329712,4.65569159060717,4.45030835598707,0.560479462146759,1.06795072555542,0.309988349676132,0.452763766050339,0.444860309362411,0.0646413192152977,1.6519021987915
|
|
||||||
"Mozambique",113,4.55000019073486,4.77410232633352,4.3258980551362,0.234305649995804,0.870701014995575,0.106654435396194,0.480791091918945,0.322228103876114,0.179436385631561,2.35565090179443
|
|
||||||
"Myanmar",114,4.54500007629395,4.61473994642496,4.47526020616293,0.367110550403595,1.12323594093323,0.397522568702698,0.514492034912109,0.838075160980225,0.188816204667091,1.11529040336609
|
|
||||||
"Senegal",115,4.53499984741211,4.6016037812829,4.46839591354132,0.479309022426605,1.17969191074371,0.409362852573395,0.377922266721725,0.183468893170357,0.115460447967052,1.78964614868164
|
|
||||||
"Zambia",116,4.51399993896484,4.64410550147295,4.38389437645674,0.636406779289246,1.00318729877472,0.257835894823074,0.461603492498398,0.249580144882202,0.0782135501503944,1.82670545578003
|
|
||||||
"Iraq",117,4.49700021743774,4.62259140968323,4.37140902519226,1.10271048545837,0.978613197803497,0.501180469989777,0.288555532693863,0.19963726401329,0.107215754687786,1.31890726089478
|
|
||||||
"Gabon",118,4.46500015258789,4.5573617656529,4.37263853952289,1.1982102394104,1.1556202173233,0.356578588485718,0.312328577041626,0.0437853783369064,0.0760467872023582,1.32291626930237
|
|
||||||
"Ethiopia",119,4.46000003814697,4.54272867664695,4.377271399647,0.339233845472336,0.86466920375824,0.353409707546234,0.408842742443085,0.312650740146637,0.165455713868141,2.01574373245239
|
|
||||||
"Sri Lanka",120,4.44000005722046,4.55344719231129,4.32655292212963,1.00985014438629,1.25997638702393,0.625130832195282,0.561213254928589,0.490863561630249,0.0736539661884308,0.419389247894287
|
|
||||||
"Armenia",121,4.37599992752075,4.46673461228609,4.28526524275541,0.900596737861633,1.00748372077942,0.637524425983429,0.198303267359734,0.0834880918264389,0.0266744215041399,1.5214991569519
|
|
||||||
"India",122,4.31500005722046,4.37152201749384,4.25847809694707,0.792221248149872,0.754372596740723,0.455427616834641,0.469987004995346,0.231538489460945,0.0922268852591515,1.5191171169281
|
|
||||||
"Mauritania",123,4.29199981689453,4.37716361626983,4.20683601751924,0.648457288742065,1.2720308303833,0.285349279642105,0.0960980430245399,0.201870024204254,0.136957004666328,1.65163731575012
|
|
||||||
"Congo (Brazzaville)",124,4.29099988937378,4.41005350500345,4.17194627374411,0.808964252471924,0.832044363021851,0.28995743393898,0.435025870800018,0.120852127671242,0.0796181336045265,1.72413563728333
|
|
||||||
"Georgia",125,4.28599977493286,4.37493396580219,4.19706558406353,0.950612664222717,0.57061493396759,0.649546980857849,0.309410035610199,0.0540088154375553,0.251666635274887,1.50013780593872
|
|
||||||
"Congo (Kinshasa)",126,4.28000020980835,4.35781083270907,4.20218958690763,0.0921023488044739,1.22902345657349,0.191407024860382,0.235961347818375,0.246455833315849,0.0602413564920425,2.22495865821838
|
|
||||||
"Mali",127,4.19000005722046,4.26967071101069,4.11032940343022,0.476180493831635,1.28147339820862,0.169365674257278,0.306613743305206,0.183354198932648,0.104970246553421,1.66819095611572
|
|
||||||
"Ivory Coast",128,4.17999982833862,4.27518256321549,4.08481709346175,0.603048920631409,0.904780030250549,0.0486421696841717,0.447706192731857,0.201237469911575,0.130061775445938,1.84496426582336
|
|
||||||
"Cambodia",129,4.16800022125244,4.27851781353354,4.05748262897134,0.601765096187592,1.00623834133148,0.429783403873444,0.633375823497772,0.385922968387604,0.0681059509515762,1.04294109344482
|
|
||||||
"Sudan",130,4.13899993896484,4.34574716508389,3.9322527128458,0.65951669216156,1.21400856971741,0.290920823812485,0.0149958552792668,0.182317450642586,0.089847519993782,1.68706583976746
|
|
||||||
"Ghana",131,4.11999988555908,4.22270720854402,4.01729256257415,0.667224824428558,0.873664736747742,0.295637726783752,0.423026293516159,0.256923943758011,0.0253363698720932,1.57786750793457
|
|
||||||
"Ukraine",132,4.09600019454956,4.18541010454297,4.00659028455615,0.89465194940567,1.39453756809235,0.575903952121735,0.122974775731564,0.270061463117599,0.0230294708162546,0.814382314682007
|
|
||||||
"Uganda",133,4.08099985122681,4.19579996705055,3.96619973540306,0.381430715322495,1.12982773780823,0.217632606625557,0.443185955286026,0.325766056776047,0.057069718837738,1.526362657547
|
|
||||||
"Burkina Faso",134,4.03200006484985,4.12405906438828,3.93994106531143,0.3502277135849,1.04328000545502,0.215844258666039,0.324367851018906,0.250864684581757,0.120328105986118,1.72721290588379
|
|
||||||
"Niger",135,4.02799987792969,4.11194681972265,3.94405293613672,0.161925330758095,0.993025004863739,0.26850500702858,0.36365869641304,0.228673845529556,0.138572946190834,1.87398338317871
|
|
||||||
"Malawi",136,3.97000002861023,4.07747881740332,3.86252123981714,0.233442038297653,0.512568831443787,0.315089583396912,0.466914653778076,0.287170469760895,0.0727116540074348,2.08178615570068
|
|
||||||
"Chad",137,3.93600010871887,4.0347115239501,3.83728869348764,0.438012987375259,0.953855872154236,0.0411347150802612,0.16234202682972,0.216113850474358,0.0535818822681904,2.07123804092407
|
|
||||||
"Zimbabwe",138,3.875,3.97869964271784,3.77130035728216,0.375846534967422,1.08309590816498,0.196763753890991,0.336384207010269,0.189143493771553,0.0953753814101219,1.59797024726868
|
|
||||||
"Lesotho",139,3.80800008773804,4.04434397548437,3.5716561999917,0.521021246910095,1.19009518623352,0,0.390661299228668,0.157497271895409,0.119094640016556,1.42983531951904
|
|
||||||
"Angola",140,3.79500007629395,3.95164193540812,3.63835821717978,0.858428180217743,1.10441195964813,0.0498686656355858,0,0.097926490008831,0.0697203353047371,1.61448240280151
|
|
||||||
"Afghanistan",141,3.79399991035461,3.87366141527891,3.71433840543032,0.401477217674255,0.581543326377869,0.180746778845787,0.106179520487785,0.311870932579041,0.0611578300595284,2.15080118179321
|
|
||||||
"Botswana",142,3.76600003242493,3.87412266626954,3.65787739858031,1.12209415435791,1.22155499458313,0.341755509376526,0.505196332931519,0.0993484482169151,0.0985831990838051,0.3779137134552
|
|
||||||
"Benin",143,3.65700006484985,3.74578355133533,3.56821657836437,0.431085407733917,0.435299843549728,0.209930211305618,0.425962775945663,0.207948461174965,0.0609290152788162,1.88563096523285
|
|
||||||
"Madagascar",144,3.64400005340576,3.71431910589337,3.57368100091815,0.305808693170547,0.913020372390747,0.375223308801651,0.189196765422821,0.208732530474663,0.0672319754958153,1.58461260795593
|
|
||||||
"Haiti",145,3.6029999256134,3.73471479773521,3.47128505349159,0.368610262870789,0.640449821949005,0.277321130037308,0.0303698573261499,0.489203780889511,0.0998721495270729,1.69716763496399
|
|
||||||
"Yemen",146,3.59299993515015,3.69275031983852,3.49324955046177,0.591683447360992,0.93538224697113,0.310080915689468,0.249463722109795,0.104125209152699,0.0567674227058887,1.34560060501099
|
|
||||||
"South Sudan",147,3.59100008010864,3.72553858578205,3.45646157443523,0.39724862575531,0.601323127746582,0.163486003875732,0.147062435746193,0.285670816898346,0.116793513298035,1.87956738471985
|
|
||||||
"Liberia",148,3.53299999237061,3.65375626087189,3.41224372386932,0.119041793048382,0.872117936611176,0.229918196797371,0.332881182432175,0.26654988527298,0.0389482490718365,1.67328596115112
|
|
||||||
"Guinea",149,3.50699996948242,3.58442812889814,3.4295718100667,0.244549930095673,0.791244685649872,0.194129139184952,0.348587512969971,0.264815092086792,0.110937617719173,1.55231189727783
|
|
||||||
"Togo",150,3.49499988555908,3.59403811171651,3.39596165940166,0.305444717407227,0.431882530450821,0.247105568647385,0.38042613863945,0.196896150708199,0.0956650152802467,1.83722925186157
|
|
||||||
"Rwanda",151,3.47099995613098,3.54303023353219,3.39896967872977,0.368745893239975,0.945707023143768,0.326424807310104,0.581843852996826,0.252756029367447,0.455220013856888,0.540061235427856
|
|
||||||
"Syria",152,3.46199989318848,3.66366855680943,3.26033122956753,0.777153134346008,0.396102607250214,0.50053334236145,0.0815394446253777,0.493663728237152,0.151347130537033,1.06157350540161
|
|
||||||
"Tanzania",153,3.34899997711182,3.46142975538969,3.23657019883394,0.511135876178741,1.04198980331421,0.364509284496307,0.390017777681351,0.354256361722946,0.0660351067781448,0.621130466461182
|
|
||||||
"Burundi",154,2.90499997138977,3.07469033300877,2.73530960977077,0.091622568666935,0.629793584346771,0.151610791683197,0.0599007532000542,0.204435184597969,0.0841479450464249,1.68302416801453
|
|
||||||
"Central African Republic",155,2.69300007820129,2.86488426923752,2.52111588716507,0,0,0.0187726859003305,0.270842045545578,0.280876487493515,0.0565650761127472,2.06600475311279
|
|
|
File diff suppressed because one or more lines are too long
|
@ -1,151 +0,0 @@
|
||||||
sepal_length,sepal_width,petal_length,petal_width,class
|
|
||||||
5.1,3.5,1.4,0.2,SETOSA
|
|
||||||
4.9,3.0,1.4,0.2,SETOSA
|
|
||||||
4.7,3.2,1.3,0.2,SETOSA
|
|
||||||
4.6,3.1,1.5,0.2,SETOSA
|
|
||||||
5.0,3.6,1.4,0.2,SETOSA
|
|
||||||
5.4,3.9,1.7,0.4,SETOSA
|
|
||||||
4.6,3.4,1.4,0.3,SETOSA
|
|
||||||
5.0,3.4,1.5,0.2,SETOSA
|
|
||||||
4.4,2.9,1.4,0.2,SETOSA
|
|
||||||
4.9,3.1,1.5,0.1,SETOSA
|
|
||||||
5.4,3.7,1.5,0.2,SETOSA
|
|
||||||
4.8,3.4,1.6,0.2,SETOSA
|
|
||||||
4.8,3.0,1.4,0.1,SETOSA
|
|
||||||
4.3,3.0,1.1,0.1,SETOSA
|
|
||||||
5.8,4.0,1.2,0.2,SETOSA
|
|
||||||
5.7,4.4,1.5,0.4,SETOSA
|
|
||||||
5.4,3.9,1.3,0.4,SETOSA
|
|
||||||
5.1,3.5,1.4,0.3,SETOSA
|
|
||||||
5.7,3.8,1.7,0.3,SETOSA
|
|
||||||
5.1,3.8,1.5,0.3,SETOSA
|
|
||||||
5.4,3.4,1.7,0.2,SETOSA
|
|
||||||
5.1,3.7,1.5,0.4,SETOSA
|
|
||||||
4.6,3.6,1.0,0.2,SETOSA
|
|
||||||
5.1,3.3,1.7,0.5,SETOSA
|
|
||||||
4.8,3.4,1.9,0.2,SETOSA
|
|
||||||
5.0,3.0,1.6,0.2,SETOSA
|
|
||||||
5.0,3.4,1.6,0.4,SETOSA
|
|
||||||
5.2,3.5,1.5,0.2,SETOSA
|
|
||||||
5.2,3.4,1.4,0.2,SETOSA
|
|
||||||
4.7,3.2,1.6,0.2,SETOSA
|
|
||||||
4.8,3.1,1.6,0.2,SETOSA
|
|
||||||
5.4,3.4,1.5,0.4,SETOSA
|
|
||||||
5.2,4.1,1.5,0.1,SETOSA
|
|
||||||
5.5,4.2,1.4,0.2,SETOSA
|
|
||||||
4.9,3.1,1.5,0.1,SETOSA
|
|
||||||
5.0,3.2,1.2,0.2,SETOSA
|
|
||||||
5.5,3.5,1.3,0.2,SETOSA
|
|
||||||
4.9,3.1,1.5,0.1,SETOSA
|
|
||||||
4.4,3.0,1.3,0.2,SETOSA
|
|
||||||
5.1,3.4,1.5,0.2,SETOSA
|
|
||||||
5.0,3.5,1.3,0.3,SETOSA
|
|
||||||
4.5,2.3,1.3,0.3,SETOSA
|
|
||||||
4.4,3.2,1.3,0.2,SETOSA
|
|
||||||
5.0,3.5,1.6,0.6,SETOSA
|
|
||||||
5.1,3.8,1.9,0.4,SETOSA
|
|
||||||
4.8,3.0,1.4,0.3,SETOSA
|
|
||||||
5.1,3.8,1.6,0.2,SETOSA
|
|
||||||
4.6,3.2,1.4,0.2,SETOSA
|
|
||||||
5.3,3.7,1.5,0.2,SETOSA
|
|
||||||
5.0,3.3,1.4,0.2,SETOSA
|
|
||||||
7.0,3.2,4.7,1.4,VERSICOLOR
|
|
||||||
6.4,3.2,4.5,1.5,VERSICOLOR
|
|
||||||
6.9,3.1,4.9,1.5,VERSICOLOR
|
|
||||||
5.5,2.3,4.0,1.3,VERSICOLOR
|
|
||||||
6.5,2.8,4.6,1.5,VERSICOLOR
|
|
||||||
5.7,2.8,4.5,1.3,VERSICOLOR
|
|
||||||
6.3,3.3,4.7,1.6,VERSICOLOR
|
|
||||||
4.9,2.4,3.3,1.0,VERSICOLOR
|
|
||||||
6.6,2.9,4.6,1.3,VERSICOLOR
|
|
||||||
5.2,2.7,3.9,1.4,VERSICOLOR
|
|
||||||
5.0,2.0,3.5,1.0,VERSICOLOR
|
|
||||||
5.9,3.0,4.2,1.5,VERSICOLOR
|
|
||||||
6.0,2.2,4.0,1.0,VERSICOLOR
|
|
||||||
6.1,2.9,4.7,1.4,VERSICOLOR
|
|
||||||
5.6,2.9,3.6,1.3,VERSICOLOR
|
|
||||||
6.7,3.1,4.4,1.4,VERSICOLOR
|
|
||||||
5.6,3.0,4.5,1.5,VERSICOLOR
|
|
||||||
5.8,2.7,4.1,1.0,VERSICOLOR
|
|
||||||
6.2,2.2,4.5,1.5,VERSICOLOR
|
|
||||||
5.6,2.5,3.9,1.1,VERSICOLOR
|
|
||||||
5.9,3.2,4.8,1.8,VERSICOLOR
|
|
||||||
6.1,2.8,4.0,1.3,VERSICOLOR
|
|
||||||
6.3,2.5,4.9,1.5,VERSICOLOR
|
|
||||||
6.1,2.8,4.7,1.2,VERSICOLOR
|
|
||||||
6.4,2.9,4.3,1.3,VERSICOLOR
|
|
||||||
6.6,3.0,4.4,1.4,VERSICOLOR
|
|
||||||
6.8,2.8,4.8,1.4,VERSICOLOR
|
|
||||||
6.7,3.0,5.0,1.7,VERSICOLOR
|
|
||||||
6.0,2.9,4.5,1.5,VERSICOLOR
|
|
||||||
5.7,2.6,3.5,1.0,VERSICOLOR
|
|
||||||
5.5,2.4,3.8,1.1,VERSICOLOR
|
|
||||||
5.5,2.4,3.7,1.0,VERSICOLOR
|
|
||||||
5.8,2.7,3.9,1.2,VERSICOLOR
|
|
||||||
6.0,2.7,5.1,1.6,VERSICOLOR
|
|
||||||
5.4,3.0,4.5,1.5,VERSICOLOR
|
|
||||||
6.0,3.4,4.5,1.6,VERSICOLOR
|
|
||||||
6.7,3.1,4.7,1.5,VERSICOLOR
|
|
||||||
6.3,2.3,4.4,1.3,VERSICOLOR
|
|
||||||
5.6,3.0,4.1,1.3,VERSICOLOR
|
|
||||||
5.5,2.5,4.0,1.3,VERSICOLOR
|
|
||||||
5.5,2.6,4.4,1.2,VERSICOLOR
|
|
||||||
6.1,3.0,4.6,1.4,VERSICOLOR
|
|
||||||
5.8,2.6,4.0,1.2,VERSICOLOR
|
|
||||||
5.0,2.3,3.3,1.0,VERSICOLOR
|
|
||||||
5.6,2.7,4.2,1.3,VERSICOLOR
|
|
||||||
5.7,3.0,4.2,1.2,VERSICOLOR
|
|
||||||
5.7,2.9,4.2,1.3,VERSICOLOR
|
|
||||||
6.2,2.9,4.3,1.3,VERSICOLOR
|
|
||||||
5.1,2.5,3.0,1.1,VERSICOLOR
|
|
||||||
5.7,2.8,4.1,1.3,VERSICOLOR
|
|
||||||
6.3,3.3,6.0,2.5,VIRGINICA
|
|
||||||
5.8,2.7,5.1,1.9,VIRGINICA
|
|
||||||
7.1,3.0,5.9,2.1,VIRGINICA
|
|
||||||
6.3,2.9,5.6,1.8,VIRGINICA
|
|
||||||
6.5,3.0,5.8,2.2,VIRGINICA
|
|
||||||
7.6,3.0,6.6,2.1,VIRGINICA
|
|
||||||
4.9,2.5,4.5,1.7,VIRGINICA
|
|
||||||
7.3,2.9,6.3,1.8,VIRGINICA
|
|
||||||
6.7,2.5,5.8,1.8,VIRGINICA
|
|
||||||
7.2,3.6,6.1,2.5,VIRGINICA
|
|
||||||
6.5,3.2,5.1,2.0,VIRGINICA
|
|
||||||
6.4,2.7,5.3,1.9,VIRGINICA
|
|
||||||
6.8,3.0,5.5,2.1,VIRGINICA
|
|
||||||
5.7,2.5,5.0,2.0,VIRGINICA
|
|
||||||
5.8,2.8,5.1,2.4,VIRGINICA
|
|
||||||
6.4,3.2,5.3,2.3,VIRGINICA
|
|
||||||
6.5,3.0,5.5,1.8,VIRGINICA
|
|
||||||
7.7,3.8,6.7,2.2,VIRGINICA
|
|
||||||
7.7,2.6,6.9,2.3,VIRGINICA
|
|
||||||
6.0,2.2,5.0,1.5,VIRGINICA
|
|
||||||
6.9,3.2,5.7,2.3,VIRGINICA
|
|
||||||
5.6,2.8,4.9,2.0,VIRGINICA
|
|
||||||
7.7,2.8,6.7,2.0,VIRGINICA
|
|
||||||
6.3,2.7,4.9,1.8,VIRGINICA
|
|
||||||
6.7,3.3,5.7,2.1,VIRGINICA
|
|
||||||
7.2,3.2,6.0,1.8,VIRGINICA
|
|
||||||
6.2,2.8,4.8,1.8,VIRGINICA
|
|
||||||
6.1,3.0,4.9,1.8,VIRGINICA
|
|
||||||
6.4,2.8,5.6,2.1,VIRGINICA
|
|
||||||
7.2,3.0,5.8,1.6,VIRGINICA
|
|
||||||
7.4,2.8,6.1,1.9,VIRGINICA
|
|
||||||
7.9,3.8,6.4,2.0,VIRGINICA
|
|
||||||
6.4,2.8,5.6,2.2,VIRGINICA
|
|
||||||
6.3,2.8,5.1,1.5,VIRGINICA
|
|
||||||
6.1,2.6,5.6,1.4,VIRGINICA
|
|
||||||
7.7,3.0,6.1,2.3,VIRGINICA
|
|
||||||
6.3,3.4,5.6,2.4,VIRGINICA
|
|
||||||
6.4,3.1,5.5,1.8,VIRGINICA
|
|
||||||
6.0,3.0,4.8,1.8,VIRGINICA
|
|
||||||
6.9,3.1,5.4,2.1,VIRGINICA
|
|
||||||
6.7,3.1,5.6,2.4,VIRGINICA
|
|
||||||
6.9,3.1,5.1,2.3,VIRGINICA
|
|
||||||
5.8,2.7,5.1,1.9,VIRGINICA
|
|
||||||
6.8,3.2,5.9,2.3,VIRGINICA
|
|
||||||
6.7,3.3,5.7,2.5,VIRGINICA
|
|
||||||
6.7,3.0,5.2,2.3,VIRGINICA
|
|
||||||
6.3,2.5,5.0,1.9,VIRGINICA
|
|
||||||
6.5,3.0,5.2,2.0,VIRGINICA
|
|
||||||
6.2,3.4,5.4,2.3,VIRGINICA
|
|
||||||
5.9,3.0,5.1,1.8,VIRGINICA
|
|
|
|
@ -1,119 +0,0 @@
|
||||||
param_1,param_2,validity
|
|
||||||
0.051267,0.69956,1
|
|
||||||
-0.092742,0.68494,1
|
|
||||||
-0.21371,0.69225,1
|
|
||||||
-0.375,0.50219,1
|
|
||||||
-0.51325,0.46564,1
|
|
||||||
-0.52477,0.2098,1
|
|
||||||
-0.39804,0.034357,1
|
|
||||||
-0.30588,-0.19225,1
|
|
||||||
0.016705,-0.40424,1
|
|
||||||
0.13191,-0.51389,1
|
|
||||||
0.38537,-0.56506,1
|
|
||||||
0.52938,-0.5212,1
|
|
||||||
0.63882,-0.24342,1
|
|
||||||
0.73675,-0.18494,1
|
|
||||||
0.54666,0.48757,1
|
|
||||||
0.322,0.5826,1
|
|
||||||
0.16647,0.53874,1
|
|
||||||
-0.046659,0.81652,1
|
|
||||||
-0.17339,0.69956,1
|
|
||||||
-0.47869,0.63377,1
|
|
||||||
-0.60541,0.59722,1
|
|
||||||
-0.62846,0.33406,1
|
|
||||||
-0.59389,0.005117,1
|
|
||||||
-0.42108,-0.27266,1
|
|
||||||
-0.11578,-0.39693,1
|
|
||||||
0.20104,-0.60161,1
|
|
||||||
0.46601,-0.53582,1
|
|
||||||
0.67339,-0.53582,1
|
|
||||||
-0.13882,0.54605,1
|
|
||||||
-0.29435,0.77997,1
|
|
||||||
-0.26555,0.96272,1
|
|
||||||
-0.16187,0.8019,1
|
|
||||||
-0.17339,0.64839,1
|
|
||||||
-0.28283,0.47295,1
|
|
||||||
-0.36348,0.31213,1
|
|
||||||
-0.30012,0.027047,1
|
|
||||||
-0.23675,-0.21418,1
|
|
||||||
-0.06394,-0.18494,1
|
|
||||||
0.062788,-0.16301,1
|
|
||||||
0.22984,-0.41155,1
|
|
||||||
0.2932,-0.2288,1
|
|
||||||
0.48329,-0.18494,1
|
|
||||||
0.64459,-0.14108,1
|
|
||||||
0.46025,0.012427,1
|
|
||||||
0.6273,0.15863,1
|
|
||||||
0.57546,0.26827,1
|
|
||||||
0.72523,0.44371,1
|
|
||||||
0.22408,0.52412,1
|
|
||||||
0.44297,0.67032,1
|
|
||||||
0.322,0.69225,1
|
|
||||||
0.13767,0.57529,1
|
|
||||||
-0.0063364,0.39985,1
|
|
||||||
-0.092742,0.55336,1
|
|
||||||
-0.20795,0.35599,1
|
|
||||||
-0.20795,0.17325,1
|
|
||||||
-0.43836,0.21711,1
|
|
||||||
-0.21947,-0.016813,1
|
|
||||||
-0.13882,-0.27266,1
|
|
||||||
0.18376,0.93348,0
|
|
||||||
0.22408,0.77997,0
|
|
||||||
0.29896,0.61915,0
|
|
||||||
0.50634,0.75804,0
|
|
||||||
0.61578,0.7288,0
|
|
||||||
0.60426,0.59722,0
|
|
||||||
0.76555,0.50219,0
|
|
||||||
0.92684,0.3633,0
|
|
||||||
0.82316,0.27558,0
|
|
||||||
0.96141,0.085526,0
|
|
||||||
0.93836,0.012427,0
|
|
||||||
0.86348,-0.082602,0
|
|
||||||
0.89804,-0.20687,0
|
|
||||||
0.85196,-0.36769,0
|
|
||||||
0.82892,-0.5212,0
|
|
||||||
0.79435,-0.55775,0
|
|
||||||
0.59274,-0.7405,0
|
|
||||||
0.51786,-0.5943,0
|
|
||||||
0.46601,-0.41886,0
|
|
||||||
0.35081,-0.57968,0
|
|
||||||
0.28744,-0.76974,0
|
|
||||||
0.085829,-0.75512,0
|
|
||||||
0.14919,-0.57968,0
|
|
||||||
-0.13306,-0.4481,0
|
|
||||||
-0.40956,-0.41155,0
|
|
||||||
-0.39228,-0.25804,0
|
|
||||||
-0.74366,-0.25804,0
|
|
||||||
-0.69758,0.041667,0
|
|
||||||
-0.75518,0.2902,0
|
|
||||||
-0.69758,0.68494,0
|
|
||||||
-0.4038,0.70687,0
|
|
||||||
-0.38076,0.91886,0
|
|
||||||
-0.50749,0.90424,0
|
|
||||||
-0.54781,0.70687,0
|
|
||||||
0.10311,0.77997,0
|
|
||||||
0.057028,0.91886,0
|
|
||||||
-0.10426,0.99196,0
|
|
||||||
-0.081221,1.1089,0
|
|
||||||
0.28744,1.087,0
|
|
||||||
0.39689,0.82383,0
|
|
||||||
0.63882,0.88962,0
|
|
||||||
0.82316,0.66301,0
|
|
||||||
0.67339,0.64108,0
|
|
||||||
1.0709,0.10015,0
|
|
||||||
-0.046659,-0.57968,0
|
|
||||||
-0.23675,-0.63816,0
|
|
||||||
-0.15035,-0.36769,0
|
|
||||||
-0.49021,-0.3019,0
|
|
||||||
-0.46717,-0.13377,0
|
|
||||||
-0.28859,-0.060673,0
|
|
||||||
-0.61118,-0.067982,0
|
|
||||||
-0.66302,-0.21418,0
|
|
||||||
-0.59965,-0.41886,0
|
|
||||||
-0.72638,-0.082602,0
|
|
||||||
-0.83007,0.31213,0
|
|
||||||
-0.72062,0.53874,0
|
|
||||||
-0.59389,0.49488,0
|
|
||||||
-0.48445,0.99927,0
|
|
||||||
-0.0063364,0.99927,0
|
|
||||||
0.63265,-0.030612,0
|
|
|
File diff suppressed because it is too large
Load Diff
|
@ -1,251 +0,0 @@
|
||||||
y,x
|
|
||||||
97.58776,1.000000
|
|
||||||
97.76344,2.000000
|
|
||||||
96.56705,3.000000
|
|
||||||
92.52037,4.000000
|
|
||||||
91.15097,5.000000
|
|
||||||
95.21728,6.000000
|
|
||||||
90.21355,7.000000
|
|
||||||
89.29235,8.000000
|
|
||||||
91.51479,9.000000
|
|
||||||
89.60966,10.000000
|
|
||||||
86.56187,11.00000
|
|
||||||
85.55316,12.00000
|
|
||||||
87.13054,13.00000
|
|
||||||
85.67940,14.00000
|
|
||||||
80.04851,15.00000
|
|
||||||
82.18925,16.00000
|
|
||||||
87.24081,17.00000
|
|
||||||
80.79407,18.00000
|
|
||||||
81.28570,19.00000
|
|
||||||
81.56940,20.00000
|
|
||||||
79.22715,21.00000
|
|
||||||
79.43275,22.00000
|
|
||||||
77.90195,23.00000
|
|
||||||
76.75468,24.00000
|
|
||||||
77.17377,25.00000
|
|
||||||
74.27348,26.00000
|
|
||||||
73.11900,27.00000
|
|
||||||
73.84826,28.00000
|
|
||||||
72.47870,29.00000
|
|
||||||
71.92292,30.00000
|
|
||||||
66.92176,31.00000
|
|
||||||
67.93835,32.00000
|
|
||||||
69.56207,33.00000
|
|
||||||
69.07066,34.00000
|
|
||||||
66.53983,35.00000
|
|
||||||
63.87883,36.00000
|
|
||||||
69.71537,37.00000
|
|
||||||
63.60588,38.00000
|
|
||||||
63.37154,39.00000
|
|
||||||
60.01835,40.00000
|
|
||||||
62.67481,41.00000
|
|
||||||
65.80666,42.00000
|
|
||||||
59.14304,43.00000
|
|
||||||
56.62951,44.00000
|
|
||||||
61.21785,45.00000
|
|
||||||
54.38790,46.00000
|
|
||||||
62.93443,47.00000
|
|
||||||
56.65144,48.00000
|
|
||||||
57.13362,49.00000
|
|
||||||
58.29689,50.00000
|
|
||||||
58.91744,51.00000
|
|
||||||
58.50172,52.00000
|
|
||||||
55.22885,53.00000
|
|
||||||
58.30375,54.00000
|
|
||||||
57.43237,55.00000
|
|
||||||
51.69407,56.00000
|
|
||||||
49.93132,57.00000
|
|
||||||
53.70760,58.00000
|
|
||||||
55.39712,59.00000
|
|
||||||
52.89709,60.00000
|
|
||||||
52.31649,61.00000
|
|
||||||
53.98720,62.00000
|
|
||||||
53.54158,63.00000
|
|
||||||
56.45046,64.00000
|
|
||||||
51.32276,65.00000
|
|
||||||
53.11676,66.00000
|
|
||||||
53.28631,67.00000
|
|
||||||
49.80555,68.00000
|
|
||||||
54.69564,69.00000
|
|
||||||
56.41627,70.00000
|
|
||||||
54.59362,71.00000
|
|
||||||
54.38520,72.00000
|
|
||||||
60.15354,73.00000
|
|
||||||
59.78773,74.00000
|
|
||||||
60.49995,75.00000
|
|
||||||
65.43885,76.00000
|
|
||||||
60.70001,77.00000
|
|
||||||
63.71865,78.00000
|
|
||||||
67.77139,79.00000
|
|
||||||
64.70934,80.00000
|
|
||||||
70.78193,81.00000
|
|
||||||
70.38651,82.00000
|
|
||||||
77.22359,83.00000
|
|
||||||
79.52665,84.00000
|
|
||||||
80.13077,85.00000
|
|
||||||
85.67823,86.00000
|
|
||||||
85.20647,87.00000
|
|
||||||
90.24548,88.00000
|
|
||||||
93.61953,89.00000
|
|
||||||
95.86509,90.00000
|
|
||||||
93.46992,91.00000
|
|
||||||
105.8137,92.00000
|
|
||||||
107.8269,93.00000
|
|
||||||
114.0607,94.00000
|
|
||||||
115.5019,95.00000
|
|
||||||
118.5110,96.00000
|
|
||||||
119.6177,97.00000
|
|
||||||
122.1940,98.00000
|
|
||||||
126.9903,99.00000
|
|
||||||
125.7005,100.00000
|
|
||||||
123.7447,101.00000
|
|
||||||
130.6543,102.00000
|
|
||||||
129.7168,103.00000
|
|
||||||
131.8240,104.00000
|
|
||||||
131.8759,105.00000
|
|
||||||
131.9994,106.0000
|
|
||||||
132.1221,107.0000
|
|
||||||
133.4414,108.0000
|
|
||||||
133.8252,109.0000
|
|
||||||
133.6695,110.0000
|
|
||||||
128.2851,111.0000
|
|
||||||
126.5182,112.0000
|
|
||||||
124.7550,113.0000
|
|
||||||
118.4016,114.0000
|
|
||||||
122.0334,115.0000
|
|
||||||
115.2059,116.0000
|
|
||||||
118.7856,117.0000
|
|
||||||
110.7387,118.0000
|
|
||||||
110.2003,119.0000
|
|
||||||
105.17290,120.0000
|
|
||||||
103.44720,121.0000
|
|
||||||
94.54280,122.0000
|
|
||||||
94.40526,123.0000
|
|
||||||
94.57964,124.0000
|
|
||||||
88.76605,125.0000
|
|
||||||
87.28747,126.0000
|
|
||||||
92.50443,127.0000
|
|
||||||
86.27997,128.0000
|
|
||||||
82.44307,129.0000
|
|
||||||
80.47367,130.0000
|
|
||||||
78.36608,131.0000
|
|
||||||
78.74307,132.0000
|
|
||||||
76.12786,133.0000
|
|
||||||
79.13108,134.0000
|
|
||||||
76.76062,135.0000
|
|
||||||
77.60769,136.0000
|
|
||||||
77.76633,137.0000
|
|
||||||
81.28220,138.0000
|
|
||||||
79.74307,139.0000
|
|
||||||
81.97964,140.0000
|
|
||||||
80.02952,141.0000
|
|
||||||
85.95232,142.0000
|
|
||||||
85.96838,143.0000
|
|
||||||
79.94789,144.0000
|
|
||||||
87.17023,145.0000
|
|
||||||
90.50992,146.0000
|
|
||||||
93.23373,147.0000
|
|
||||||
89.14803,148.0000
|
|
||||||
93.11492,149.0000
|
|
||||||
90.34337,150.0000
|
|
||||||
93.69421,151.0000
|
|
||||||
95.74256,152.0000
|
|
||||||
91.85105,153.0000
|
|
||||||
96.74503,154.0000
|
|
||||||
87.60996,155.0000
|
|
||||||
90.47012,156.0000
|
|
||||||
88.11690,157.0000
|
|
||||||
85.70673,158.0000
|
|
||||||
85.01361,159.0000
|
|
||||||
78.53040,160.0000
|
|
||||||
81.34148,161.0000
|
|
||||||
75.19295,162.0000
|
|
||||||
72.66115,163.0000
|
|
||||||
69.85504,164.0000
|
|
||||||
66.29476,165.0000
|
|
||||||
63.58502,166.0000
|
|
||||||
58.33847,167.0000
|
|
||||||
57.50766,168.0000
|
|
||||||
52.80498,169.0000
|
|
||||||
50.79319,170.0000
|
|
||||||
47.03490,171.0000
|
|
||||||
46.47090,172.0000
|
|
||||||
43.09016,173.0000
|
|
||||||
34.11531,174.0000
|
|
||||||
39.28235,175.0000
|
|
||||||
32.68386,176.0000
|
|
||||||
30.44056,177.0000
|
|
||||||
31.98932,178.0000
|
|
||||||
23.63330,179.0000
|
|
||||||
23.69643,180.0000
|
|
||||||
20.26812,181.0000
|
|
||||||
19.07074,182.0000
|
|
||||||
17.59544,183.0000
|
|
||||||
16.08785,184.0000
|
|
||||||
18.94267,185.0000
|
|
||||||
18.61354,186.0000
|
|
||||||
17.25800,187.0000
|
|
||||||
16.62285,188.0000
|
|
||||||
13.48367,189.0000
|
|
||||||
15.37647,190.0000
|
|
||||||
13.47208,191.0000
|
|
||||||
15.96188,192.0000
|
|
||||||
12.32547,193.0000
|
|
||||||
16.33880,194.0000
|
|
||||||
10.438330,195.0000
|
|
||||||
9.628715,196.0000
|
|
||||||
13.12268,197.0000
|
|
||||||
8.772417,198.0000
|
|
||||||
11.76143,199.0000
|
|
||||||
12.55020,200.0000
|
|
||||||
11.33108,201.0000
|
|
||||||
11.20493,202.0000
|
|
||||||
7.816916,203.0000
|
|
||||||
6.800675,204.0000
|
|
||||||
14.26581,205.0000
|
|
||||||
10.66285,206.0000
|
|
||||||
8.911574,207.0000
|
|
||||||
11.56733,208.0000
|
|
||||||
11.58207,209.0000
|
|
||||||
11.59071,210.0000
|
|
||||||
9.730134,211.0000
|
|
||||||
11.44237,212.0000
|
|
||||||
11.22912,213.0000
|
|
||||||
10.172130,214.0000
|
|
||||||
12.50905,215.0000
|
|
||||||
6.201493,216.0000
|
|
||||||
9.019605,217.0000
|
|
||||||
10.80607,218.0000
|
|
||||||
13.09625,219.0000
|
|
||||||
3.914271,220.0000
|
|
||||||
9.567886,221.0000
|
|
||||||
8.038448,222.0000
|
|
||||||
10.231040,223.0000
|
|
||||||
9.367410,224.0000
|
|
||||||
7.695971,225.0000
|
|
||||||
6.118575,226.0000
|
|
||||||
8.793207,227.0000
|
|
||||||
7.796692,228.0000
|
|
||||||
12.45065,229.0000
|
|
||||||
10.61601,230.0000
|
|
||||||
6.001003,231.0000
|
|
||||||
6.765098,232.0000
|
|
||||||
8.764653,233.0000
|
|
||||||
4.586418,234.0000
|
|
||||||
8.390783,235.0000
|
|
||||||
7.209202,236.0000
|
|
||||||
10.012090,237.0000
|
|
||||||
7.327461,238.0000
|
|
||||||
6.525136,239.0000
|
|
||||||
2.840065,240.0000
|
|
||||||
10.323710,241.0000
|
|
||||||
4.790035,242.0000
|
|
||||||
8.376431,243.0000
|
|
||||||
6.263980,244.0000
|
|
||||||
2.705892,245.0000
|
|
||||||
8.362109,246.0000
|
|
||||||
8.983507,247.0000
|
|
||||||
3.362469,248.0000
|
|
||||||
1.182678,249.0000
|
|
||||||
4.875312,250.0000
|
|
|
|
@ -1,308 +0,0 @@
|
||||||
Latency (ms),Throughput (mb/s),Anomaly
|
|
||||||
13.04681516870484,14.7411524132184,0
|
|
||||||
13.4085201853932,13.76326960024047,0
|
|
||||||
14.19591481245491,15.85318112982812,0
|
|
||||||
14.91470076531303,16.17425986715807,0
|
|
||||||
13.5766996051752,14.04284943755652,0
|
|
||||||
13.92240250750028,13.40646893666083,0
|
|
||||||
12.82213163903098,14.22318782380161,0
|
|
||||||
15.6763661470048,15.89169137219994,0
|
|
||||||
16.16287532482238,16.20299807446642,0
|
|
||||||
12.66645094909174,14.8990837351338,1
|
|
||||||
13.98454962300191,12.95800821585463,0
|
|
||||||
14.06146043109355,14.54908874282629,0
|
|
||||||
13.38988671215899,15.56202141787754,0
|
|
||||||
13.39350474623341,15.62698794188875,0
|
|
||||||
13.97900926099814,13.28061494266342,0
|
|
||||||
14.16791258723419,14.46583828507579,0
|
|
||||||
13.96176145283657,14.75182421254904,0
|
|
||||||
14.45899735355037,15.07018562997125,0
|
|
||||||
14.58476371878708,15.82743423785702,0
|
|
||||||
12.07427073619131,13.06711089796514,0
|
|
||||||
13.54912940444922,15.53827676982062,0
|
|
||||||
13.98625041879221,14.78776303583677,0
|
|
||||||
14.96991942049244,16.51830493015889,0
|
|
||||||
14.2557659665841,15.29427277420701,0
|
|
||||||
15.33425000108006,16.12469988952639,0
|
|
||||||
15.63504869777692,16.49094476663806,0
|
|
||||||
13.62081291712303,15.45947525058772,0
|
|
||||||
14.81548484709227,15.33956526603583,0
|
|
||||||
14.59318972857327,14.61238105671215,0
|
|
||||||
14.48906754712418,15.64087368177291,0
|
|
||||||
15.52704801171451,14.63568031226173,0
|
|
||||||
13.97506707358789,14.76531532927648,0
|
|
||||||
12.95364954381841,14.82328512087584,0
|
|
||||||
12.88787444214799,15.07607810133002,0
|
|
||||||
16.02178960565569,16.25746991816081,0
|
|
||||||
14.9262927071427,16.29725072434191,0
|
|
||||||
12.46559400363085,14.18321211753596,0
|
|
||||||
14.08466278107714,14.44192203204038,0
|
|
||||||
14.53717522545769,14.24224248113181,0
|
|
||||||
14.22250851601845,15.42386187610343,0
|
|
||||||
14.51908495978717,13.99871698993444,0
|
|
||||||
13.11971433616167,14.66081845898369,0
|
|
||||||
14.5108889424642,15.30465148682366,0
|
|
||||||
14.18262426407451,15.3938896849634,0
|
|
||||||
14.71651844926282,15.73369667477785,0
|
|
||||||
13.83454699853918,16.17138034441191,0
|
|
||||||
16.00076179182642,14.69232970320203,0
|
|
||||||
14.12702715242892,15.91462774747984,0
|
|
||||||
13.84578546855034,14.34139348861173,0
|
|
||||||
15.41426110064101,16.24243182463628,1
|
|
||||||
13.25273726696165,15.00861363933526,0
|
|
||||||
13.66840226015763,14.35886035673854,0
|
|
||||||
13.77534773921765,14.73808512203812,0
|
|
||||||
14.12582342640922,14.92980922624493,0
|
|
||||||
14.54724604324321,15.6333944514067,0
|
|
||||||
14.15258077112493,14.53622696521789,0
|
|
||||||
14.12648161131633,15.34467591276852,0
|
|
||||||
14.26324658304056,14.98556918087115,0
|
|
||||||
14.77324331862399,15.25299473774317,0
|
|
||||||
14.20969933686442,16.14572569071713,0
|
|
||||||
13.260655152992,15.48016214411599,0
|
|
||||||
14.25273350867239,15.03134360663839,0
|
|
||||||
12.92124446791387,13.19321540142361,0
|
|
||||||
13.852431292546,13.33213110580615,0
|
|
||||||
13.96856800302965,13.19821236714215,0
|
|
||||||
13.25206981975186,15.36846390294601,0
|
|
||||||
13.70449633962696,13.21431301976872,0
|
|
||||||
14.5087472134072,15.46051652161006,0
|
|
||||||
15.69042695638351,16.48168851978138,0
|
|
||||||
12.95598191982515,12.43703005897334,0
|
|
||||||
13.59312604041728,14.84189902611636,0
|
|
||||||
15.12874638631439,17.14981222613881,0
|
|
||||||
14.26705036670259,15.67551973639503,0
|
|
||||||
15.6614505451442,14.81146451457414,0
|
|
||||||
14.33962672797097,15.49202297710026,0
|
|
||||||
14.2761765458781,14.70590693250814,0
|
|
||||||
14.86049072335336,15.59000779027686,0
|
|
||||||
14.10414479623351,15.1805045637764,0
|
|
||||||
15.98828286381979,15.62105187028486,0
|
|
||||||
13.47473582792461,15.59307141917535,0
|
|
||||||
13.77637601475249,14.99194426684731,0
|
|
||||||
12.82770875129005,15.67136906874635,0
|
|
||||||
13.67165486007913,15.11954159126301,0
|
|
||||||
15.38704283906103,15.56936935237784,0
|
|
||||||
15.54320933642332,15.51543150058866,0
|
|
||||||
13.85306094119846,15.60672436869602,0
|
|
||||||
13.62525245784644,14.45209462876985,0
|
|
||||||
15.0157784412311,14.91664093008973,0
|
|
||||||
13.83645753449745,15.24940725360926,0
|
|
||||||
14.22694438547307,14.3479843622948,0
|
|
||||||
13.23742625416296,14.61058751286003,0
|
|
||||||
13.38482919115422,14.7331933025011,0
|
|
||||||
13.87130103241151,14.97399468636979,0
|
|
||||||
12.39445846815594,14.64448216946588,0
|
|
||||||
14.32186557845068,14.52890629439163,0
|
|
||||||
15.82965092460402,15.71619455432355,0
|
|
||||||
15.80177302202355,16.01808914480403,0
|
|
||||||
14.69751200330076,14.11198748714029,0
|
|
||||||
14.70598656653535,16.46040295414171,0
|
|
||||||
13.59156859810395,14.91975097196414,0
|
|
||||||
12.29984538869378,14.77119467910275,0
|
|
||||||
13.3990474777037,16.11912910518291,0
|
|
||||||
15.13112869806696,15.90031130320181,0
|
|
||||||
15.38581197702793,15.71453967469415,0
|
|
||||||
15.45487421920634,15.4404224240544,0
|
|
||||||
13.74951530855867,15.26803135994583,0
|
|
||||||
15.69914333094722,16.05595814533895,0
|
|
||||||
14.80580490719942,14.33258926354469,0
|
|
||||||
15.17222942648117,16.70624397729834,0
|
|
||||||
11.24915511828765,15.13295896107001,0
|
|
||||||
13.88773906521638,14.48548132472444,0
|
|
||||||
15.3258701791002,16.58524064023295,0
|
|
||||||
12.97517063349011,15.1605677140184,0
|
|
||||||
14.07427780835002,17.21973519125371,0
|
|
||||||
14.1820256369139,17.83351945487566,0
|
|
||||||
12.23970014041095,14.72866833837743,0
|
|
||||||
14.82555960703615,15.94500684833057,0
|
|
||||||
13.09763368416417,16.23036500469445,0
|
|
||||||
13.85758877756093,15.03526838191721,0
|
|
||||||
15.52502523459987,16.78653607805479,0
|
|
||||||
15.31499528329094,14.56835427536349,0
|
|
||||||
14.03034873517879,15.6633618769716,0
|
|
||||||
14.42312994571211,14.94109334872472,0
|
|
||||||
13.63615118835241,14.96411634434718,0
|
|
||||||
14.53477942776931,13.35611764012331,0
|
|
||||||
14.61566223678644,14.15241034694619,0
|
|
||||||
13.08085544352481,14.0284594118694,0
|
|
||||||
14.93928677902786,14.54933745884242,0
|
|
||||||
16.0271266262212,15.70965830468461,0
|
|
||||||
14.31925037139242,15.11762658185582,0
|
|
||||||
14.86153307492049,14.28458412390706,0
|
|
||||||
14.01432032507764,16.77971266133154,0
|
|
||||||
13.40765469906171,14.60041190939531,0
|
|
||||||
13.0795973186072,14.19389917316378,0
|
|
||||||
12.68820688788819,13.81109597020173,0
|
|
||||||
14.19232756586644,15.36498178724437,0
|
|
||||||
14.86589365075524,14.47138789706538,0
|
|
||||||
13.39350297747264,14.34389892642248,0
|
|
||||||
13.58659142682796,14.39148496395445,0
|
|
||||||
13.10219289551651,14.3760326021477,0
|
|
||||||
14.54176555566262,16.37233995317341,0
|
|
||||||
14.25602703003231,15.0423494965284,0
|
|
||||||
16.18754760471493,16.36145253974863,0
|
|
||||||
13.63292362573135,13.62886893815872,0
|
|
||||||
14.65349334618363,14.97649220824924,0
|
|
||||||
12.61911799757794,16.77214314245786,0
|
|
||||||
13.03427729514449,14.25689090988086,0
|
|
||||||
10.85940051666349,14.47914434225415,0
|
|
||||||
12.93486070587027,14.60746677979927,0
|
|
||||||
13.9922676551586,14.96212808248882,0
|
|
||||||
12.57248704338531,15.1972734968139,0
|
|
||||||
15.68266703007037,16.22123922102406,0
|
|
||||||
13.2125815156299,14.3518273677709,0
|
|
||||||
13.98975002194823,14.52445650352669,0
|
|
||||||
13.4662664096024,13.65765529406475,0
|
|
||||||
13.13166385488746,15.79882584075226,0
|
|
||||||
14.35439254719252,15.02329268379058,0
|
|
||||||
13.55329410888779,13.73218768633878,0
|
|
||||||
12.98628429130503,14.80983707085099,0
|
|
||||||
14.37264883162727,14.95148191190331,0
|
|
||||||
13.58869050224715,15.19778174710474,0
|
|
||||||
12.26002251889708,15.61364103922988,0
|
|
||||||
13.66602493759934,16.44517365387813,0
|
|
||||||
14.34554567080519,15.44883765222099,0
|
|
||||||
14.60667497581217,15.77655361118647,0
|
|
||||||
14.15369523977195,16.57440586446113,0
|
|
||||||
14.04899502017924,14.39078838248393,0
|
|
||||||
14.06857464220482,14.62364257375797,0
|
|
||||||
15.88890082127304,16.33705609429303,0
|
|
||||||
13.97601419894874,15.84206442894244,0
|
|
||||||
10.88221341356124,13.46166188373757,0
|
|
||||||
13.90920312008345,14.97657577218348,0
|
|
||||||
12.36776146202978,15.14204982137499,0
|
|
||||||
15.16765639256333,15.51933856946829,0
|
|
||||||
15.3376951724287,14.23319145087297,0
|
|
||||||
13.55057689653119,15.73044061233337,0
|
|
||||||
13.57918656724497,15.47264441338775,0
|
|
||||||
14.24479089854792,15.0850911865811,0
|
|
||||||
15.33086296717245,15.71142599198902,0
|
|
||||||
15.91714892779239,15.15651432878437,0
|
|
||||||
13.85421253890297,15.32125758133508,0
|
|
||||||
14.08736591098981,14.30728373787297,0
|
|
||||||
12.63610997338858,15.65066101888946,0
|
|
||||||
14.36282756033598,13.87195409310256,0
|
|
||||||
14.50066606012271,14.61759024545319,0
|
|
||||||
13.96984547008964,16.17341605305203,0
|
|
||||||
15.13133128099397,15.28924849061305,0
|
|
||||||
15.15300231315136,14.01362830007739,0
|
|
||||||
13.31011939341444,14.39060274697614,0
|
|
||||||
14.25712172586539,14.29705004451436,0
|
|
||||||
13.71613134707139,13.52733470384027,0
|
|
||||||
15.70094057818437,15.99611428697285,0
|
|
||||||
13.38943515399727,14.36513422537798,0
|
|
||||||
14.14088666467278,13.97440554314796,0
|
|
||||||
14.84487049785213,14.01695105963744,0
|
|
||||||
12.70489590338878,14.27293037161499,0
|
|
||||||
14.95353525235777,14.73218902472499,0
|
|
||||||
14.28114117782965,14.61262377516035,0
|
|
||||||
13.06799073973982,14.83286345035982,0
|
|
||||||
13.60279699846308,12.20295198971654,0
|
|
||||||
12.68816488185228,15.81141680713469,0
|
|
||||||
13.88291727981215,14.11808370066965,0
|
|
||||||
14.016482216113,14.33509982485053,0
|
|
||||||
15.36576550135049,15.82610475260424,0
|
|
||||||
13.57764756126836,14.88045533202498,0
|
|
||||||
13.3918924208501,14.34497756139911,0
|
|
||||||
13.69362090262048,15.92189939882443,0
|
|
||||||
12.87853442397187,13.20174479842375,0
|
|
||||||
13.69916365173765,15.41800069841461,0
|
|
||||||
14.01609081001448,15.82165925226776,0
|
|
||||||
14.5899650464961,16.38090675134464,0
|
|
||||||
15.00784342040606,15.50954333819685,0
|
|
||||||
14.05950746445452,13.75788684204651,0
|
|
||||||
14.46114683681014,13.34425721343066,0
|
|
||||||
14.64474777063343,15.03905866347516,0
|
|
||||||
13.85478898285457,15.86614260965412,0
|
|
||||||
14.2814175097121,14.02340696081207,0
|
|
||||||
14.93304554162803,14.32639552072927,0
|
|
||||||
13.7693080678919,16.51310530416839,0
|
|
||||||
13.44404345182867,15.07922662749323,0
|
|
||||||
14.0317928593353,14.40986664465888,0
|
|
||||||
13.81946840229293,15.58676798397279,0
|
|
||||||
16.50656640573653,15.22029747467542,0
|
|
||||||
12.20423230665472,14.32106064914233,0
|
|
||||||
14.8819298948981,16.36162230554352,0
|
|
||||||
15.16030999546341,15.14972042192441,0
|
|
||||||
11.78759609450762,14.55034168613148,0
|
|
||||||
12.88388298331717,14.57250347912669,0
|
|
||||||
13.62023705917705,16.42369250161395,0
|
|
||||||
14.53049363223479,15.44664319460541,0
|
|
||||||
12.64616608049998,15.10838775257841,0
|
|
||||||
15.54763373107359,16.43238820991158,0
|
|
||||||
14.4007699774828,15.21258204276164,0
|
|
||||||
15.21058389990948,14.93547994178749,0
|
|
||||||
15.06173440367518,15.11740665636805,0
|
|
||||||
14.86214589875373,14.70177771082854,0
|
|
||||||
15.40451989437227,15.34490711864667,0
|
|
||||||
13.79430574831448,14.68727111247282,0
|
|
||||||
14.63390271757003,16.30082803685785,0
|
|
||||||
12.45687580804446,15.54617986485219,0
|
|
||||||
13.99759772841731,16.73594542008409,0
|
|
||||||
12.93253733568772,12.62389976814524,0
|
|
||||||
13.70345190616539,14.71480993356161,0
|
|
||||||
13.12395594125503,15.44848980937747,0
|
|
||||||
13.81691009423219,14.09233539217894,0
|
|
||||||
13.02489337092878,14.25050251544228,0
|
|
||||||
14.53425534561566,15.76596516545384,0
|
|
||||||
13.25186260458783,16.3225231885698,0
|
|
||||||
13.23657554891477,15.33696609589177,0
|
|
||||||
12.1297131595538,12.66688846478064,0
|
|
||||||
14.3808873556303,16.03087164666765,0
|
|
||||||
15.98239721601976,15.52399453253037,0
|
|
||||||
13.75107909980303,13.64320737566979,0
|
|
||||||
13.35730012174231,13.42431786138274,0
|
|
||||||
13.08559089708043,14.86775905977197,0
|
|
||||||
13.6117330216296,14.86806413838196,0
|
|
||||||
15.1776173709485,14.15354188009321,0
|
|
||||||
14.15456588767872,15.28746897631645,0
|
|
||||||
13.22531906267953,13.9598546965538,0
|
|
||||||
13.94151500958564,14.76023193066396,0
|
|
||||||
15.39066478902675,15.71412823472551,0
|
|
||||||
13.17642606705518,13.67395694240669,0
|
|
||||||
13.38689005901117,14.66536821990745,0
|
|
||||||
15.15888821036137,14.78211270885843,0
|
|
||||||
14.55599224830758,14.04946255637684,0
|
|
||||||
14.62692885570043,14.29592015439668,0
|
|
||||||
13.28624407169681,15.6581260669439,0
|
|
||||||
13.8154823515179,14.1716943145893,0
|
|
||||||
14.3109896419094,16.25419059506493,0
|
|
||||||
13.53597112272297,15.77020127180871,0
|
|
||||||
14.80103055297733,13.81813140471321,0
|
|
||||||
13.77274485542839,14.64955360893938,0
|
|
||||||
13.76510156692244,15.02311286948475,0
|
|
||||||
14.05349835921094,13.93946896423697,0
|
|
||||||
15.30905390162218,16.04190604522437,0
|
|
||||||
13.15523771144825,16.9212211680188,0
|
|
||||||
12.69940390796505,13.99916733869651,0
|
|
||||||
14.3679922537568,16.75782353966251,0
|
|
||||||
13.2632541853177,14.09898705600851,0
|
|
||||||
11.91253508924009,14.61325734486844,0
|
|
||||||
13.37000592461161,15.18268143261131,0
|
|
||||||
15.99450697482097,15.4532938283601,0
|
|
||||||
14.15764860588238,13.77083846575649,0
|
|
||||||
14.96982662482653,15.59222552688896,0
|
|
||||||
14.75068711060737,15.46889187883478,0
|
|
||||||
13.33027919659259,14.34699591207669,0
|
|
||||||
13.05002153442813,14.68726188711367,0
|
|
||||||
13.77642646984253,14.23618563920568,0
|
|
||||||
15.17426585206286,15.5095749119089,0
|
|
||||||
14.21251759323552,15.08270517066944,0
|
|
||||||
13.82089482923982,15.61146315929325,0
|
|
||||||
14.12355955034152,14.95509753853501,0
|
|
||||||
14.54752171050364,14.85861945287413,0
|
|
||||||
14.09944359402792,16.03131199865159,0
|
|
||||||
14.57730180008498,14.25667659137451,0
|
|
||||||
14.52331832390665,14.2300499886642,0
|
|
||||||
14.30044704017983,15.26643299159799,0
|
|
||||||
14.55839285912062,15.48691913661183,0
|
|
||||||
14.22494186934392,15.86117827216267,0
|
|
||||||
12.04029344338111,13.34483350304919,0
|
|
||||||
13.07931049306772,9.347878119065356,1
|
|
||||||
21.7271340215587,4.126232224310076,1
|
|
||||||
12.4766288158932,14.4593696654036,1
|
|
||||||
19.5825727723877,10.4116189967773,1
|
|
||||||
23.33986752737173,16.29887355272053,1
|
|
||||||
18.2611884383863,17.9783089957873,1
|
|
||||||
4.752612823293772,24.35040724802435,1
|
|
|
|
@ -1,156 +0,0 @@
|
||||||
"Country","Happiness.Rank","Happiness.Score","Whisker.high","Whisker.low","Economy..GDP.per.Capita.","Family","Health..Life.Expectancy.","Freedom","Generosity","Trust..Government.Corruption.","Dystopia.Residual"
|
|
||||||
"Norway",1,7.53700017929077,7.59444482058287,7.47955553799868,1.61646318435669,1.53352355957031,0.796666502952576,0.635422587394714,0.36201223731041,0.315963834524155,2.27702665328979
|
|
||||||
"Denmark",2,7.52199983596802,7.58172806486487,7.46227160707116,1.48238301277161,1.55112159252167,0.792565524578094,0.626006722450256,0.355280488729477,0.40077006816864,2.31370735168457
|
|
||||||
"Iceland",3,7.50400018692017,7.62203047305346,7.38596990078688,1.480633020401,1.6105740070343,0.833552122116089,0.627162635326385,0.475540220737457,0.153526559472084,2.32271528244019
|
|
||||||
"Switzerland",4,7.49399995803833,7.56177242040634,7.42622749567032,1.56497955322266,1.51691174507141,0.858131289482117,0.620070576667786,0.290549278259277,0.367007285356522,2.2767162322998
|
|
||||||
"Finland",5,7.4689998626709,7.52754207581282,7.41045764952898,1.44357192516327,1.5402467250824,0.80915766954422,0.617950856685638,0.24548277258873,0.38261154294014,2.4301815032959
|
|
||||||
"Netherlands",6,7.3769998550415,7.42742584124207,7.32657386884093,1.50394463539124,1.42893922328949,0.810696125030518,0.585384488105774,0.470489829778671,0.282661825418472,2.29480409622192
|
|
||||||
"Canada",7,7.31599998474121,7.38440283536911,7.24759713411331,1.47920441627502,1.48134899139404,0.83455765247345,0.611100912094116,0.435539722442627,0.287371516227722,2.18726444244385
|
|
||||||
"New Zealand",8,7.31400012969971,7.3795104418695,7.24848981752992,1.40570604801178,1.54819512367249,0.816759705543518,0.614062130451202,0.500005125999451,0.382816702127457,2.0464563369751
|
|
||||||
"Sweden",9,7.28399991989136,7.34409487739205,7.22390496239066,1.49438726902008,1.47816216945648,0.830875158309937,0.612924098968506,0.385399252176285,0.384398728609085,2.09753799438477
|
|
||||||
"Australia",10,7.28399991989136,7.35665122494102,7.2113486148417,1.484414935112,1.51004195213318,0.84388679265976,0.601607382297516,0.477699249982834,0.301183730363846,2.06521081924438
|
|
||||||
"Israel",11,7.21299982070923,7.27985325649381,7.14614638492465,1.37538242340088,1.37628996372223,0.83840399980545,0.405988603830338,0.330082654953003,0.0852421000599861,2.80175733566284
|
|
||||||
"Costa Rica",12,7.0789999961853,7.16811166629195,6.98988832607865,1.10970628261566,1.41640365123749,0.759509265422821,0.580131649971008,0.214613229036331,0.100106589496136,2.89863920211792
|
|
||||||
"Austria",13,7.00600004196167,7.07066981211305,6.94133027181029,1.48709726333618,1.4599449634552,0.815328419208527,0.567766189575195,0.316472321748734,0.221060365438461,2.1385064125061
|
|
||||||
"United States",14,6.99300003051758,7.07465674757957,6.91134331345558,1.54625928401947,1.41992056369781,0.77428662776947,0.505740523338318,0.392578780651093,0.135638788342476,2.2181134223938
|
|
||||||
"Ireland",15,6.97700023651123,7.04335166752338,6.91064880549908,1.53570663928986,1.55823111534119,0.80978262424469,0.573110342025757,0.42785832285881,0.29838815331459,1.77386903762817
|
|
||||||
"Germany",16,6.95100021362305,7.00538156926632,6.89661885797977,1.48792338371277,1.47252035140991,0.798950731754303,0.562511384487152,0.336269170045853,0.276731938123703,2.01576995849609
|
|
||||||
"Belgium",17,6.89099979400635,6.95582075044513,6.82617883756757,1.46378076076508,1.46231269836426,0.818091869354248,0.539770722389221,0.231503337621689,0.251343131065369,2.12421035766602
|
|
||||||
"Luxembourg",18,6.86299991607666,6.92368609987199,6.80231373228133,1.74194359779358,1.45758366584778,0.845089495182037,0.59662789106369,0.283180981874466,0.31883442401886,1.61951208114624
|
|
||||||
"United Kingdom",19,6.71400022506714,6.78379176110029,6.64420868903399,1.44163393974304,1.49646008014679,0.805335938930511,0.508190035820007,0.492774158716202,0.265428066253662,1.70414352416992
|
|
||||||
"Chile",20,6.65199995040894,6.73925056010485,6.56474934071302,1.25278460979462,1.28402495384216,0.819479703903198,0.376895278692245,0.326662421226501,0.0822879821062088,2.50958585739136
|
|
||||||
"United Arab Emirates",21,6.64799976348877,6.72204730376601,6.57395222321153,1.62634336948395,1.26641023159027,0.726798236370087,0.60834527015686,0.3609419465065,0.324489563703537,1.734703540802
|
|
||||||
"Brazil",22,6.63500022888184,6.72546950161457,6.5445309561491,1.10735321044922,1.43130600452423,0.616552352905273,0.437453746795654,0.16234989464283,0.111092761158943,2.76926708221436
|
|
||||||
"Czech Republic",23,6.60900020599365,6.68386246263981,6.5341379493475,1.35268235206604,1.43388521671295,0.754444003105164,0.490946173667908,0.0881067588925362,0.0368729270994663,2.45186185836792
|
|
||||||
"Argentina",24,6.59899997711182,6.69008508607745,6.50791486814618,1.18529546260834,1.44045114517212,0.695137083530426,0.494519203901291,0.109457060694695,0.059739887714386,2.61400532722473
|
|
||||||
"Mexico",25,6.57800006866455,6.67114890769124,6.48485122963786,1.15318381786346,1.210862159729,0.709978997707367,0.412730008363724,0.120990432798862,0.132774114608765,2.83715486526489
|
|
||||||
"Singapore",26,6.57200002670288,6.63672306910157,6.50727698430419,1.69227766990662,1.35381436347961,0.949492394924164,0.549840569496155,0.345965981483459,0.46430778503418,1.21636199951172
|
|
||||||
"Malta",27,6.52699995040894,6.59839677289128,6.45560312792659,1.34327983856201,1.48841166496277,0.821944236755371,0.588767051696777,0.574730575084686,0.153066068887711,1.55686283111572
|
|
||||||
"Uruguay",28,6.4539999961853,6.54590621769428,6.36209377467632,1.21755969524384,1.41222786903381,0.719216823577881,0.57939225435257,0.175096929073334,0.178061872720718,2.17240953445435
|
|
||||||
"Guatemala",29,6.4539999961853,6.56687397271395,6.34112601965666,0.872001945972443,1.25558519363403,0.540239989757538,0.531310617923737,0.283488392829895,0.0772232785820961,2.89389109611511
|
|
||||||
"Panama",30,6.4520001411438,6.55713071614504,6.34686956614256,1.23374843597412,1.37319254875183,0.706156134605408,0.550026834011078,0.21055693924427,0.070983923971653,2.30719995498657
|
|
||||||
"France",31,6.44199991226196,6.51576780244708,6.36823202207685,1.43092346191406,1.38777685165405,0.844465851783752,0.470222115516663,0.129762306809425,0.172502428293228,2.00595474243164
|
|
||||||
"Thailand",32,6.42399978637695,6.50911685571074,6.33888271704316,1.12786877155304,1.42579245567322,0.647239029407501,0.580200731754303,0.572123110294342,0.0316127352416515,2.03950834274292
|
|
||||||
"Taiwan Province of China",33,6.42199993133545,6.49459602192044,6.34940384075046,1.43362653255463,1.38456535339355,0.793984234333038,0.361466586589813,0.258360475301743,0.0638292357325554,2.1266074180603
|
|
||||||
"Spain",34,6.40299987792969,6.4710548453033,6.33494491055608,1.38439786434174,1.53209090232849,0.888960599899292,0.408781230449677,0.190133571624756,0.0709140971302986,1.92775774002075
|
|
||||||
"Qatar",35,6.375,6.56847681432962,6.18152318567038,1.87076568603516,1.27429687976837,0.710098087787628,0.604130983352661,0.330473870038986,0.439299255609512,1.1454644203186
|
|
||||||
"Colombia",36,6.35699987411499,6.45202005416155,6.26197969406843,1.07062232494354,1.4021829366684,0.595027923583984,0.477487415075302,0.149014472961426,0.0466687418520451,2.61606812477112
|
|
||||||
"Saudi Arabia",37,6.3439998626709,6.44416661202908,6.24383311331272,1.53062355518341,1.28667759895325,0.590148329734802,0.449750572443008,0.147616013884544,0.27343225479126,2.0654296875
|
|
||||||
"Trinidad and Tobago",38,6.16800022125244,6.38153389066458,5.95446655184031,1.36135590076447,1.3802285194397,0.519983291625977,0.518630743026733,0.325296461582184,0.00896481610834599,2.05324745178223
|
|
||||||
"Kuwait",39,6.10500001907349,6.1919569888711,6.01804304927588,1.63295245170593,1.25969874858856,0.632105708122253,0.496337592601776,0.228289797902107,0.215159550309181,1.64042520523071
|
|
||||||
"Slovakia",40,6.09800004959106,6.1773484121263,6.01865168705583,1.32539355754852,1.50505924224854,0.712732911109924,0.295817464590073,0.136544480919838,0.0242108516395092,2.09777665138245
|
|
||||||
"Bahrain",41,6.08699989318848,6.17898906782269,5.99501071855426,1.48841226100922,1.32311046123505,0.653133034706116,0.536746919155121,0.172668486833572,0.257042169570923,1.65614938735962
|
|
||||||
"Malaysia",42,6.08400011062622,6.17997963652015,5.98802058473229,1.29121541976929,1.28464603424072,0.618784427642822,0.402264982461929,0.416608929634094,0.0656007081270218,2.00444889068604
|
|
||||||
"Nicaragua",43,6.07100009918213,6.18658360034227,5.95541659802198,0.737299203872681,1.28721570968628,0.653095960617065,0.447551846504211,0.301674216985703,0.130687981843948,2.51393055915833
|
|
||||||
"Ecuador",44,6.00799989700317,6.10584767535329,5.91015211865306,1.00082039833069,1.28616881370544,0.685636222362518,0.4551981985569,0.150112465023994,0.140134647488594,2.29035258293152
|
|
||||||
"El Salvador",45,6.00299978256226,6.108635122329,5.89736444279552,0.909784495830536,1.18212509155273,0.596018552780151,0.432452529668808,0.0782579854130745,0.0899809598922729,2.7145938873291
|
|
||||||
"Poland",46,5.97300004959106,6.05390834122896,5.89209175795317,1.29178786277771,1.44571197032928,0.699475347995758,0.520342111587524,0.158465966582298,0.0593078061938286,1.79772281646729
|
|
||||||
"Uzbekistan",47,5.97100019454956,6.06553757295012,5.876462816149,0.786441087722778,1.54896914958954,0.498272627592087,0.658248662948608,0.415983647108078,0.246528223156929,1.81691360473633
|
|
||||||
"Italy",48,5.96400022506714,6.04273690596223,5.88526354417205,1.39506661891937,1.44492328166962,0.853144347667694,0.256450712680817,0.17278964817524,0.0280280914157629,1.81331205368042
|
|
||||||
"Russia",49,5.96299982070923,6.03027490749955,5.89572473391891,1.28177809715271,1.46928238868713,0.547349333763123,0.373783111572266,0.0522638224065304,0.0329628810286522,2.20560741424561
|
|
||||||
"Belize",50,5.95599985122681,6.19724231779575,5.71475738465786,0.907975316047668,1.08141779899597,0.450191766023636,0.547509372234344,0.240015640854836,0.0965810716152191,2.63195562362671
|
|
||||||
"Japan",51,5.92000007629395,5.99071944460273,5.84928070798516,1.41691517829895,1.43633782863617,0.913475871086121,0.505625545978546,0.12057276815176,0.163760736584663,1.36322355270386
|
|
||||||
"Lithuania",52,5.90199995040894,5.98266964137554,5.82133025944233,1.31458234786987,1.47351610660553,0.62894994020462,0.234231784939766,0.010164656676352,0.0118656428530812,2.22844052314758
|
|
||||||
"Algeria",53,5.87200021743774,5.97828643366694,5.76571400120854,1.09186446666718,1.1462174654007,0.617584645748138,0.233335807919502,0.0694366469979286,0.146096110343933,2.56760382652283
|
|
||||||
"Latvia",54,5.84999990463257,5.92026353821158,5.77973627105355,1.26074862480164,1.40471494197845,0.638566970825195,0.325707912445068,0.153074786067009,0.0738427266478539,1.99365520477295
|
|
||||||
"South Korea",55,5.83799982070923,5.92255902826786,5.7534406131506,1.40167844295502,1.12827444076538,0.900214076042175,0.257921665906906,0.206674367189407,0.0632826685905457,1.88037800788879
|
|
||||||
"Moldova",56,5.83799982070923,5.90837083846331,5.76762880295515,0.728870630264282,1.25182557106018,0.589465200901031,0.240729048848152,0.208779126405716,0.0100912861526012,2.80780839920044
|
|
||||||
"Romania",57,5.82499980926514,5.91969415679574,5.73030546173453,1.21768391132355,1.15009129047394,0.685158312320709,0.457003742456436,0.133519917726517,0.00438790069893003,2.17683148384094
|
|
||||||
"Bolivia",58,5.82299995422363,5.9039769025147,5.74202300593257,0.833756566047668,1.22761905193329,0.473630249500275,0.558732926845551,0.22556072473526,0.0604777261614799,2.44327902793884
|
|
||||||
"Turkmenistan",59,5.82200002670288,5.88518087550998,5.75881917789578,1.13077676296234,1.49314916133881,0.437726080417633,0.41827192902565,0.24992498755455,0.259270340204239,1.83290982246399
|
|
||||||
"Kazakhstan",60,5.81899976730347,5.90364177465439,5.73435775995255,1.28455626964569,1.38436901569366,0.606041550636292,0.437454283237457,0.201964423060417,0.119282886385918,1.78489255905151
|
|
||||||
"North Cyprus",61,5.80999994277954,5.89736646488309,5.72263342067599,1.3469113111496,1.18630337715149,0.834647238254547,0.471203625202179,0.266845703125,0.155353352427483,1.54915761947632
|
|
||||||
"Slovenia",62,5.75799989700317,5.84222516000271,5.67377463400364,1.3412059545517,1.45251882076263,0.790828227996826,0.572575807571411,0.242649093270302,0.0451289787888527,1.31331729888916
|
|
||||||
"Peru",63,5.71500015258789,5.81194677859545,5.61805352658033,1.03522527217865,1.21877038478851,0.630166113376617,0.450002878904343,0.126819714903831,0.0470490865409374,2.20726943016052
|
|
||||||
"Mauritius",64,5.62900018692017,5.72986219167709,5.52813818216324,1.18939554691315,1.20956099033356,0.638007462024689,0.491247326135635,0.360933750867844,0.0421815551817417,1.6975839138031
|
|
||||||
"Cyprus",65,5.62099981307983,5.71469269931316,5.5273069268465,1.35593807697296,1.13136327266693,0.84471470117569,0.355111539363861,0.271254301071167,0.0412379764020443,1.62124919891357
|
|
||||||
"Estonia",66,5.61100006103516,5.68813987419009,5.53386024788022,1.32087934017181,1.47667109966278,0.695168316364288,0.479131430387497,0.0988908112049103,0.183248922228813,1.35750865936279
|
|
||||||
"Belarus",67,5.56899976730347,5.64611424401402,5.49188529059291,1.15655755996704,1.44494521617889,0.637714266777039,0.295400261878967,0.15513750910759,0.156313821673393,1.72323298454285
|
|
||||||
"Libya",68,5.52500009536743,5.67695380687714,5.37304638385773,1.10180306434631,1.35756433010101,0.520169019699097,0.465733230113983,0.152073666453362,0.0926102101802826,1.83501124382019
|
|
||||||
"Turkey",69,5.5,5.59486496329308,5.40513503670692,1.19827437400818,1.33775317668915,0.637605607509613,0.300740599632263,0.0466930419206619,0.0996715798974037,1.87927794456482
|
|
||||||
"Paraguay",70,5.49300003051758,5.57738126963377,5.40861879140139,0.932537317276001,1.50728487968445,0.579250693321228,0.473507791757584,0.224150657653809,0.091065913438797,1.6853334903717
|
|
||||||
"Hong Kong S.A.R., China",71,5.47200012207031,5.54959417313337,5.39440607100725,1.55167484283447,1.26279091835022,0.943062424659729,0.490968644618988,0.374465793371201,0.293933749198914,0.554633140563965
|
|
||||||
"Philippines",72,5.42999982833862,5.54533505424857,5.31466460242867,0.85769921541214,1.25391757488251,0.468009054660797,0.585214674472809,0.193513423204422,0.0993318930268288,1.97260475158691
|
|
||||||
"Serbia",73,5.39499998092651,5.49156965613365,5.29843030571938,1.06931757926941,1.25818979740143,0.65078467130661,0.208715528249741,0.220125883817673,0.0409037806093693,1.94708442687988
|
|
||||||
"Jordan",74,5.33599996566772,5.44841002240777,5.22358990892768,0.991012394428253,1.23908889293671,0.604590058326721,0.418421149253845,0.172170460224152,0.11980327218771,1.79117655754089
|
|
||||||
"Hungary",75,5.32399988174438,5.40303970918059,5.24496005430818,1.2860119342804,1.34313309192657,0.687763452529907,0.175863519310951,0.0784016624093056,0.0366369374096394,1.71645927429199
|
|
||||||
"Jamaica",76,5.31099987030029,5.58139872848988,5.04060101211071,0.925579309463501,1.36821806430817,0.641022384166718,0.474307239055634,0.233818337321281,0.0552677810192108,1.61232566833496
|
|
||||||
"Croatia",77,5.29300022125244,5.39177720457315,5.19422323793173,1.22255623340607,0.96798300743103,0.701288521289825,0.255772292613983,0.248002976179123,0.0431031100451946,1.85449242591858
|
|
||||||
"Kosovo",78,5.27899980545044,5.36484799548984,5.19315161541104,0.951484382152557,1.13785350322723,0.541452050209045,0.260287940502167,0.319931447505951,0.0574716180562973,2.01054072380066
|
|
||||||
"China",79,5.27299976348877,5.31927808977663,5.2267214372009,1.08116579055786,1.16083741188049,0.741415500640869,0.472787708044052,0.0288068410009146,0.0227942746132612,1.76493859291077
|
|
||||||
"Pakistan",80,5.26900005340576,5.35998364135623,5.17801646545529,0.72688353061676,0.672690689563751,0.402047783136368,0.23521526157856,0.315446019172668,0.124348066747189,2.79248929023743
|
|
||||||
"Indonesia",81,5.26200008392334,5.35288859814405,5.17111156970263,0.995538592338562,1.27444469928741,0.492345720529556,0.443323463201523,0.611704587936401,0.0153171354904771,1.42947697639465
|
|
||||||
"Venezuela",82,5.25,5.3700319455564,5.1299680544436,1.12843120098114,1.43133759498596,0.617144227027893,0.153997123241425,0.0650196298956871,0.0644911229610443,1.78946375846863
|
|
||||||
"Montenegro",83,5.23699998855591,5.34104444056749,5.13295553654432,1.12112903594971,1.23837649822235,0.667464673519135,0.194989055395126,0.197911024093628,0.0881741940975189,1.72919154167175
|
|
||||||
"Morocco",84,5.2350001335144,5.31834096476436,5.15165930226445,0.878114581108093,0.774864435195923,0.59771066904068,0.408158332109451,0.0322099551558495,0.0877631828188896,2.45618939399719
|
|
||||||
"Azerbaijan",85,5.23400020599365,5.29928653523326,5.16871387675405,1.15360176563263,1.15240025520325,0.540775775909424,0.398155838251114,0.0452693402767181,0.180987507104874,1.76248168945312
|
|
||||||
"Dominican Republic",86,5.23000001907349,5.34906088516116,5.11093915298581,1.07937383651733,1.40241670608521,0.574873745441437,0.55258983373642,0.186967849731445,0.113945253193378,1.31946516036987
|
|
||||||
"Greece",87,5.22700023651123,5.3252461694181,5.12875430360436,1.28948748111725,1.23941457271576,0.810198903083801,0.0957312509417534,0,0.04328977689147,1.74922156333923
|
|
||||||
"Lebanon",88,5.22499990463257,5.31888228848577,5.13111752077937,1.07498753070831,1.12962424755096,0.735081076622009,0.288515985012054,0.264450758695602,0.037513829767704,1.69507384300232
|
|
||||||
"Portugal",89,5.19500017166138,5.28504173308611,5.10495861023665,1.3151752948761,1.36704301834106,0.795843541622162,0.498465299606323,0.0951027125120163,0.0158694516867399,1.10768270492554
|
|
||||||
"Bosnia and Herzegovina",90,5.18200016021729,5.27633568674326,5.08766463369131,0.982409417629242,1.0693359375,0.705186307430267,0.204403176903725,0.328867495059967,0,1.89217257499695
|
|
||||||
"Honduras",91,5.18100023269653,5.30158279687166,5.0604176685214,0.730573117733002,1.14394497871399,0.582569479942322,0.348079860210419,0.236188873648643,0.0733454525470734,2.06581115722656
|
|
||||||
"Macedonia",92,5.17500019073486,5.27217263966799,5.07782774180174,1.06457793712616,1.20789301395416,0.644948184490204,0.325905978679657,0.25376096367836,0.0602777935564518,1.6174693107605
|
|
||||||
"Somalia",93,5.15100002288818,5.24248370990157,5.0595163358748,0.0226431842893362,0.721151351928711,0.113989137113094,0.602126955986023,0.291631311178207,0.282410323619843,3.11748456954956
|
|
||||||
"Vietnam",94,5.07399988174438,5.14728076457977,5.000718998909,0.788547575473785,1.27749133110046,0.652168989181519,0.571055591106415,0.234968051314354,0.0876332372426987,1.46231865882874
|
|
||||||
"Nigeria",95,5.07399988174438,5.20950013548136,4.93849962800741,0.783756256103516,1.21577048301697,0.0569157302379608,0.394952565431595,0.230947196483612,0.0261215660721064,2.36539053916931
|
|
||||||
"Tajikistan",96,5.04099988937378,5.11142559587956,4.970574182868,0.524713635444641,1.27146327495575,0.529235124588013,0.471566706895828,0.248997643589973,0.146377146244049,1.84904932975769
|
|
||||||
"Bhutan",97,5.01100015640259,5.07933456212282,4.94266575068235,0.885416388511658,1.34012651443481,0.495879292488098,0.501537680625916,0.474054545164108,0.173380389809608,1.14018440246582
|
|
||||||
"Kyrgyzstan",98,5.00400018692017,5.08991990312934,4.91808047071099,0.596220076084137,1.39423859119415,0.553457796573639,0.454943388700485,0.42858037352562,0.0394391790032387,1.53672313690186
|
|
||||||
"Nepal",99,4.96199989318848,5.06735607936978,4.85664370700717,0.479820191860199,1.17928326129913,0.504130780696869,0.440305948257446,0.394096165895462,0.0729755461215973,1.8912410736084
|
|
||||||
"Mongolia",100,4.95499992370605,5.0216795091331,4.88832033827901,1.02723586559296,1.4930112361908,0.557783484458923,0.394143968820572,0.338464230298996,0.0329022891819477,1.11129236221313
|
|
||||||
"South Africa",101,4.8289999961853,4.92943518772721,4.72856480464339,1.05469870567322,1.38478863239288,0.187080070376396,0.479246735572815,0.139362379908562,0.0725094974040985,1.51090860366821
|
|
||||||
"Tunisia",102,4.80499982833862,4.88436700701714,4.72563264966011,1.00726580619812,0.868351459503174,0.613212049007416,0.289680689573288,0.0496933571994305,0.0867231488227844,1.89025115966797
|
|
||||||
"Palestinian Territories",103,4.77500009536743,4.88184834256768,4.66815184816718,0.716249227523804,1.15564715862274,0.565666973590851,0.25471106171608,0.114173173904419,0.0892826020717621,1.8788902759552
|
|
||||||
"Egypt",104,4.7350001335144,4.82513378962874,4.64486647740006,0.989701807498932,0.997471392154694,0.520187258720398,0.282110154628754,0.128631442785263,0.114381365478039,1.70216107368469
|
|
||||||
"Bulgaria",105,4.71400022506714,4.80369470641017,4.62430574372411,1.1614590883255,1.43437945842743,0.708217680454254,0.289231717586517,0.113177694380283,0.0110515309497714,0.996139287948608
|
|
||||||
"Sierra Leone",106,4.70900011062622,4.85064333498478,4.56735688626766,0.36842092871666,0.984136044979095,0.00556475389748812,0.318697690963745,0.293040901422501,0.0710951760411263,2.66845989227295
|
|
||||||
"Cameroon",107,4.69500017166138,4.79654085725546,4.5934594860673,0.564305365085602,0.946018218994141,0.132892116904259,0.430388748645782,0.236298456788063,0.0513066314160824,2.3336455821991
|
|
||||||
"Iran",108,4.69199991226196,4.79822470769286,4.58577511683106,1.15687310695648,0.711551249027252,0.639333188533783,0.249322608113289,0.387242913246155,0.048761073499918,1.49873495101929
|
|
||||||
"Albania",109,4.64400005340576,4.75246400639415,4.53553610041738,0.996192753314972,0.803685247898102,0.731159746646881,0.381498634815216,0.201312944293022,0.0398642159998417,1.49044156074524
|
|
||||||
"Bangladesh",110,4.60799980163574,4.68982165828347,4.52617794498801,0.586682975292206,0.735131740570068,0.533241033554077,0.478356659412384,0.172255352139473,0.123717859387398,1.97873616218567
|
|
||||||
"Namibia",111,4.57399988174438,4.77035474091768,4.37764502257109,0.964434325695038,1.0984708070755,0.33861181139946,0.520303547382355,0.0771337449550629,0.0931469723582268,1.4818902015686
|
|
||||||
"Kenya",112,4.55299997329712,4.65569159060717,4.45030835598707,0.560479462146759,1.06795072555542,0.309988349676132,0.452763766050339,0.444860309362411,0.0646413192152977,1.6519021987915
|
|
||||||
"Mozambique",113,4.55000019073486,4.77410232633352,4.3258980551362,0.234305649995804,0.870701014995575,0.106654435396194,0.480791091918945,0.322228103876114,0.179436385631561,2.35565090179443
|
|
||||||
"Myanmar",114,4.54500007629395,4.61473994642496,4.47526020616293,0.367110550403595,1.12323594093323,0.397522568702698,0.514492034912109,0.838075160980225,0.188816204667091,1.11529040336609
|
|
||||||
"Senegal",115,4.53499984741211,4.6016037812829,4.46839591354132,0.479309022426605,1.17969191074371,0.409362852573395,0.377922266721725,0.183468893170357,0.115460447967052,1.78964614868164
|
|
||||||
"Zambia",116,4.51399993896484,4.64410550147295,4.38389437645674,0.636406779289246,1.00318729877472,0.257835894823074,0.461603492498398,0.249580144882202,0.0782135501503944,1.82670545578003
|
|
||||||
"Iraq",117,4.49700021743774,4.62259140968323,4.37140902519226,1.10271048545837,0.978613197803497,0.501180469989777,0.288555532693863,0.19963726401329,0.107215754687786,1.31890726089478
|
|
||||||
"Gabon",118,4.46500015258789,4.5573617656529,4.37263853952289,1.1982102394104,1.1556202173233,0.356578588485718,0.312328577041626,0.0437853783369064,0.0760467872023582,1.32291626930237
|
|
||||||
"Ethiopia",119,4.46000003814697,4.54272867664695,4.377271399647,0.339233845472336,0.86466920375824,0.353409707546234,0.408842742443085,0.312650740146637,0.165455713868141,2.01574373245239
|
|
||||||
"Sri Lanka",120,4.44000005722046,4.55344719231129,4.32655292212963,1.00985014438629,1.25997638702393,0.625130832195282,0.561213254928589,0.490863561630249,0.0736539661884308,0.419389247894287
|
|
||||||
"Armenia",121,4.37599992752075,4.46673461228609,4.28526524275541,0.900596737861633,1.00748372077942,0.637524425983429,0.198303267359734,0.0834880918264389,0.0266744215041399,1.5214991569519
|
|
||||||
"India",122,4.31500005722046,4.37152201749384,4.25847809694707,0.792221248149872,0.754372596740723,0.455427616834641,0.469987004995346,0.231538489460945,0.0922268852591515,1.5191171169281
|
|
||||||
"Mauritania",123,4.29199981689453,4.37716361626983,4.20683601751924,0.648457288742065,1.2720308303833,0.285349279642105,0.0960980430245399,0.201870024204254,0.136957004666328,1.65163731575012
|
|
||||||
"Congo (Brazzaville)",124,4.29099988937378,4.41005350500345,4.17194627374411,0.808964252471924,0.832044363021851,0.28995743393898,0.435025870800018,0.120852127671242,0.0796181336045265,1.72413563728333
|
|
||||||
"Georgia",125,4.28599977493286,4.37493396580219,4.19706558406353,0.950612664222717,0.57061493396759,0.649546980857849,0.309410035610199,0.0540088154375553,0.251666635274887,1.50013780593872
|
|
||||||
"Congo (Kinshasa)",126,4.28000020980835,4.35781083270907,4.20218958690763,0.0921023488044739,1.22902345657349,0.191407024860382,0.235961347818375,0.246455833315849,0.0602413564920425,2.22495865821838
|
|
||||||
"Mali",127,4.19000005722046,4.26967071101069,4.11032940343022,0.476180493831635,1.28147339820862,0.169365674257278,0.306613743305206,0.183354198932648,0.104970246553421,1.66819095611572
|
|
||||||
"Ivory Coast",128,4.17999982833862,4.27518256321549,4.08481709346175,0.603048920631409,0.904780030250549,0.0486421696841717,0.447706192731857,0.201237469911575,0.130061775445938,1.84496426582336
|
|
||||||
"Cambodia",129,4.16800022125244,4.27851781353354,4.05748262897134,0.601765096187592,1.00623834133148,0.429783403873444,0.633375823497772,0.385922968387604,0.0681059509515762,1.04294109344482
|
|
||||||
"Sudan",130,4.13899993896484,4.34574716508389,3.9322527128458,0.65951669216156,1.21400856971741,0.290920823812485,0.0149958552792668,0.182317450642586,0.089847519993782,1.68706583976746
|
|
||||||
"Ghana",131,4.11999988555908,4.22270720854402,4.01729256257415,0.667224824428558,0.873664736747742,0.295637726783752,0.423026293516159,0.256923943758011,0.0253363698720932,1.57786750793457
|
|
||||||
"Ukraine",132,4.09600019454956,4.18541010454297,4.00659028455615,0.89465194940567,1.39453756809235,0.575903952121735,0.122974775731564,0.270061463117599,0.0230294708162546,0.814382314682007
|
|
||||||
"Uganda",133,4.08099985122681,4.19579996705055,3.96619973540306,0.381430715322495,1.12982773780823,0.217632606625557,0.443185955286026,0.325766056776047,0.057069718837738,1.526362657547
|
|
||||||
"Burkina Faso",134,4.03200006484985,4.12405906438828,3.93994106531143,0.3502277135849,1.04328000545502,0.215844258666039,0.324367851018906,0.250864684581757,0.120328105986118,1.72721290588379
|
|
||||||
"Niger",135,4.02799987792969,4.11194681972265,3.94405293613672,0.161925330758095,0.993025004863739,0.26850500702858,0.36365869641304,0.228673845529556,0.138572946190834,1.87398338317871
|
|
||||||
"Malawi",136,3.97000002861023,4.07747881740332,3.86252123981714,0.233442038297653,0.512568831443787,0.315089583396912,0.466914653778076,0.287170469760895,0.0727116540074348,2.08178615570068
|
|
||||||
"Chad",137,3.93600010871887,4.0347115239501,3.83728869348764,0.438012987375259,0.953855872154236,0.0411347150802612,0.16234202682972,0.216113850474358,0.0535818822681904,2.07123804092407
|
|
||||||
"Zimbabwe",138,3.875,3.97869964271784,3.77130035728216,0.375846534967422,1.08309590816498,0.196763753890991,0.336384207010269,0.189143493771553,0.0953753814101219,1.59797024726868
|
|
||||||
"Lesotho",139,3.80800008773804,4.04434397548437,3.5716561999917,0.521021246910095,1.19009518623352,0,0.390661299228668,0.157497271895409,0.119094640016556,1.42983531951904
|
|
||||||
"Angola",140,3.79500007629395,3.95164193540812,3.63835821717978,0.858428180217743,1.10441195964813,0.0498686656355858,0,0.097926490008831,0.0697203353047371,1.61448240280151
|
|
||||||
"Afghanistan",141,3.79399991035461,3.87366141527891,3.71433840543032,0.401477217674255,0.581543326377869,0.180746778845787,0.106179520487785,0.311870932579041,0.0611578300595284,2.15080118179321
|
|
||||||
"Botswana",142,3.76600003242493,3.87412266626954,3.65787739858031,1.12209415435791,1.22155499458313,0.341755509376526,0.505196332931519,0.0993484482169151,0.0985831990838051,0.3779137134552
|
|
||||||
"Benin",143,3.65700006484985,3.74578355133533,3.56821657836437,0.431085407733917,0.435299843549728,0.209930211305618,0.425962775945663,0.207948461174965,0.0609290152788162,1.88563096523285
|
|
||||||
"Madagascar",144,3.64400005340576,3.71431910589337,3.57368100091815,0.305808693170547,0.913020372390747,0.375223308801651,0.189196765422821,0.208732530474663,0.0672319754958153,1.58461260795593
|
|
||||||
"Haiti",145,3.6029999256134,3.73471479773521,3.47128505349159,0.368610262870789,0.640449821949005,0.277321130037308,0.0303698573261499,0.489203780889511,0.0998721495270729,1.69716763496399
|
|
||||||
"Yemen",146,3.59299993515015,3.69275031983852,3.49324955046177,0.591683447360992,0.93538224697113,0.310080915689468,0.249463722109795,0.104125209152699,0.0567674227058887,1.34560060501099
|
|
||||||
"South Sudan",147,3.59100008010864,3.72553858578205,3.45646157443523,0.39724862575531,0.601323127746582,0.163486003875732,0.147062435746193,0.285670816898346,0.116793513298035,1.87956738471985
|
|
||||||
"Liberia",148,3.53299999237061,3.65375626087189,3.41224372386932,0.119041793048382,0.872117936611176,0.229918196797371,0.332881182432175,0.26654988527298,0.0389482490718365,1.67328596115112
|
|
||||||
"Guinea",149,3.50699996948242,3.58442812889814,3.4295718100667,0.244549930095673,0.791244685649872,0.194129139184952,0.348587512969971,0.264815092086792,0.110937617719173,1.55231189727783
|
|
||||||
"Togo",150,3.49499988555908,3.59403811171651,3.39596165940166,0.305444717407227,0.431882530450821,0.247105568647385,0.38042613863945,0.196896150708199,0.0956650152802467,1.83722925186157
|
|
||||||
"Rwanda",151,3.47099995613098,3.54303023353219,3.39896967872977,0.368745893239975,0.945707023143768,0.326424807310104,0.581843852996826,0.252756029367447,0.455220013856888,0.540061235427856
|
|
||||||
"Syria",152,3.46199989318848,3.66366855680943,3.26033122956753,0.777153134346008,0.396102607250214,0.50053334236145,0.0815394446253777,0.493663728237152,0.151347130537033,1.06157350540161
|
|
||||||
"Tanzania",153,3.34899997711182,3.46142975538969,3.23657019883394,0.511135876178741,1.04198980331421,0.364509284496307,0.390017777681351,0.354256361722946,0.0660351067781448,0.621130466461182
|
|
||||||
"Burundi",154,2.90499997138977,3.07469033300877,2.73530960977077,0.091622568666935,0.629793584346771,0.151610791683197,0.0599007532000542,0.204435184597969,0.0841479450464249,1.68302416801453
|
|
||||||
"Central African Republic",155,2.69300007820129,2.86488426923752,2.52111588716507,0,0,0.0187726859003305,0.270842045545578,0.280876487493515,0.0565650761127472,2.06600475311279
|
|
|
|
@ -1,6 +0,0 @@
|
||||||
"""Dataset Features Related Utils"""
|
|
||||||
|
|
||||||
from .normalize import normalize
|
|
||||||
from .generate_polynomials import generate_polynomials
|
|
||||||
from .generate_sinusoids import generate_sinusoids
|
|
||||||
from .prepare_for_training import prepare_for_training
|
|
|
@ -1,44 +0,0 @@
|
||||||
"""Add polynomial features to the features set"""
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
from .normalize import normalize
|
|
||||||
|
|
||||||
|
|
||||||
def generate_polynomials(dataset, polynomial_degree, normalize_data=False):
|
|
||||||
"""变换方法:
|
|
||||||
x1, x2, x1^2, x2^2, x1*x2, x1*x2^2, etc.
|
|
||||||
"""
|
|
||||||
|
|
||||||
features_split = np.array_split(dataset, 2, axis=1)
|
|
||||||
dataset_1 = features_split[0]
|
|
||||||
dataset_2 = features_split[1]
|
|
||||||
|
|
||||||
(num_examples_1, num_features_1) = dataset_1.shape
|
|
||||||
(num_examples_2, num_features_2) = dataset_2.shape
|
|
||||||
|
|
||||||
if num_examples_1 != num_examples_2:
|
|
||||||
raise ValueError('Can not generate polynomials for two sets with different number of rows')
|
|
||||||
|
|
||||||
if num_features_1 == 0 and num_features_2 == 0:
|
|
||||||
raise ValueError('Can not generate polynomials for two sets with no columns')
|
|
||||||
|
|
||||||
if num_features_1 == 0:
|
|
||||||
dataset_1 = dataset_2
|
|
||||||
elif num_features_2 == 0:
|
|
||||||
dataset_2 = dataset_1
|
|
||||||
|
|
||||||
num_features = num_features_1 if num_features_1 < num_examples_2 else num_features_2
|
|
||||||
dataset_1 = dataset_1[:, :num_features]
|
|
||||||
dataset_2 = dataset_2[:, :num_features]
|
|
||||||
|
|
||||||
polynomials = np.empty((num_examples_1, 0))
|
|
||||||
|
|
||||||
for i in range(1, polynomial_degree + 1):
|
|
||||||
for j in range(i + 1):
|
|
||||||
polynomial_feature = (dataset_1 ** (i - j)) * (dataset_2 ** j)
|
|
||||||
polynomials = np.concatenate((polynomials, polynomial_feature), axis=1)
|
|
||||||
|
|
||||||
if normalize_data:
|
|
||||||
polynomials = normalize(polynomials)[0]
|
|
||||||
|
|
||||||
return polynomials
|
|
|
@ -1,16 +0,0 @@
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
|
|
||||||
def generate_sinusoids(dataset, sinusoid_degree):
|
|
||||||
"""
|
|
||||||
sin(x).
|
|
||||||
"""
|
|
||||||
|
|
||||||
num_examples = dataset.shape[0]
|
|
||||||
sinusoids = np.empty((num_examples, 0))
|
|
||||||
|
|
||||||
for degree in range(1, sinusoid_degree + 1):
|
|
||||||
sinusoid_features = np.sin(degree * dataset)
|
|
||||||
sinusoids = np.concatenate((sinusoids, sinusoid_features), axis=1)
|
|
||||||
|
|
||||||
return sinusoids
|
|
|
@ -1,24 +0,0 @@
|
||||||
"""Normalize features"""
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
|
|
||||||
def normalize(features):
|
|
||||||
|
|
||||||
features_normalized = np.copy(features).astype(float)
|
|
||||||
|
|
||||||
# 计算均值
|
|
||||||
features_mean = np.mean(features, 0)
|
|
||||||
|
|
||||||
# 计算标准差
|
|
||||||
features_deviation = np.std(features, 0)
|
|
||||||
|
|
||||||
# 标准化操作
|
|
||||||
if features.shape[0] > 1:
|
|
||||||
features_normalized -= features_mean
|
|
||||||
|
|
||||||
# 防止除以0
|
|
||||||
features_deviation[features_deviation == 0] = 1
|
|
||||||
features_normalized /= features_deviation
|
|
||||||
|
|
||||||
return features_normalized, features_mean, features_deviation
|
|
|
@ -1,42 +0,0 @@
|
||||||
"""Prepares the dataset for training"""
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
from .normalize import normalize
|
|
||||||
from .generate_sinusoids import generate_sinusoids
|
|
||||||
from .generate_polynomials import generate_polynomials
|
|
||||||
|
|
||||||
|
|
||||||
def prepare_for_training(data, polynomial_degree=0, sinusoid_degree=0, normalize_data=True):
|
|
||||||
|
|
||||||
# 计算样本总数
|
|
||||||
num_examples = data.shape[0]
|
|
||||||
|
|
||||||
data_processed = np.copy(data)
|
|
||||||
|
|
||||||
# 预处理
|
|
||||||
features_mean = 0
|
|
||||||
features_deviation = 0
|
|
||||||
data_normalized = data_processed
|
|
||||||
if normalize_data:
|
|
||||||
(
|
|
||||||
data_normalized,
|
|
||||||
features_mean,
|
|
||||||
features_deviation
|
|
||||||
) = normalize(data_processed)
|
|
||||||
|
|
||||||
data_processed = data_normalized
|
|
||||||
|
|
||||||
# 特征变换sinusoidal
|
|
||||||
if sinusoid_degree > 0:
|
|
||||||
sinusoids = generate_sinusoids(data_normalized, sinusoid_degree)
|
|
||||||
data_processed = np.concatenate((data_processed, sinusoids), axis=1)
|
|
||||||
|
|
||||||
# 特征变换polynomial
|
|
||||||
if polynomial_degree > 0:
|
|
||||||
polynomials = generate_polynomials(data_normalized, polynomial_degree, normalize_data)
|
|
||||||
data_processed = np.concatenate((data_processed, polynomials), axis=1)
|
|
||||||
|
|
||||||
# 加一列1
|
|
||||||
data_processed = np.hstack((np.ones((num_examples, 1)), data_processed))
|
|
||||||
|
|
||||||
return data_processed, features_mean, features_deviation
|
|
|
@ -1,4 +0,0 @@
|
||||||
"""Dataset Hypothesis Related Utils"""
|
|
||||||
|
|
||||||
from .sigmoid import sigmoid
|
|
||||||
from .sigmoid_gradient import sigmoid_gradient
|
|
|
@ -1,9 +0,0 @@
|
||||||
"""Sigmoid function"""
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
|
|
||||||
def sigmoid(matrix):
|
|
||||||
"""Applies sigmoid function to NumPy matrix"""
|
|
||||||
|
|
||||||
return 1 / (1 + np.exp(-matrix))
|
|
|
@ -1,9 +0,0 @@
|
||||||
"""Sigmoid gradient function"""
|
|
||||||
|
|
||||||
from .sigmoid import sigmoid
|
|
||||||
|
|
||||||
|
|
||||||
def sigmoid_gradient(matrix):
|
|
||||||
"""Computes the gradient of the sigmoid function evaluated at z."""
|
|
||||||
|
|
||||||
return sigmoid(matrix) * (1 - sigmoid(matrix))
|
|
|
@ -40,7 +40,7 @@ plt.title('Gradient Descent Progress')
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
predictions_num = 1000
|
predictions_num = 1000
|
||||||
x_predictions = np.linspace(x.min(), x.max(), predictions_num).reshape(predictions_num, 1);
|
x_predictions = np.linspace(x.min(), x.max(), predictions_num).reshape(predictions_num, 1)
|
||||||
y_predictions = linear_regression.predict(x_predictions)
|
y_predictions = linear_regression.predict(x_predictions)
|
||||||
|
|
||||||
plt.scatter(x, y, label='Training Dataset')
|
plt.scatter(x, y, label='Training Dataset')
|
Loading…
Reference in New Issue