import numpy as np import pandas as pd import matplotlib.pyplot as plt import plotly import plotly.graph_objs as go plotly.offline.init_notebook_mode() from linear_regression import LinearRegression data = pd.read_csv('../data/world-happiness-report-2017.csv') train_data = data.sample(frac=0.8) test_data = data.drop(train_data.index) input_param_name_1 = 'Economy..GDP.per.Capita.' input_param_name_2 = 'Freedom' output_param_name = 'Happiness.Score' x_train = train_data[[input_param_name_1, input_param_name_2]].values y_train = train_data[[output_param_name]].values x_test = test_data[[input_param_name_1, input_param_name_2]].values y_test = test_data[[output_param_name]].values # Configure the plot with training dataset. plot_training_trace = go.Scatter3d( x=x_train[:, 0].flatten(), y=x_train[:, 1].flatten(), z=y_train.flatten(), name='Training Set', mode='markers', marker={ 'size': 10, 'opacity': 1, 'line': { 'color': 'rgb(255, 255, 255)', 'width': 1 }, } ) plot_test_trace = go.Scatter3d( x=x_test[:, 0].flatten(), y=x_test[:, 1].flatten(), z=y_test.flatten(), name='Test Set', mode='markers', marker={ 'size': 10, 'opacity': 1, 'line': { 'color': 'rgb(255, 255, 255)', 'width': 1 }, } ) plot_layout = go.Layout( title='Date Sets', scene={ 'xaxis': {'title': input_param_name_1}, 'yaxis': {'title': input_param_name_2}, 'zaxis': {'title': output_param_name} }, margin={'l': 0, 'r': 0, 'b': 0, 't': 0} ) plot_data = [plot_training_trace, plot_test_trace] plot_figure = go.Figure(data=plot_data, layout=plot_layout) plotly.offline.plot(plot_figure) num_iterations = 500 learning_rate = 0.01 polynomial_degree = 0 sinusoid_degree = 0 linear_regression = LinearRegression(x_train, y_train, polynomial_degree, sinusoid_degree) (theta, cost_history) = linear_regression.train( learning_rate, num_iterations ) print('开始损失',cost_history[0]) print('结束损失',cost_history[-1]) plt.plot(range(num_iterations), cost_history) plt.xlabel('Iterations') plt.ylabel('Cost') plt.title('Gradient Descent Progress') plt.show() predictions_num = 10 x_min = x_train[:, 0].min(); x_max = x_train[:, 0].max(); y_min = x_train[:, 1].min(); y_max = x_train[:, 1].max(); x_axis = np.linspace(x_min, x_max, predictions_num) y_axis = np.linspace(y_min, y_max, predictions_num) x_predictions = np.zeros((predictions_num * predictions_num, 1)) y_predictions = np.zeros((predictions_num * predictions_num, 1)) x_y_index = 0 for x_index, x_value in enumerate(x_axis): for y_index, y_value in enumerate(y_axis): x_predictions[x_y_index] = x_value y_predictions[x_y_index] = y_value x_y_index += 1 z_predictions = linear_regression.predict(np.hstack((x_predictions, y_predictions))) plot_predictions_trace = go.Scatter3d( x=x_predictions.flatten(), y=y_predictions.flatten(), z=z_predictions.flatten(), name='Prediction Plane', mode='markers', marker={ 'size': 1, }, opacity=0.8, surfaceaxis=2, ) plot_data = [plot_training_trace, plot_test_trace, plot_predictions_trace] plot_figure = go.Figure(data=plot_data, layout=plot_layout) plotly.offline.plot(plot_figure)