97 lines
3.1 KiB
Python
97 lines
3.1 KiB
Python
import numpy as np
|
||
from utils.features import prepare_for_training
|
||
|
||
class LinearRegression:
|
||
|
||
def __init__(self,data,labels,polynomial_degree = 0,sinusoid_degree = 0,normalize_data=True):
|
||
"""
|
||
1.对数据进行预处理操作
|
||
2.先得到所有的特征个数
|
||
3.初始化参数矩阵
|
||
"""
|
||
(data_processed,
|
||
features_mean,
|
||
features_deviation) = prepare_for_training(data, polynomial_degree, sinusoid_degree,normalize_data=True)
|
||
|
||
self.data = data_processed
|
||
self.labels = labels
|
||
self.features_mean = features_mean
|
||
self.features_deviation = features_deviation
|
||
self.polynomial_degree = polynomial_degree
|
||
self.sinusoid_degree = sinusoid_degree
|
||
self.normalize_data = normalize_data
|
||
|
||
num_features = self.data.shape[1]
|
||
self.theta = np.zeros((num_features,1))
|
||
|
||
def train(self,alpha,num_iterations = 500):
|
||
"""
|
||
训练模块,执行梯度下降
|
||
"""
|
||
cost_history = self.gradient_descent(alpha,num_iterations)
|
||
return self.theta,cost_history
|
||
|
||
def gradient_descent(self,alpha,num_iterations):
|
||
"""
|
||
实际迭代模块,会迭代num_iterations次
|
||
"""
|
||
cost_history = []
|
||
for _ in range(num_iterations):
|
||
self.gradient_step(alpha)
|
||
cost_history.append(self.cost_function(self.data,self.labels))
|
||
return cost_history
|
||
|
||
|
||
def gradient_step(self,alpha):
|
||
"""
|
||
梯度下降参数更新计算方法,注意是矩阵运算
|
||
"""
|
||
num_examples = self.data.shape[0]
|
||
prediction = LinearRegression.hypothesis(self.data,self.theta)
|
||
delta = prediction - self.labels
|
||
theta = self.theta
|
||
theta = theta - alpha*(1/num_examples)*(np.dot(delta.T,self.data)).T
|
||
self.theta = theta
|
||
|
||
|
||
def cost_function(self,data,labels):
|
||
"""
|
||
损失计算方法
|
||
"""
|
||
num_examples = data.shape[0]
|
||
delta = LinearRegression.hypothesis(self.data,self.theta) - labels
|
||
cost = (1/2)*np.dot(delta.T,delta)/num_examples
|
||
return cost[0][0]
|
||
|
||
|
||
|
||
@staticmethod
|
||
def hypothesis(data,theta):
|
||
predictions = np.dot(data,theta)
|
||
return predictions
|
||
|
||
def get_cost(self,data,labels):
|
||
data_processed = prepare_for_training(data,
|
||
self.polynomial_degree,
|
||
self.sinusoid_degree,
|
||
self.normalize_data
|
||
)[0]
|
||
|
||
return self.cost_function(data_processed,labels)
|
||
def predict(self,data):
|
||
"""
|
||
用训练的参数模型,与预测得到回归值结果
|
||
"""
|
||
data_processed = prepare_for_training(data,
|
||
self.polynomial_degree,
|
||
self.sinusoid_degree,
|
||
self.normalize_data
|
||
)[0]
|
||
|
||
predictions = LinearRegression.hypothesis(data_processed,self.theta)
|
||
|
||
return predictions
|
||
|
||
|
||
|
||
|