Explorar o código

wip: ricraf polyfill

Jonathan Kelley %!s(int64=3) %!d(string=hai) anos
pai
achega
59219b9

+ 0 - 1708
packages/core/src/diff.rs.old

@@ -1,1708 +0,0 @@
-//! This module contains the stateful PriorityFiber and all methods to diff VNodes, their properties, and their children.
-//!
-//! The [`PriorityFiber`] calculates the diffs between the old and new frames, updates the new nodes, and generates a set
-//! of mutations for the RealDom to apply.
-//!
-//! ## Notice:
-//! The inspiration and code for this module was originally taken from Dodrio (@fitzgen) and then modified to support
-//! Components, Fragments, Suspense, SubTree memoization, incremental diffing, cancelation, NodeRefs, and additional
-//! batching operations.
-//!
-//! ## Implementation Details:
-//!
-//! ### IDs for elements
-//! --------------------
-//! All nodes are addressed by their IDs. The RealDom provides an imperative interface for making changes to these nodes.
-//! We don't necessarily require that DOM changes happen instnatly during the diffing process, so the implementor may choose
-//! to batch nodes if it is more performant for their application. The element IDs are indicies into the internal element
-//! array. The expectation is that implemenetors will use the ID as an index into a Vec of real nodes, allowing for passive
-//! garbage collection as the VirtualDOM replaces old nodes.
-//!
-//! When new vnodes are created through `cx.render`, they won't know which real node they correspond to. During diffing,
-//! we always make sure to copy over the ID. If we don't do this properly, the ElementId will be populated incorrectly
-//! and brick the user's page.
-//!
-//! ### Fragment Support
-//!
-//! Fragments (nodes without a parent) are supported through a combination of "replace with" and anchor vnodes. Fragments
-//! can be particularly challenging when they are empty, so the placeholder node lets us "reserve" a spot for the empty
-//! fragment to be replaced with when it is no longer empty. This is guaranteed by logic in the NodeFactory - it is
-//! impossible to craft a fragment with 0 elements - they must always have at least a single placeholder element. This is
-//! slightly inefficient, but represents a such an uncommon use case that it is not worth optimizing.
-//!
-//! Other implementations either don't support fragments or use a "child + sibling" pattern to represent them. Our code is
-//! vastly simpler and more performant when we can just create a placeholder element while the fragment has no children.
-//!
-//! ## Subtree Memoization
-//! -----------------------
-//! We also employ "subtree memoization" which saves us from having to check trees which take no dynamic content. We can
-//! detect if a subtree is "static" by checking if its children are "static". Since we dive into the tree depth-first, the
-//! calls to "create" propogate this information upwards. Structures like the one below are entirely static:
-//! ```rust
-//! rsx!( div { class: "hello world", "this node is entirely static" } )
-//! ```
-//! Because the subtrees won't be diffed, their "real node" data will be stale (invalid), so its up to the reconciler to
-//! track nodes created in a scope and clean up all relevant data. Support for this is currently WIP and depends on comp-time
-//! hashing of the subtree from the rsx! macro. We do a very limited form of static analysis via static string pointers as
-//! a way of short-circuiting the most expensive checks.
-//!
-//! ## Bloom Filter and Heuristics
-//! ------------------------------
-//! For all components, we employ some basic heuristics to speed up allocations and pre-size bump arenas. The heuristics are
-//! currently very rough, but will get better as time goes on. The information currently tracked includes the size of a
-//! bump arena after first render, the number of hooks, and the number of nodes in the tree.
-//!
-//! ## Garbage Collection
-//! ---------------------
-//! Dioxus uses a passive garbage collection system to clean up old nodes once the work has been completed. This garabge
-//! collection is done internally once the main diffing work is complete. After the "garbage" is collected, Dioxus will then
-//! start to re-use old keys for new nodes. This results in a passive memory management system that is very efficient.
-//!
-//! The IDs used by the key/map are just an index into a vec. This means that Dioxus will drive the key allocation strategy
-//! so the client only needs to maintain a simple list of nodes. By default, Dioxus will not manually clean up old nodes
-//! for the client. As new nodes are created, old nodes will be over-written.
-//!
-//! Further Reading and Thoughts
-//! ----------------------------
-//! There are more ways of increasing diff performance here that are currently not implemented.
-//! More info on how to improve this diffing algorithm:
-//!  - https://hacks.mozilla.org/2019/03/fast-bump-allocated-virtual-doms-with-rust-and-wasm/
-
-use crate::{arena::SharedResources, innerlude::*};
-use futures_util::Future;
-use fxhash::{FxBuildHasher, FxHashMap, FxHashSet};
-use indexmap::IndexSet;
-use smallvec::{smallvec, SmallVec};
-
-use std::{
-    any::Any, cell::Cell, cmp::Ordering, collections::HashSet, marker::PhantomData, pin::Pin,
-};
-use DomEdit::*;
-
-pub struct DiffMachine<'bump> {
-    vdom: &'bump SharedResources,
-
-    pub mutations: Mutations<'bump>,
-
-    pub node_stack: SmallVec<[SearchNode<'bump>; 10]>,
-
-    pub scope_stack: SmallVec<[ScopeId; 5]>,
-
-    pub diffed: FxHashSet<ScopeId>,
-
-    pub seen_scopes: FxHashSet<ScopeId>,
-}
-enum SearchNode<'a> {
-    Node {
-        old: &'a VNode<'a>,
-        new: &'a VNode<'a>,
-    },
-    NodeList {
-        old: &'a [VNode<'a>],
-        node: &'a [VNode<'a>],
-    },
-}
-
-impl<'bump> DiffMachine<'bump> {
-    pub(crate) fn new(
-        edits: Mutations<'bump>,
-        cur_scope: ScopeId,
-        shared: &'bump SharedResources,
-    ) -> Self {
-        Self {
-            node_stack: smallvec![],
-            mutations: edits,
-            scope_stack: smallvec![cur_scope],
-            vdom: shared,
-            diffed: FxHashSet::default(),
-            seen_scopes: FxHashSet::default(),
-        }
-    }
-
-    /// Allows the creation of a diff machine without the concept of scopes or a virtualdom
-    /// this is mostly useful for testing
-    ///
-    /// This will PANIC if any component elements are passed in.
-    pub fn new_headless(shared: &'bump SharedResources) -> Self {
-        Self {
-            node_stack: smallvec![],
-            mutations: Mutations::new(),
-            scope_stack: smallvec![ScopeId(0)],
-            vdom: shared,
-            diffed: FxHashSet::default(),
-            seen_scopes: FxHashSet::default(),
-        }
-    }
-
-    //
-    pub async fn diff_scope(&mut self, id: ScopeId) -> Result<()> {
-        let component = self.get_scope_mut(&id).ok_or_else(|| Error::NotMounted)?;
-        let (old, new) = (component.frames.wip_head(), component.frames.fin_head());
-        self.diff_node(old, new);
-        Ok(())
-    }
-
-    /// Progress the diffing for this "fiber"
-    ///
-    /// This method implements a depth-first iterative tree traversal.
-    ///
-    /// We do depth-first to maintain high cache locality (nodes were originally generated recursively) and because we
-    /// only need a stack (not a queue) of lists
-    ///
-    ///
-    ///
-    pub async fn work(&mut self) -> Result<()> {
-        //
-        while let Some(search) = self.node_stack.last_mut() {
-            // Prevent our task from blocking permanently
-            yield_now().await;
-
-            match search {
-                SearchNode::Node { old, new } => {
-                    //
-                    // self.diff_node(old, new);
-                }
-
-                SearchNode::NodeList { old, node } => {
-                    //
-                    todo!()
-                }
-            }
-        }
-
-        Ok(())
-    }
-
-    // Diff the `old` node with the `new` node. Emits instructions to modify a
-    // physical DOM node that reflects `old` into something that reflects `new`.
-    //
-    // the real stack should be what it is coming in and out of this function (ideally empty)
-    //
-    // each function call assumes the stack is fresh (empty).
-    pub fn diff_node(&mut self, old_node: &'bump VNode<'bump>, new_node: &'bump VNode<'bump>) {
-        match (&old_node.kind, &new_node.kind) {
-            // Handle the "sane" cases first.
-            // The rsx and html macros strongly discourage dynamic lists not encapsulated by a "Fragment".
-            // So the sane (and fast!) cases are where the virtual structure stays the same and is easily diffable.
-            (VNodeKind::Text(old), VNodeKind::Text(new)) => {
-                let root = old_node.direct_id();
-
-                if old.text != new.text {
-                    self.edit_push_root(root);
-                    self.edit_set_text(new.text);
-                    self.edit_pop();
-                }
-
-                new.dom_id.set(Some(root));
-            }
-
-            (VNodeKind::Element(old), VNodeKind::Element(new)) => {
-                let root = old_node.direct_id();
-
-                // If the element type is completely different, the element needs to be re-rendered completely
-                // This is an optimization React makes due to how users structure their code
-                //
-                // This case is rather rare (typically only in non-keyed lists)
-                if new.tag_name != old.tag_name || new.namespace != old.namespace {
-                    self.replace_node_with_node(root, old_node, new_node);
-                    return;
-                }
-
-                new.dom_id.set(Some(root));
-
-                // Don't push the root if we don't have to
-                let mut has_comitted = false;
-                let mut please_commit = |edits: &mut Vec<DomEdit>| {
-                    if !has_comitted {
-                        has_comitted = true;
-                        edits.push(PushRoot { id: root.as_u64() });
-                    }
-                };
-
-                // Diff Attributes
-                //
-                // It's extraordinarily rare to have the number/order of attributes change
-                // In these cases, we just completely erase the old set and make a new set
-                //
-                // TODO: take a more efficient path than this
-                if old.attributes.len() == new.attributes.len() {
-                    for (old_attr, new_attr) in old.attributes.iter().zip(new.attributes.iter()) {
-                        if old_attr.value != new_attr.value {
-                            please_commit(&mut self.mutations.edits);
-                            self.edit_set_attribute(new_attr);
-                        }
-                    }
-                } else {
-                    // TODO: provide some sort of report on how "good" the diffing was
-                    please_commit(&mut self.mutations.edits);
-                    for attribute in old.attributes {
-                        self.edit_remove_attribute(attribute);
-                    }
-                    for attribute in new.attributes {
-                        self.edit_set_attribute(attribute)
-                    }
-                }
-
-                // Diff listeners
-                //
-                // It's extraordinarily rare to have the number/order of listeners change
-                // In the cases where the listeners change, we completely wipe the data attributes and add new ones
-                //
-                // We also need to make sure that all listeners are properly attached to the parent scope (fix_listener)
-                //
-                // TODO: take a more efficient path than this
-                let cur_scope: ScopeId = self.scope_stack.last().unwrap().clone();
-                if old.listeners.len() == new.listeners.len() {
-                    for (old_l, new_l) in old.listeners.iter().zip(new.listeners.iter()) {
-                        if old_l.event != new_l.event {
-                            please_commit(&mut self.mutations.edits);
-                            self.edit_remove_event_listener(old_l.event);
-                            self.edit_new_event_listener(new_l, cur_scope);
-                        }
-                        new_l.mounted_node.set(old_l.mounted_node.get());
-                        self.fix_listener(new_l);
-                    }
-                } else {
-                    please_commit(&mut self.mutations.edits);
-                    for listener in old.listeners {
-                        self.edit_remove_event_listener(listener.event);
-                    }
-                    for listener in new.listeners {
-                        listener.mounted_node.set(Some(root));
-                        self.edit_new_event_listener(listener, cur_scope);
-
-                        // Make sure the listener gets attached to the scope list
-                        self.fix_listener(listener);
-                    }
-                }
-
-                if has_comitted {
-                    self.edit_pop();
-                }
-
-                self.diff_children(old.children, new.children);
-            }
-
-            (VNodeKind::Component(old), VNodeKind::Component(new)) => {
-                let scope_addr = old.ass_scope.get().unwrap();
-
-                // Make sure we're dealing with the same component (by function pointer)
-                if old.user_fc == new.user_fc {
-                    //
-                    self.scope_stack.push(scope_addr);
-
-                    // Make sure the new component vnode is referencing the right scope id
-                    new.ass_scope.set(Some(scope_addr));
-
-                    // make sure the component's caller function is up to date
-                    let scope = self.get_scope_mut(&scope_addr).unwrap();
-
-                    scope
-                        .update_scope_dependencies(new.caller.clone(), ScopeChildren(new.children));
-
-                    // React doesn't automatically memoize, but we do.
-                    let compare = old.comparator.unwrap();
-
-                    match compare(new) {
-                        true => {
-                            // the props are the same...
-                        }
-                        false => {
-                            // the props are different...
-                            scope.run_scope().unwrap();
-                            self.diff_node(scope.frames.wip_head(), scope.frames.fin_head());
-                        }
-                    }
-
-                    self.scope_stack.pop();
-
-                    self.seen_scopes.insert(scope_addr);
-                } else {
-                    let mut old_iter = RealChildIterator::new(old_node, &self.vdom);
-                    let first = old_iter
-                        .next()
-                        .expect("Components should generate a placeholder root");
-
-                    // remove any leftovers
-                    for to_remove in old_iter {
-                        self.edit_push_root(to_remove.direct_id());
-                        self.edit_remove();
-                    }
-
-                    // seems like we could combine this into a single instruction....
-                    self.replace_node_with_node(first.direct_id(), old_node, new_node);
-
-                    // Wipe the old one and plant the new one
-                    let old_scope = old.ass_scope.get().unwrap();
-                    self.destroy_scopes(old_scope);
-                }
-            }
-
-            (VNodeKind::Fragment(old), VNodeKind::Fragment(new)) => {
-                // This is the case where options or direct vnodes might be used.
-                // In this case, it's faster to just skip ahead to their diff
-                if old.children.len() == 1 && new.children.len() == 1 {
-                    self.diff_node(&old.children[0], &new.children[0]);
-                    return;
-                }
-
-                self.diff_children(old.children, new.children);
-            }
-
-            (VNodeKind::Anchor(old), VNodeKind::Anchor(new)) => {
-                new.dom_id.set(old.dom_id.get());
-            }
-
-            // The strategy here is to pick the first possible node from the previous set and use that as our replace with root
-            //
-            // We also walk the "real node" list to make sure all latent roots are claened up
-            // This covers the case any time a fragment or component shows up with pretty much anything else
-            //
-            // This likely isn't the fastest way to go about replacing one node with a virtual node, but the "insane" cases
-            // are pretty rare.  IE replacing a list (component or fragment) with a single node.
-            (
-                VNodeKind::Component(_)
-                | VNodeKind::Fragment(_)
-                | VNodeKind::Text(_)
-                | VNodeKind::Element(_)
-                | VNodeKind::Anchor(_),
-                VNodeKind::Component(_)
-                | VNodeKind::Fragment(_)
-                | VNodeKind::Text(_)
-                | VNodeKind::Element(_)
-                | VNodeKind::Anchor(_),
-            ) => {
-                self.replace_and_create_many_with_many([old_node], [new_node]);
-            }
-
-            // TODO
-            (VNodeKind::Suspended(old), new) => {
-                //
-                self.replace_and_create_many_with_many([old_node], [new_node]);
-            }
-            // a node that was once real is now suspended
-            (old, VNodeKind::Suspended(_)) => {
-                //
-                self.replace_and_create_many_with_many([old_node], [new_node]);
-            }
-        }
-    }
-
-    // Emit instructions to create the given virtual node.
-    //
-    // The change list stack may have any shape upon entering this function:
-    //
-    //     [...]
-    //
-    // When this function returns, the new node is on top of the change list stack:
-    //
-    //     [... node]
-    pub fn create_vnode(&mut self, node: &'bump VNode<'bump>) -> CreateMeta {
-        match &node.kind {
-            VNodeKind::Text(text) => {
-                let real_id = self.vdom.reserve_node();
-                self.edit_create_text_node(text.text, real_id);
-                text.dom_id.set(Some(real_id));
-                CreateMeta::new(text.is_static, 1)
-            }
-
-            VNodeKind::Anchor(anchor) => {
-                let real_id = self.vdom.reserve_node();
-                self.edit_create_placeholder(real_id);
-                anchor.dom_id.set(Some(real_id));
-                CreateMeta::new(false, 1)
-            }
-
-            VNodeKind::Element(el) => {
-                // we have the potential to completely eliminate working on this node in the future(!)
-                //
-                // This can only be done if all of the elements properties (attrs, children, listeners, etc) are static
-                // While creating these things, keep track if we can memoize this element.
-                // At the end, we'll set this flag on the element to skip it
-                let mut is_static: bool = true;
-
-                let VElement {
-                    tag_name,
-                    listeners,
-                    attributes,
-                    children,
-                    namespace,
-                    static_attrs: _,
-                    static_children: _,
-                    static_listeners: _,
-                    dom_id,
-                } = el;
-
-                let real_id = self.vdom.reserve_node();
-                self.edit_create_element(tag_name, *namespace, real_id);
-                dom_id.set(Some(real_id));
-
-                let cur_scope = self.current_scope().unwrap();
-
-                listeners.iter().for_each(|listener| {
-                    self.fix_listener(listener);
-                    listener.mounted_node.set(Some(real_id));
-                    self.edit_new_event_listener(listener, cur_scope.clone());
-
-                    // if the node has an event listener, then it must be visited ?
-                    is_static = false;
-                });
-
-                for attr in *attributes {
-                    is_static = is_static && attr.is_static;
-                    self.edit_set_attribute(attr);
-                }
-
-                // Fast path: if there is a single text child, it is faster to
-                // create-and-append the text node all at once via setting the
-                // parent's `textContent` in a single change list instruction than
-                // to emit three instructions to (1) create a text node, (2) set its
-                // text content, and finally (3) append the text node to this
-                // parent.
-                //
-                // Notice: this is a web-specific optimization and may be changed in the future
-                //
-                // TODO move over
-                // if children.len() == 1 {
-                //     if let VNodeKind::Text(text) = &children[0].kind {
-                //         self.set_text(text.text);
-                //         return CreateMeta::new(is_static, 1);
-                //     }
-                // }
-
-                for child in *children {
-                    let child_meta = self.create_vnode(child);
-                    is_static = is_static && child_meta.is_static;
-
-                    // append whatever children were generated by this call
-                    self.edit_append_children(child_meta.added_to_stack);
-                }
-
-                CreateMeta::new(is_static, 1)
-            }
-
-            VNodeKind::Component(vcomponent) => {
-                let caller = vcomponent.caller.clone();
-
-                let parent_idx = self.scope_stack.last().unwrap().clone();
-
-                // Insert a new scope into our component list
-                let new_idx = self.vdom.insert_scope_with_key(|new_idx| {
-                    let parent_scope = self.get_scope(&parent_idx).unwrap();
-                    let height = parent_scope.height + 1;
-                    Scope::new(
-                        caller,
-                        new_idx,
-                        Some(parent_idx),
-                        height,
-                        ScopeChildren(vcomponent.children),
-                        self.vdom.clone(),
-                    )
-                });
-
-                // Actually initialize the caller's slot with the right address
-                vcomponent.ass_scope.set(Some(new_idx));
-
-                if !vcomponent.can_memoize {
-                    let cur_scope = self.get_scope_mut(&parent_idx).unwrap();
-                    let extended = *vcomponent as *const VComponent;
-                    let extended: *const VComponent<'static> =
-                        unsafe { std::mem::transmute(extended) };
-                    cur_scope.borrowed_props.borrow_mut().push(extended);
-                }
-
-                // TODO:
-                //  add noderefs to current noderef list Noderefs
-                //  add effects to current effect list Effects
-
-                let new_component = self.get_scope_mut(&new_idx).unwrap();
-
-                // Run the scope for one iteration to initialize it
-                match new_component.run_scope() {
-                    Ok(_) => {
-                        // all good, new nodes exist
-                    }
-                    Err(err) => {
-                        // failed to run. this is the first time the component ran, and it failed
-                        // we manually set its head node to an empty fragment
-                        panic!("failing components not yet implemented");
-                    }
-                }
-
-                // Take the node that was just generated from running the component
-                let nextnode = new_component.frames.fin_head();
-
-                // Push the new scope onto the stack
-                self.scope_stack.push(new_idx);
-
-                // Run the creation algorithm with this scope on the stack
-                let meta = self.create_vnode(nextnode);
-
-                // pop the scope off the stack
-                self.scope_stack.pop();
-
-                if meta.added_to_stack == 0 {
-                    panic!("Components should *always* generate nodes - even if they fail");
-                }
-
-                // Finally, insert this scope as a seen node.
-                self.seen_scopes.insert(new_idx);
-
-                CreateMeta::new(vcomponent.is_static, meta.added_to_stack)
-            }
-
-            // Fragments are the only nodes that can contain dynamic content (IE through curlies or iterators).
-            // We can never ignore their contents, so the prescence of a fragment indicates that we need always diff them.
-            // Fragments will just put all their nodes onto the stack after creation
-            VNodeKind::Fragment(frag) => self.create_children(frag.children),
-
-            VNodeKind::Suspended(VSuspended { node: real_node }) => {
-                let id = self.vdom.reserve_node();
-                self.edit_create_placeholder(id);
-                real_node.set(Some(id));
-                CreateMeta::new(false, 1)
-            }
-        }
-    }
-
-    fn create_children(&mut self, children: &'bump [VNode<'bump>]) -> CreateMeta {
-        let mut is_static = true;
-        let mut added_to_stack = 0;
-
-        // add them backwards
-        for child in children.iter().rev() {
-            let child_meta = self.create_vnode(child);
-            is_static = is_static && child_meta.is_static;
-            added_to_stack += child_meta.added_to_stack;
-        }
-
-        CreateMeta {
-            is_static,
-            added_to_stack,
-        }
-    }
-
-    /// Destroy a scope and all of its descendents.
-    ///
-    /// Calling this will run the destuctors on all hooks in the tree.
-    /// It will also add the destroyed nodes to the `seen_nodes` cache to prevent them from being renderered.
-    fn destroy_scopes(&mut self, old_scope: ScopeId) {
-        let mut nodes_to_delete = vec![old_scope];
-        let mut scopes_to_explore = vec![old_scope];
-
-        // explore the scope tree breadth first
-        while let Some(scope_id) = scopes_to_explore.pop() {
-            // If we're planning on deleting this node, then we don't need to both rendering it
-            self.seen_scopes.insert(scope_id);
-            let scope = self.get_scope(&scope_id).unwrap();
-            for child in scope.descendents.borrow().iter() {
-                // Add this node to be explored
-                scopes_to_explore.push(child.clone());
-
-                // Also add it for deletion
-                nodes_to_delete.push(child.clone());
-            }
-        }
-
-        // Delete all scopes that we found as part of this subtree
-        for node in nodes_to_delete {
-            log::debug!("Removing scope {:#?}", node);
-            let _scope = self.vdom.try_remove(node).unwrap();
-            // do anything we need to do to delete the scope
-            // I think we need to run the destructors on the hooks
-            // TODO
-        }
-    }
-
-    // Diff the given set of old and new children.
-    //
-    // The parent must be on top of the change list stack when this function is
-    // entered:
-    //
-    //     [... parent]
-    //
-    // the change list stack is in the same state when this function returns.
-    //
-    // If old no anchors are provided, then it's assumed that we can freely append to the parent.
-    //
-    // Remember, non-empty lists does not mean that there are real elements, just that there are virtual elements.
-    fn diff_children(&mut self, old: &'bump [VNode<'bump>], new: &'bump [VNode<'bump>]) {
-        const IS_EMPTY: bool = true;
-        const IS_NOT_EMPTY: bool = false;
-
-        match (old.is_empty(), new.is_empty()) {
-            (IS_EMPTY, IS_EMPTY) => {}
-
-            // Completely adding new nodes, removing any placeholder if it exists
-            (IS_EMPTY, IS_NOT_EMPTY) => {
-                let meta = self.create_children(new);
-                self.edit_append_children(meta.added_to_stack);
-            }
-
-            // Completely removing old nodes and putting an anchor in its place
-            // no anchor (old has nodes) and the new is empty
-            // remove all the old nodes
-            (IS_NOT_EMPTY, IS_EMPTY) => {
-                for node in old {
-                    self.remove_vnode(node);
-                }
-            }
-
-            (IS_NOT_EMPTY, IS_NOT_EMPTY) => {
-                let first_old = &old[0];
-                let first_new = &new[0];
-
-                match (&first_old.kind, &first_new.kind) {
-                    // Anchors can only appear in empty fragments
-                    (VNodeKind::Anchor(old_anchor), VNodeKind::Anchor(new_anchor)) => {
-                        old_anchor.dom_id.set(new_anchor.dom_id.get());
-                    }
-
-                    // Replace the anchor with whatever new nodes are coming down the pipe
-                    (VNodeKind::Anchor(anchor), _) => {
-                        self.edit_push_root(anchor.dom_id.get().unwrap());
-                        let mut added = 0;
-                        for el in new {
-                            let meta = self.create_vnode(el);
-                            added += meta.added_to_stack;
-                        }
-                        self.edit_replace_with(1, added);
-                    }
-
-                    // Replace whatever nodes are sitting there with the anchor
-                    (_, VNodeKind::Anchor(anchor)) => {
-                        self.replace_and_create_many_with_many(old, [first_new]);
-                    }
-
-                    // Use the complex diff algorithm to diff the nodes
-                    _ => {
-                        let new_is_keyed = new[0].key.is_some();
-                        let old_is_keyed = old[0].key.is_some();
-
-                        debug_assert!(
-                            new.iter().all(|n| n.key.is_some() == new_is_keyed),
-                            "all siblings must be keyed or all siblings must be non-keyed"
-                        );
-                        debug_assert!(
-                            old.iter().all(|o| o.key.is_some() == old_is_keyed),
-                            "all siblings must be keyed or all siblings must be non-keyed"
-                        );
-
-                        if new_is_keyed && old_is_keyed {
-                            self.diff_keyed_children(old, new);
-                        } else {
-                            self.diff_non_keyed_children(old, new);
-                        }
-                    }
-                }
-            }
-        }
-    }
-
-    // Diffing "keyed" children.
-    //
-    // With keyed children, we care about whether we delete, move, or create nodes
-    // versus mutate existing nodes in place. Presumably there is some sort of CSS
-    // transition animation that makes the virtual DOM diffing algorithm
-    // observable. By specifying keys for nodes, we know which virtual DOM nodes
-    // must reuse (or not reuse) the same physical DOM nodes.
-    //
-    // This is loosely based on Inferno's keyed patching implementation. However, we
-    // have to modify the algorithm since we are compiling the diff down into change
-    // list instructions that will be executed later, rather than applying the
-    // changes to the DOM directly as we compare virtual DOMs.
-    //
-    // https://github.com/infernojs/inferno/blob/36fd96/packages/inferno/src/DOM/patching.ts#L530-L739
-    //
-    // The stack is empty upon entry.
-    fn diff_keyed_children(&mut self, old: &'bump [VNode<'bump>], new: &'bump [VNode<'bump>]) {
-        if cfg!(debug_assertions) {
-            let mut keys = fxhash::FxHashSet::default();
-            let mut assert_unique_keys = |children: &'bump [VNode<'bump>]| {
-                keys.clear();
-                for child in children {
-                    let key = child.key;
-                    debug_assert!(
-                        key.is_some(),
-                        "if any sibling is keyed, all siblings must be keyed"
-                    );
-                    keys.insert(key);
-                }
-                debug_assert_eq!(
-                    children.len(),
-                    keys.len(),
-                    "keyed siblings must each have a unique key"
-                );
-            };
-            assert_unique_keys(old);
-            assert_unique_keys(new);
-        }
-
-        // First up, we diff all the nodes with the same key at the beginning of the
-        // children.
-        //
-        // `shared_prefix_count` is the count of how many nodes at the start of
-        // `new` and `old` share the same keys.
-        //
-        // TODO: just inline this
-        let shared_prefix_count = match self.diff_keyed_prefix(old, new) {
-            KeyedPrefixResult::Finished => return,
-            KeyedPrefixResult::MoreWorkToDo(count) => count,
-        };
-
-        // Next, we find out how many of the nodes at the end of the children have
-        // the same key. We do _not_ diff them yet, since we want to emit the change
-        // list instructions such that they can be applied in a single pass over the
-        // DOM. Instead, we just save this information for later.
-        //
-        // `shared_suffix_count` is the count of how many nodes at the end of `new`
-        // and `old` share the same keys.
-        let shared_suffix_count = old[shared_prefix_count..]
-            .iter()
-            .rev()
-            .zip(new[shared_prefix_count..].iter().rev())
-            .take_while(|&(old, new)| old.key == new.key)
-            .count();
-
-        let old_shared_suffix_start = old.len() - shared_suffix_count;
-        let new_shared_suffix_start = new.len() - shared_suffix_count;
-
-        // Ok, we now hopefully have a smaller range of children in the middle
-        // within which to re-order nodes with the same keys, remove old nodes with
-        // now-unused keys, and create new nodes with fresh keys.
-        self.diff_keyed_middle(
-            &old[shared_prefix_count..old_shared_suffix_start],
-            &new[shared_prefix_count..new_shared_suffix_start],
-            shared_prefix_count,
-            shared_suffix_count,
-            old_shared_suffix_start,
-        );
-
-        // Finally, diff the nodes at the end of `old` and `new` that share keys.
-        let old_suffix = &old[old_shared_suffix_start..];
-        let new_suffix = &new[new_shared_suffix_start..];
-        debug_assert_eq!(old_suffix.len(), new_suffix.len());
-        if !old_suffix.is_empty() {
-            self.diff_keyed_suffix(old_suffix, new_suffix, new_shared_suffix_start)
-        }
-    }
-
-    // Diff the prefix of children in `new` and `old` that share the same keys in
-    // the same order.
-    //
-    // The stack is empty upon entry.
-    fn diff_keyed_prefix(
-        &mut self,
-        old: &'bump [VNode<'bump>],
-        new: &'bump [VNode<'bump>],
-    ) -> KeyedPrefixResult {
-        let mut shared_prefix_count = 0;
-
-        for (old, new) in old.iter().zip(new.iter()) {
-            // abort early if we finally run into nodes with different keys
-            if old.key() != new.key() {
-                break;
-            }
-            self.diff_node(old, new);
-            shared_prefix_count += 1;
-        }
-
-        // If that was all of the old children, then create and append the remaining
-        // new children and we're finished.
-        if shared_prefix_count == old.len() {
-            // Load the last element
-            let last_node = self.find_last_element(new.last().unwrap()).direct_id();
-            self.edit_push_root(last_node);
-
-            // Create the new children and insert them after
-            let meta = self.create_children(&new[shared_prefix_count..]);
-            self.edit_insert_after(meta.added_to_stack);
-
-            return KeyedPrefixResult::Finished;
-        }
-
-        // And if that was all of the new children, then remove all of the remaining
-        // old children and we're finished.
-        if shared_prefix_count == new.len() {
-            self.remove_children(&old[shared_prefix_count..]);
-            return KeyedPrefixResult::Finished;
-        }
-
-        KeyedPrefixResult::MoreWorkToDo(shared_prefix_count)
-    }
-
-    // Create the given children and append them to the parent node.
-    //
-    // The parent node must currently be on top of the change list stack:
-    //
-    //     [... parent]
-    //
-    // When this function returns, the change list stack is in the same state.
-    pub fn create_and_append_children(&mut self, new: &'bump [VNode<'bump>]) {
-        for child in new {
-            let meta = self.create_vnode(child);
-            self.edit_append_children(meta.added_to_stack);
-        }
-    }
-
-    // The most-general, expensive code path for keyed children diffing.
-    //
-    // We find the longest subsequence within `old` of children that are relatively
-    // ordered the same way in `new` (via finding a longest-increasing-subsequence
-    // of the old child's index within `new`). The children that are elements of
-    // this subsequence will remain in place, minimizing the number of DOM moves we
-    // will have to do.
-    //
-    // Upon entry to this function, the change list stack must be empty.
-    //
-    // This function will load the appropriate nodes onto the stack and do diffing in place.
-    //
-    // Upon exit from this function, it will be restored to that same state.
-    fn diff_keyed_middle(
-        &mut self,
-        old: &'bump [VNode<'bump>],
-        mut new: &'bump [VNode<'bump>],
-        shared_prefix_count: usize,
-        shared_suffix_count: usize,
-        old_shared_suffix_start: usize,
-    ) {
-        // Should have already diffed the shared-key prefixes and suffixes.
-        debug_assert_ne!(new.first().map(|n| n.key()), old.first().map(|o| o.key()));
-        debug_assert_ne!(new.last().map(|n| n.key()), old.last().map(|o| o.key()));
-
-        // // The algorithm below relies upon using `u32::MAX` as a sentinel
-        // // value, so if we have that many new nodes, it won't work. This
-        // // check is a bit academic (hence only enabled in debug), since
-        // // wasm32 doesn't have enough address space to hold that many nodes
-        // // in memory.
-        // debug_assert!(new.len() < u32::MAX as usize);
-
-        // Map from each `old` node's key to its index within `old`.
-        // IE if the keys were A B C, then we would have (A, 1) (B, 2) (C, 3).
-        let mut old_key_to_old_index = old
-            .iter()
-            .enumerate()
-            .map(|(i, o)| (o.key().unwrap(), i))
-            .collect::<FxHashMap<_, _>>();
-
-        // The set of shared keys between `new` and `old`.
-        let mut shared_keys = FxHashSet::default();
-        // let mut to_remove = FxHashSet::default();
-        let mut to_add = FxHashSet::default();
-
-        // Map from each index in `new` to the index of the node in `old` that
-        // has the same key.
-        let mut new_index_to_old_index = new
-            .iter()
-            .map(|n| {
-                let key = n.key().unwrap();
-                match old_key_to_old_index.get(&key) {
-                    Some(&index) => {
-                        shared_keys.insert(key);
-                        index
-                    }
-                    None => {
-                        //
-                        to_add.insert(key);
-                        u32::MAX as usize
-                    }
-                }
-            })
-            .collect::<Vec<_>>();
-
-        dbg!(&shared_keys);
-        dbg!(&to_add);
-
-        // If none of the old keys are reused by the new children, then we
-        // remove all the remaining old children and create the new children
-        // afresh.
-        if shared_suffix_count == 0 && shared_keys.is_empty() {
-            self.replace_and_create_many_with_many(old, new);
-            return;
-        }
-
-        // // Remove any old children whose keys were not reused in the new
-        // // children. Remove from the end first so that we don't mess up indices.
-        // for old_child in old.iter().rev() {
-        //     if !shared_keys.contains(&old_child.key()) {
-        //         self.remove_child(old_child);
-        //     }
-        // }
-
-        // let old_keyds = old.iter().map(|f| f.key()).collect::<Vec<_>>();
-        // let new_keyds = new.iter().map(|f| f.key()).collect::<Vec<_>>();
-        // dbg!(old_keyds);
-        // dbg!(new_keyds);
-
-        // // If there aren't any more new children, then we are done!
-        // if new.is_empty() {
-        //     return;
-        // }
-
-        // The longest increasing subsequence within `new_index_to_old_index`. This
-        // is the longest sequence on DOM nodes in `old` that are relatively ordered
-        // correctly within `new`. We will leave these nodes in place in the DOM,
-        // and only move nodes that are not part of the LIS. This results in the
-        // maximum number of DOM nodes left in place, AKA the minimum number of DOM
-        // nodes moved.
-        let mut new_index_is_in_lis = FxHashSet::default();
-        new_index_is_in_lis.reserve(new_index_to_old_index.len());
-
-        let mut predecessors = vec![0; new_index_to_old_index.len()];
-        let mut starts = vec![0; new_index_to_old_index.len()];
-
-        longest_increasing_subsequence::lis_with(
-            &new_index_to_old_index,
-            &mut new_index_is_in_lis,
-            |a, b| a < b,
-            &mut predecessors,
-            &mut starts,
-        );
-
-        dbg!(&new_index_is_in_lis);
-        // use the old nodes to navigate the new nodes
-
-        let mut lis_in_order = new_index_is_in_lis.into_iter().collect::<Vec<_>>();
-        lis_in_order.sort_unstable();
-
-        dbg!(&lis_in_order);
-
-        // we walk front to back, creating the head node
-
-        // diff the shared, in-place nodes first
-        // this makes sure we can rely on their first/last nodes being correct later on
-        for id in &lis_in_order {
-            let new_node = &new[*id];
-            let key = new_node.key().unwrap();
-            let old_index = old_key_to_old_index.get(&key).unwrap();
-            let old_node = &old[*old_index];
-            self.diff_node(old_node, new_node);
-        }
-
-        // return the old node from the key
-        let load_old_node_from_lsi = |key| -> &VNode {
-            let old_index = old_key_to_old_index.get(key).unwrap();
-            let old_node = &old[*old_index];
-            old_node
-        };
-
-        let mut root = None;
-        let mut new_iter = new.iter().enumerate();
-        for lis_id in &lis_in_order {
-            eprintln!("tracking {:?}", lis_id);
-            // this is the next milestone node we are working up to
-            let new_anchor = &new[*lis_id];
-            root = Some(new_anchor);
-
-            let anchor_el = self.find_first_element(new_anchor);
-            self.edit_push_root(anchor_el.direct_id());
-            // let mut pushed = false;
-
-            'inner: loop {
-                let (next_id, next_new) = new_iter.next().unwrap();
-                if next_id == *lis_id {
-                    // we've reached the milestone, break this loop so we can step to the next milestone
-                    // remember: we already diffed this node
-                    eprintln!("breaking {:?}", next_id);
-                    break 'inner;
-                } else {
-                    let key = next_new.key().unwrap();
-                    eprintln!("found key {:?}", key);
-                    if shared_keys.contains(&key) {
-                        eprintln!("key is contained {:?}", key);
-                        shared_keys.remove(key);
-                        // diff the two nodes
-                        let old_node = load_old_node_from_lsi(key);
-                        self.diff_node(old_node, next_new);
-
-                        // now move all the nodes into the right spot
-                        for child in RealChildIterator::new(next_new, self.vdom) {
-                            let el = child.direct_id();
-                            self.edit_push_root(el);
-                            self.edit_insert_before(1);
-                        }
-                    } else {
-                        eprintln!("key is not contained {:?}", key);
-                        // new node needs to be created
-                        // insert it before the current milestone
-                        let meta = self.create_vnode(next_new);
-                        self.edit_insert_before(meta.added_to_stack);
-                    }
-                }
-            }
-
-            self.edit_pop();
-        }
-
-        let final_lis_node = root.unwrap();
-        let final_el_node = self.find_last_element(final_lis_node);
-        let final_el = final_el_node.direct_id();
-        self.edit_push_root(final_el);
-
-        let mut last_iter = new.iter().rev().enumerate();
-        let last_key = final_lis_node.key().unwrap();
-        loop {
-            let (last_id, last_node) = last_iter.next().unwrap();
-            let key = last_node.key().unwrap();
-
-            eprintln!("checking final nodes {:?}", key);
-
-            if last_key == key {
-                eprintln!("breaking final nodes");
-                break;
-            }
-
-            if shared_keys.contains(&key) {
-                eprintln!("key is contained {:?}", key);
-                shared_keys.remove(key);
-                // diff the two nodes
-                let old_node = load_old_node_from_lsi(key);
-                self.diff_node(old_node, last_node);
-
-                // now move all the nodes into the right spot
-                for child in RealChildIterator::new(last_node, self.vdom) {
-                    let el = child.direct_id();
-                    self.edit_push_root(el);
-                    self.edit_insert_after(1);
-                }
-            } else {
-                eprintln!("key is not contained {:?}", key);
-                // new node needs to be created
-                // insert it before the current milestone
-                let meta = self.create_vnode(last_node);
-                self.edit_insert_after(meta.added_to_stack);
-            }
-        }
-        self.edit_pop();
-    }
-
-    // Diff the suffix of keyed children that share the same keys in the same order.
-    //
-    // The parent must be on the change list stack when we enter this function:
-    //
-    //     [... parent]
-    //
-    // When this function exits, the change list stack remains the same.
-    fn diff_keyed_suffix(
-        &mut self,
-        old: &'bump [VNode<'bump>],
-        new: &'bump [VNode<'bump>],
-        new_shared_suffix_start: usize,
-    ) {
-        debug_assert_eq!(old.len(), new.len());
-        debug_assert!(!old.is_empty());
-
-        for (old_child, new_child) in old.iter().zip(new.iter()) {
-            self.diff_node(old_child, new_child);
-        }
-    }
-
-    // Diff children that are not keyed.
-    //
-    // The parent must be on the top of the change list stack when entering this
-    // function:
-    //
-    //     [... parent]
-    //
-    // the change list stack is in the same state when this function returns.
-    async fn diff_non_keyed_children(
-        &mut self,
-        old: &'bump [VNode<'bump>],
-        new: &'bump [VNode<'bump>],
-    ) {
-        // Handled these cases in `diff_children` before calling this function.
-        //
-        debug_assert!(!new.is_empty());
-        debug_assert!(!old.is_empty());
-
-        match old.len().cmp(&new.len()) {
-            // old.len > new.len -> removing some nodes
-            Ordering::Greater => {
-                // diff them together
-                for (new_child, old_child) in new.iter().zip(old.iter()) {
-                    self.diff_node(old_child, new_child);
-                }
-
-                // todo: we would emit fewer instructions if we just did a replace many
-                // remove whatever is still dangling
-                for item in &old[new.len()..] {
-                    for i in RealChildIterator::new(item, self.vdom) {
-                        self.edit_push_root(i.direct_id());
-                        self.edit_remove();
-                    }
-                }
-            }
-
-            // old.len < new.len -> adding some nodes
-            // this is wrong in the case where we're diffing fragments
-            //
-            // we need to save the last old element and then replace it with all the new ones
-            Ordering::Less => {
-                // Add the new elements to the last old element while it still exists
-                let last = self.find_last_element(old.last().unwrap());
-                self.edit_push_root(last.direct_id());
-
-                // create the rest and insert them
-                let meta = self.create_children(&new[old.len()..]);
-                self.edit_insert_after(meta.added_to_stack);
-
-                self.edit_pop();
-
-                // diff the rest
-                for (new_child, old_child) in new.iter().zip(old.iter()) {
-                    self.diff_node(old_child, new_child).await
-                }
-            }
-
-            // old.len == new.len -> no nodes added/removed, but perhaps changed
-            Ordering::Equal => {
-                for (new_child, old_child) in new.iter().zip(old.iter()) {
-                    self.diff_node(old_child, new_child).await;
-                }
-            }
-        }
-    }
-
-    // ======================
-    // Support methods
-    // ======================
-    // Remove all of a node's children.
-    //
-    // The change list stack must have this shape upon entry to this function:
-    //
-    //     [... parent]
-    //
-    // When this function returns, the change list stack is in the same state.
-    fn remove_all_children(&mut self, old: &'bump [VNode<'bump>]) {
-        // debug_assert!(self.traversal_is_committed());
-        log::debug!("REMOVING CHILDREN");
-        for _child in old {
-            // registry.remove_subtree(child);
-        }
-        // Fast way to remove all children: set the node's textContent to an empty
-        // string.
-        todo!()
-        // self.set_inner_text("");
-    }
-    // Remove the current child and all of its following siblings.
-    //
-    // The change list stack must have this shape upon entry to this function:
-    //
-    //     [... parent child]
-    //
-    // After the function returns, the child is no longer on the change list stack:
-    //
-    //     [... parent]
-    fn remove_children(&mut self, old: &'bump [VNode<'bump>]) {
-        self.replace_and_create_many_with_many(old, None)
-    }
-
-    fn find_last_element(&mut self, vnode: &'bump VNode<'bump>) -> &'bump VNode<'bump> {
-        let mut search_node = Some(vnode);
-
-        loop {
-            let node = search_node.take().unwrap();
-            match &node.kind {
-                // the ones that have a direct id
-                VNodeKind::Text(_)
-                | VNodeKind::Element(_)
-                | VNodeKind::Anchor(_)
-                | VNodeKind::Suspended(_) => break node,
-
-                VNodeKind::Fragment(frag) => {
-                    search_node = frag.children.last();
-                }
-                VNodeKind::Component(el) => {
-                    let scope_id = el.ass_scope.get().unwrap();
-                    let scope = self.get_scope(&scope_id).unwrap();
-                    search_node = Some(scope.root());
-                }
-            }
-        }
-    }
-
-    fn find_first_element(&mut self, vnode: &'bump VNode<'bump>) -> &'bump VNode<'bump> {
-        let mut search_node = Some(vnode);
-
-        loop {
-            let node = search_node.take().unwrap();
-            match &node.kind {
-                // the ones that have a direct id
-                VNodeKind::Text(_)
-                | VNodeKind::Element(_)
-                | VNodeKind::Anchor(_)
-                | VNodeKind::Suspended(_) => break node,
-
-                VNodeKind::Fragment(frag) => {
-                    search_node = Some(&frag.children[0]);
-                }
-                VNodeKind::Component(el) => {
-                    let scope_id = el.ass_scope.get().unwrap();
-                    let scope = self.get_scope(&scope_id).unwrap();
-                    search_node = Some(scope.root());
-                }
-            }
-        }
-    }
-
-    fn remove_child(&mut self, node: &'bump VNode<'bump>) {
-        self.replace_and_create_many_with_many(Some(node), None);
-    }
-
-    /// Remove all the old nodes and replace them with newly created new nodes.
-    ///
-    /// The new nodes *will* be created - don't create them yourself!
-    fn replace_and_create_many_with_many(
-        &mut self,
-        old_nodes: impl IntoIterator<Item = &'bump VNode<'bump>>,
-        new_nodes: impl IntoIterator<Item = &'bump VNode<'bump>>,
-    ) {
-        let mut nodes_to_replace = Vec::new();
-        let mut nodes_to_search = old_nodes.into_iter().collect::<Vec<_>>();
-        let mut scopes_obliterated = Vec::new();
-        while let Some(node) = nodes_to_search.pop() {
-            match &node.kind {
-                // the ones that have a direct id return immediately
-                VNodeKind::Text(el) => nodes_to_replace.push(el.dom_id.get().unwrap()),
-                VNodeKind::Element(el) => nodes_to_replace.push(el.dom_id.get().unwrap()),
-                VNodeKind::Anchor(el) => nodes_to_replace.push(el.dom_id.get().unwrap()),
-                VNodeKind::Suspended(el) => nodes_to_replace.push(el.node.get().unwrap()),
-
-                // Fragments will either have a single anchor or a list of children
-                VNodeKind::Fragment(frag) => {
-                    for child in frag.children {
-                        nodes_to_search.push(child);
-                    }
-                }
-
-                // Components can be any of the nodes above
-                // However, we do need to track which components need to be removed
-                VNodeKind::Component(el) => {
-                    let scope_id = el.ass_scope.get().unwrap();
-                    let scope = self.get_scope(&scope_id).unwrap();
-                    let root = scope.root();
-                    nodes_to_search.push(root);
-                    scopes_obliterated.push(scope_id);
-                }
-            }
-            // TODO: enable internal garabge collection
-            // self.create_garbage(node);
-        }
-
-        let n = nodes_to_replace.len();
-        for node in nodes_to_replace {
-            self.edit_push_root(node);
-        }
-
-        let mut nodes_created = 0;
-        for node in new_nodes {
-            let meta = self.create_vnode(node);
-            nodes_created += meta.added_to_stack;
-        }
-
-        // if 0 nodes are created, then it gets interperted as a deletion
-        self.edit_replace_with(n as u32, nodes_created);
-
-        // obliterate!
-        for scope in scopes_obliterated {
-            self.destroy_scopes(scope);
-        }
-    }
-
-    fn create_garbage(&mut self, node: &'bump VNode<'bump>) {
-        match self.current_scope().and_then(|id| self.get_scope(&id)) {
-            Some(scope) => {
-                let garbage: &'bump VNode<'static> = unsafe { std::mem::transmute(node) };
-                scope.pending_garbage.borrow_mut().push(garbage);
-            }
-            None => {
-                log::info!("No scope to collect garbage into")
-            }
-        }
-    }
-
-    fn immediately_dispose_garabage(&mut self, node: ElementId) {
-        self.vdom.collect_garbage(node)
-    }
-
-    fn replace_node_with_node(
-        &mut self,
-        anchor: ElementId,
-        old_node: &'bump VNode<'bump>,
-        new_node: &'bump VNode<'bump>,
-    ) {
-        self.edit_push_root(anchor);
-        let meta = self.create_vnode(new_node);
-        self.edit_replace_with(1, meta.added_to_stack);
-        self.create_garbage(old_node);
-        self.edit_pop();
-    }
-
-    fn remove_vnode(&mut self, node: &'bump VNode<'bump>) {
-        match &node.kind {
-            VNodeKind::Text(el) => self.immediately_dispose_garabage(node.direct_id()),
-            VNodeKind::Element(el) => {
-                self.immediately_dispose_garabage(node.direct_id());
-                for child in el.children {
-                    self.remove_vnode(&child);
-                }
-            }
-            VNodeKind::Anchor(a) => {
-                //
-            }
-            VNodeKind::Fragment(frag) => {
-                for child in frag.children {
-                    self.remove_vnode(&child);
-                }
-            }
-            VNodeKind::Component(el) => {
-                //
-                // self.destroy_scopes(old_scope)
-            }
-            VNodeKind::Suspended(_) => todo!(),
-        }
-    }
-
-    fn current_scope(&self) -> Option<ScopeId> {
-        self.scope_stack.last().map(|f| f.clone())
-    }
-
-    fn fix_listener<'a>(&mut self, listener: &'a Listener<'a>) {
-        let scope_id = self.current_scope();
-        if let Some(scope_id) = scope_id {
-            let scope = self.get_scope(&scope_id).unwrap();
-            let mut queue = scope.listeners.borrow_mut();
-            let long_listener: &'a Listener<'static> = unsafe { std::mem::transmute(listener) };
-            queue.push(long_listener as *const _)
-        }
-    }
-
-    pub fn get_scope_mut(&mut self, id: &ScopeId) -> Option<&'bump mut Scope> {
-        // ensure we haven't seen this scope before
-        // if we have, then we're trying to alias it, which is not allowed
-        debug_assert!(!self.seen_scopes.contains(id));
-
-        unsafe { self.vdom.get_scope_mut(*id) }
-    }
-    pub fn get_scope(&mut self, id: &ScopeId) -> Option<&'bump Scope> {
-        // ensure we haven't seen this scope before
-        // if we have, then we're trying to alias it, which is not allowed
-        unsafe { self.vdom.get_scope(*id) }
-    }
-
-    // Navigation
-    pub(crate) fn edit_push_root(&mut self, root: ElementId) {
-        let id = root.as_u64();
-        self.mutations.edits.push(PushRoot { id });
-    }
-
-    pub(crate) fn edit_pop(&mut self) {
-        self.mutations.edits.push(PopRoot {});
-    }
-
-    // Add Nodes to the dom
-    // add m nodes from the stack
-    pub(crate) fn edit_append_children(&mut self, many: u32) {
-        self.mutations.edits.push(AppendChildren { many });
-    }
-
-    // replace the n-m node on the stack with the m nodes
-    // ends with the last element of the chain on the top of the stack
-    pub(crate) fn edit_replace_with(&mut self, n: u32, m: u32) {
-        self.mutations.edits.push(ReplaceWith { n, m });
-    }
-
-    pub(crate) fn edit_insert_after(&mut self, n: u32) {
-        self.mutations.edits.push(InsertAfter { n });
-    }
-
-    pub(crate) fn edit_insert_before(&mut self, n: u32) {
-        self.mutations.edits.push(InsertBefore { n });
-    }
-
-    // Remove Nodesfrom the dom
-    pub(crate) fn edit_remove(&mut self) {
-        self.mutations.edits.push(Remove);
-    }
-
-    // Create
-    pub(crate) fn edit_create_text_node(&mut self, text: &'bump str, id: ElementId) {
-        let id = id.as_u64();
-        self.mutations.edits.push(CreateTextNode { text, id });
-    }
-
-    pub(crate) fn edit_create_element(
-        &mut self,
-        tag: &'static str,
-        ns: Option<&'static str>,
-        id: ElementId,
-    ) {
-        let id = id.as_u64();
-        match ns {
-            Some(ns) => self.mutations.edits.push(CreateElementNs { id, ns, tag }),
-            None => self.mutations.edits.push(CreateElement { id, tag }),
-        }
-    }
-
-    // placeholders are nodes that don't get rendered but still exist as an "anchor" in the real dom
-    pub(crate) fn edit_create_placeholder(&mut self, id: ElementId) {
-        let id = id.as_u64();
-        self.mutations.edits.push(CreatePlaceholder { id });
-    }
-
-    // events
-    pub(crate) fn edit_new_event_listener(&mut self, listener: &Listener, scope: ScopeId) {
-        let Listener {
-            event,
-            mounted_node,
-            ..
-        } = listener;
-
-        let element_id = mounted_node.get().unwrap().as_u64();
-
-        self.mutations.edits.push(NewEventListener {
-            scope,
-            event_name: event,
-            mounted_node_id: element_id,
-        });
-    }
-
-    pub(crate) fn edit_remove_event_listener(&mut self, event: &'static str) {
-        self.mutations.edits.push(RemoveEventListener { event });
-    }
-
-    // modify
-    pub(crate) fn edit_set_text(&mut self, text: &'bump str) {
-        self.mutations.edits.push(SetText { text });
-    }
-
-    pub(crate) fn edit_set_attribute(&mut self, attribute: &'bump Attribute) {
-        let Attribute {
-            name,
-            value,
-            is_static,
-            is_volatile,
-            namespace,
-        } = attribute;
-        // field: &'static str,
-        // value: &'bump str,
-        // ns: Option<&'static str>,
-        self.mutations.edits.push(SetAttribute {
-            field: name,
-            value,
-            ns: *namespace,
-        });
-    }
-
-    pub(crate) fn edit_set_attribute_ns(
-        &mut self,
-        attribute: &'bump Attribute,
-        namespace: &'bump str,
-    ) {
-        let Attribute {
-            name,
-            value,
-            is_static,
-            is_volatile,
-            // namespace,
-            ..
-        } = attribute;
-        // field: &'static str,
-        // value: &'bump str,
-        // ns: Option<&'static str>,
-        self.mutations.edits.push(SetAttribute {
-            field: name,
-            value,
-            ns: Some(namespace),
-        });
-    }
-
-    pub(crate) fn edit_remove_attribute(&mut self, attribute: &Attribute) {
-        let name = attribute.name;
-        self.mutations.edits.push(RemoveAttribute { name });
-    }
-}
-
-// When we create new nodes, we need to propagate some information back up the call chain.
-// This gives the caller some information on how to handle things like insertins, appending, and subtree discarding.
-#[derive(Debug)]
-pub struct CreateMeta {
-    pub is_static: bool,
-    pub added_to_stack: u32,
-}
-
-impl CreateMeta {
-    fn new(is_static: bool, added_to_tack: u32) -> Self {
-        Self {
-            is_static,
-            added_to_stack: added_to_tack,
-        }
-    }
-}
-
-enum KeyedPrefixResult {
-    // Fast path: we finished diffing all the children just by looking at the
-    // prefix of shared keys!
-    Finished,
-    // There is more diffing work to do. Here is a count of how many children at
-    // the beginning of `new` and `old` we already processed.
-    MoreWorkToDo(usize),
-}
-
-fn find_first_real_node<'a>(
-    nodes: impl IntoIterator<Item = &'a VNode<'a>>,
-    scopes: &'a SharedResources,
-) -> Option<&'a VNode<'a>> {
-    for node in nodes {
-        let mut iter = RealChildIterator::new(node, scopes);
-        if let Some(node) = iter.next() {
-            return Some(node);
-        }
-    }
-
-    None
-}
-
-/// This iterator iterates through a list of virtual children and only returns real children (Elements, Text, Anchors).
-///
-/// This iterator is useful when it's important to load the next real root onto the top of the stack for operations like
-/// "InsertBefore".
-pub struct RealChildIterator<'a> {
-    scopes: &'a SharedResources,
-
-    // Heuristcally we should never bleed into 4 completely nested fragments/components
-    // Smallvec lets us stack allocate our little stack machine so the vast majority of cases are sane
-    // TODO: use const generics instead of the 4 estimation
-    stack: smallvec::SmallVec<[(u16, &'a VNode<'a>); 4]>,
-}
-
-impl<'a> RealChildIterator<'a> {
-    pub fn new(starter: &'a VNode<'a>, scopes: &'a SharedResources) -> Self {
-        Self {
-            scopes,
-            stack: smallvec::smallvec![(0, starter)],
-        }
-    }
-    // keep the memory around
-    pub fn reset_with(&mut self, node: &'a VNode<'a>) {
-        self.stack.clear();
-        self.stack.push((0, node));
-    }
-}
-
-impl<'a> Iterator for RealChildIterator<'a> {
-    type Item = &'a VNode<'a>;
-
-    fn next(&mut self) -> Option<&'a VNode<'a>> {
-        let mut should_pop = false;
-        let mut returned_node: Option<&'a VNode<'a>> = None;
-        let mut should_push = None;
-
-        while returned_node.is_none() {
-            if let Some((count, node)) = self.stack.last_mut() {
-                match &node.kind {
-                    // We can only exit our looping when we get "real" nodes
-                    // This includes fragments and components when they're empty (have a single root)
-                    VNodeKind::Element(_) | VNodeKind::Text(_) => {
-                        // We've recursed INTO an element/text
-                        // We need to recurse *out* of it and move forward to the next
-                        should_pop = true;
-                        returned_node = Some(&*node);
-                    }
-
-                    // If we get a fragment we push the next child
-                    VNodeKind::Fragment(frag) => {
-                        let subcount = *count as usize;
-
-                        if frag.children.len() == 0 {
-                            should_pop = true;
-                            returned_node = Some(&*node);
-                        }
-
-                        if subcount >= frag.children.len() {
-                            should_pop = true;
-                        } else {
-                            should_push = Some(&frag.children[subcount]);
-                        }
-                    }
-                    // // If we get a fragment we push the next child
-                    // VNodeKind::Fragment(frag) => {
-                    //     let subcount = *count as usize;
-
-                    //     if frag.children.len() == 0 {
-                    //         should_pop = true;
-                    //         returned_node = Some(&*node);
-                    //     }
-
-                    //     if subcount >= frag.children.len() {
-                    //         should_pop = true;
-                    //     } else {
-                    //         should_push = Some(&frag.children[subcount]);
-                    //     }
-                    // }
-
-                    // Immediately abort suspended nodes - can't do anything with them yet
-                    VNodeKind::Suspended(node) => {
-                        // VNodeKind::Suspended => should_pop = true,
-                        todo!()
-                    }
-
-                    VNodeKind::Anchor(a) => {
-                        todo!()
-                    }
-
-                    // For components, we load their root and push them onto the stack
-                    VNodeKind::Component(sc) => {
-                        let scope =
-                            unsafe { self.scopes.get_scope(sc.ass_scope.get().unwrap()) }.unwrap();
-                        // let scope = self.scopes.get(sc.ass_scope.get().unwrap()).unwrap();
-
-                        // Simply swap the current node on the stack with the root of the component
-                        *node = scope.frames.fin_head();
-                    }
-                }
-            } else {
-                // If there's no more items on the stack, we're done!
-                return None;
-            }
-
-            if should_pop {
-                self.stack.pop();
-                if let Some((id, _)) = self.stack.last_mut() {
-                    *id += 1;
-                }
-                should_pop = false;
-            }
-
-            if let Some(push) = should_push {
-                self.stack.push((0, push));
-                should_push = None;
-            }
-        }
-
-        returned_node
-    }
-}
-
-fn compare_strs(a: &str, b: &str) -> bool {
-    // Check by pointer, optimizing for static strs
-    if !std::ptr::eq(a, b) {
-        // If the pointers are different then check by value
-        a == b
-    } else {
-        true
-    }
-}
-
-struct DfsIterator<'a> {
-    idx: usize,
-    node: Option<(&'a VNode<'a>, &'a VNode<'a>)>,
-    nodes: Option<(&'a [VNode<'a>], &'a [VNode<'a>])>,
-}
-impl<'a> Iterator for DfsIterator<'a> {
-    type Item = (&'a VNode<'a>, &'a VNode<'a>);
-
-    fn next(&mut self) -> Option<Self::Item> {
-        todo!()
-    }
-}

+ 1 - 19
packages/web/examples/basic.rs

@@ -28,25 +28,6 @@ static APP: FC<()> = |cx| {
     cx.render(rsx! {
         div {
             button { onclick: move |_| count += 1, "add"  }
-            div {
-                div {
-                    div {
-                        div {
-                            div {
-                                Fragment {
-                                    a {"wo"}
-                                    p {"wo"}
-                                    li {"wo"}
-                                    em {"wo"}
-                                }
-                            }
-                        }
-                        Child {}
-                    }
-                    Child {}
-                }
-                Child {}
-            }
             ul {
                 {(0..*count).map(|f| rsx!{
                     li { "a - {f}" }
@@ -54,6 +35,7 @@ static APP: FC<()> = |cx| {
                     li { "c - {f}" }
                 })}
             }
+            Child {}
         }
     })
 };

+ 5 - 0
packages/web/src/ric_raf.rs

@@ -29,6 +29,11 @@ impl RafLoop {
         let ric_closure: Closure<dyn Fn(JsValue)> =
             Closure::wrap(Box::new(move |v: JsValue| ric_sender.try_send(()).unwrap()));
 
+        // execute the polyfill for safari
+        Function::new_no_args(include_str!("./ricpolyfill.js"))
+            .call0(&JsValue::NULL)
+            .unwrap();
+
         Self {
             window: web_sys::window().unwrap(),
             raf_receiver,

+ 28 - 0
packages/web/src/ricpolyfill.js

@@ -0,0 +1,28 @@
+const requestIdleCallback =
+  (typeof self !== 'undefined' &&
+    self.requestIdleCallback &&
+    self.requestIdleCallback.bind(window)) ||
+  function (cb) {
+    const start = Date.now();
+    return setTimeout(() => {
+      cb({
+        didTimeout: false,
+        timeRemaining: function () {
+          return Math.max(0, 50 - (Date.now() - start));
+        },
+      });
+    }, 1);
+  };
+
+const cancelIdleCallback =
+  (typeof self !== 'undefined' &&
+    self.cancelIdleCallback &&
+    self.cancelIdleCallback.bind(window)) ||
+  function (id) {
+    return clearTimeout(id);
+  };
+
+if (typeof window !== 'undefined') {
+  window.requestIdleCallback = requestIdleCallback;
+  window.cancelIdleCallback = cancelIdleCallback;
+}