|
@@ -1,1708 +0,0 @@
|
|
-//! This module contains the stateful PriorityFiber and all methods to diff VNodes, their properties, and their children.
|
|
|
|
-//!
|
|
|
|
-//! The [`PriorityFiber`] calculates the diffs between the old and new frames, updates the new nodes, and generates a set
|
|
|
|
-//! of mutations for the RealDom to apply.
|
|
|
|
-//!
|
|
|
|
-//! ## Notice:
|
|
|
|
-//! The inspiration and code for this module was originally taken from Dodrio (@fitzgen) and then modified to support
|
|
|
|
-//! Components, Fragments, Suspense, SubTree memoization, incremental diffing, cancelation, NodeRefs, and additional
|
|
|
|
-//! batching operations.
|
|
|
|
-//!
|
|
|
|
-//! ## Implementation Details:
|
|
|
|
-//!
|
|
|
|
-//! ### IDs for elements
|
|
|
|
-//! --------------------
|
|
|
|
-//! All nodes are addressed by their IDs. The RealDom provides an imperative interface for making changes to these nodes.
|
|
|
|
-//! We don't necessarily require that DOM changes happen instnatly during the diffing process, so the implementor may choose
|
|
|
|
-//! to batch nodes if it is more performant for their application. The element IDs are indicies into the internal element
|
|
|
|
-//! array. The expectation is that implemenetors will use the ID as an index into a Vec of real nodes, allowing for passive
|
|
|
|
-//! garbage collection as the VirtualDOM replaces old nodes.
|
|
|
|
-//!
|
|
|
|
-//! When new vnodes are created through `cx.render`, they won't know which real node they correspond to. During diffing,
|
|
|
|
-//! we always make sure to copy over the ID. If we don't do this properly, the ElementId will be populated incorrectly
|
|
|
|
-//! and brick the user's page.
|
|
|
|
-//!
|
|
|
|
-//! ### Fragment Support
|
|
|
|
-//!
|
|
|
|
-//! Fragments (nodes without a parent) are supported through a combination of "replace with" and anchor vnodes. Fragments
|
|
|
|
-//! can be particularly challenging when they are empty, so the placeholder node lets us "reserve" a spot for the empty
|
|
|
|
-//! fragment to be replaced with when it is no longer empty. This is guaranteed by logic in the NodeFactory - it is
|
|
|
|
-//! impossible to craft a fragment with 0 elements - they must always have at least a single placeholder element. This is
|
|
|
|
-//! slightly inefficient, but represents a such an uncommon use case that it is not worth optimizing.
|
|
|
|
-//!
|
|
|
|
-//! Other implementations either don't support fragments or use a "child + sibling" pattern to represent them. Our code is
|
|
|
|
-//! vastly simpler and more performant when we can just create a placeholder element while the fragment has no children.
|
|
|
|
-//!
|
|
|
|
-//! ## Subtree Memoization
|
|
|
|
-//! -----------------------
|
|
|
|
-//! We also employ "subtree memoization" which saves us from having to check trees which take no dynamic content. We can
|
|
|
|
-//! detect if a subtree is "static" by checking if its children are "static". Since we dive into the tree depth-first, the
|
|
|
|
-//! calls to "create" propogate this information upwards. Structures like the one below are entirely static:
|
|
|
|
-//! ```rust
|
|
|
|
-//! rsx!( div { class: "hello world", "this node is entirely static" } )
|
|
|
|
-//! ```
|
|
|
|
-//! Because the subtrees won't be diffed, their "real node" data will be stale (invalid), so its up to the reconciler to
|
|
|
|
-//! track nodes created in a scope and clean up all relevant data. Support for this is currently WIP and depends on comp-time
|
|
|
|
-//! hashing of the subtree from the rsx! macro. We do a very limited form of static analysis via static string pointers as
|
|
|
|
-//! a way of short-circuiting the most expensive checks.
|
|
|
|
-//!
|
|
|
|
-//! ## Bloom Filter and Heuristics
|
|
|
|
-//! ------------------------------
|
|
|
|
-//! For all components, we employ some basic heuristics to speed up allocations and pre-size bump arenas. The heuristics are
|
|
|
|
-//! currently very rough, but will get better as time goes on. The information currently tracked includes the size of a
|
|
|
|
-//! bump arena after first render, the number of hooks, and the number of nodes in the tree.
|
|
|
|
-//!
|
|
|
|
-//! ## Garbage Collection
|
|
|
|
-//! ---------------------
|
|
|
|
-//! Dioxus uses a passive garbage collection system to clean up old nodes once the work has been completed. This garabge
|
|
|
|
-//! collection is done internally once the main diffing work is complete. After the "garbage" is collected, Dioxus will then
|
|
|
|
-//! start to re-use old keys for new nodes. This results in a passive memory management system that is very efficient.
|
|
|
|
-//!
|
|
|
|
-//! The IDs used by the key/map are just an index into a vec. This means that Dioxus will drive the key allocation strategy
|
|
|
|
-//! so the client only needs to maintain a simple list of nodes. By default, Dioxus will not manually clean up old nodes
|
|
|
|
-//! for the client. As new nodes are created, old nodes will be over-written.
|
|
|
|
-//!
|
|
|
|
-//! Further Reading and Thoughts
|
|
|
|
-//! ----------------------------
|
|
|
|
-//! There are more ways of increasing diff performance here that are currently not implemented.
|
|
|
|
-//! More info on how to improve this diffing algorithm:
|
|
|
|
-//! - https://hacks.mozilla.org/2019/03/fast-bump-allocated-virtual-doms-with-rust-and-wasm/
|
|
|
|
-
|
|
|
|
-use crate::{arena::SharedResources, innerlude::*};
|
|
|
|
-use futures_util::Future;
|
|
|
|
-use fxhash::{FxBuildHasher, FxHashMap, FxHashSet};
|
|
|
|
-use indexmap::IndexSet;
|
|
|
|
-use smallvec::{smallvec, SmallVec};
|
|
|
|
-
|
|
|
|
-use std::{
|
|
|
|
- any::Any, cell::Cell, cmp::Ordering, collections::HashSet, marker::PhantomData, pin::Pin,
|
|
|
|
-};
|
|
|
|
-use DomEdit::*;
|
|
|
|
-
|
|
|
|
-pub struct DiffMachine<'bump> {
|
|
|
|
- vdom: &'bump SharedResources,
|
|
|
|
-
|
|
|
|
- pub mutations: Mutations<'bump>,
|
|
|
|
-
|
|
|
|
- pub node_stack: SmallVec<[SearchNode<'bump>; 10]>,
|
|
|
|
-
|
|
|
|
- pub scope_stack: SmallVec<[ScopeId; 5]>,
|
|
|
|
-
|
|
|
|
- pub diffed: FxHashSet<ScopeId>,
|
|
|
|
-
|
|
|
|
- pub seen_scopes: FxHashSet<ScopeId>,
|
|
|
|
-}
|
|
|
|
-enum SearchNode<'a> {
|
|
|
|
- Node {
|
|
|
|
- old: &'a VNode<'a>,
|
|
|
|
- new: &'a VNode<'a>,
|
|
|
|
- },
|
|
|
|
- NodeList {
|
|
|
|
- old: &'a [VNode<'a>],
|
|
|
|
- node: &'a [VNode<'a>],
|
|
|
|
- },
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-impl<'bump> DiffMachine<'bump> {
|
|
|
|
- pub(crate) fn new(
|
|
|
|
- edits: Mutations<'bump>,
|
|
|
|
- cur_scope: ScopeId,
|
|
|
|
- shared: &'bump SharedResources,
|
|
|
|
- ) -> Self {
|
|
|
|
- Self {
|
|
|
|
- node_stack: smallvec![],
|
|
|
|
- mutations: edits,
|
|
|
|
- scope_stack: smallvec![cur_scope],
|
|
|
|
- vdom: shared,
|
|
|
|
- diffed: FxHashSet::default(),
|
|
|
|
- seen_scopes: FxHashSet::default(),
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /// Allows the creation of a diff machine without the concept of scopes or a virtualdom
|
|
|
|
- /// this is mostly useful for testing
|
|
|
|
- ///
|
|
|
|
- /// This will PANIC if any component elements are passed in.
|
|
|
|
- pub fn new_headless(shared: &'bump SharedResources) -> Self {
|
|
|
|
- Self {
|
|
|
|
- node_stack: smallvec![],
|
|
|
|
- mutations: Mutations::new(),
|
|
|
|
- scope_stack: smallvec![ScopeId(0)],
|
|
|
|
- vdom: shared,
|
|
|
|
- diffed: FxHashSet::default(),
|
|
|
|
- seen_scopes: FxHashSet::default(),
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- //
|
|
|
|
- pub async fn diff_scope(&mut self, id: ScopeId) -> Result<()> {
|
|
|
|
- let component = self.get_scope_mut(&id).ok_or_else(|| Error::NotMounted)?;
|
|
|
|
- let (old, new) = (component.frames.wip_head(), component.frames.fin_head());
|
|
|
|
- self.diff_node(old, new);
|
|
|
|
- Ok(())
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /// Progress the diffing for this "fiber"
|
|
|
|
- ///
|
|
|
|
- /// This method implements a depth-first iterative tree traversal.
|
|
|
|
- ///
|
|
|
|
- /// We do depth-first to maintain high cache locality (nodes were originally generated recursively) and because we
|
|
|
|
- /// only need a stack (not a queue) of lists
|
|
|
|
- ///
|
|
|
|
- ///
|
|
|
|
- ///
|
|
|
|
- pub async fn work(&mut self) -> Result<()> {
|
|
|
|
- //
|
|
|
|
- while let Some(search) = self.node_stack.last_mut() {
|
|
|
|
- // Prevent our task from blocking permanently
|
|
|
|
- yield_now().await;
|
|
|
|
-
|
|
|
|
- match search {
|
|
|
|
- SearchNode::Node { old, new } => {
|
|
|
|
- //
|
|
|
|
- // self.diff_node(old, new);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- SearchNode::NodeList { old, node } => {
|
|
|
|
- //
|
|
|
|
- todo!()
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- Ok(())
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Diff the `old` node with the `new` node. Emits instructions to modify a
|
|
|
|
- // physical DOM node that reflects `old` into something that reflects `new`.
|
|
|
|
- //
|
|
|
|
- // the real stack should be what it is coming in and out of this function (ideally empty)
|
|
|
|
- //
|
|
|
|
- // each function call assumes the stack is fresh (empty).
|
|
|
|
- pub fn diff_node(&mut self, old_node: &'bump VNode<'bump>, new_node: &'bump VNode<'bump>) {
|
|
|
|
- match (&old_node.kind, &new_node.kind) {
|
|
|
|
- // Handle the "sane" cases first.
|
|
|
|
- // The rsx and html macros strongly discourage dynamic lists not encapsulated by a "Fragment".
|
|
|
|
- // So the sane (and fast!) cases are where the virtual structure stays the same and is easily diffable.
|
|
|
|
- (VNodeKind::Text(old), VNodeKind::Text(new)) => {
|
|
|
|
- let root = old_node.direct_id();
|
|
|
|
-
|
|
|
|
- if old.text != new.text {
|
|
|
|
- self.edit_push_root(root);
|
|
|
|
- self.edit_set_text(new.text);
|
|
|
|
- self.edit_pop();
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- new.dom_id.set(Some(root));
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- (VNodeKind::Element(old), VNodeKind::Element(new)) => {
|
|
|
|
- let root = old_node.direct_id();
|
|
|
|
-
|
|
|
|
- // If the element type is completely different, the element needs to be re-rendered completely
|
|
|
|
- // This is an optimization React makes due to how users structure their code
|
|
|
|
- //
|
|
|
|
- // This case is rather rare (typically only in non-keyed lists)
|
|
|
|
- if new.tag_name != old.tag_name || new.namespace != old.namespace {
|
|
|
|
- self.replace_node_with_node(root, old_node, new_node);
|
|
|
|
- return;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- new.dom_id.set(Some(root));
|
|
|
|
-
|
|
|
|
- // Don't push the root if we don't have to
|
|
|
|
- let mut has_comitted = false;
|
|
|
|
- let mut please_commit = |edits: &mut Vec<DomEdit>| {
|
|
|
|
- if !has_comitted {
|
|
|
|
- has_comitted = true;
|
|
|
|
- edits.push(PushRoot { id: root.as_u64() });
|
|
|
|
- }
|
|
|
|
- };
|
|
|
|
-
|
|
|
|
- // Diff Attributes
|
|
|
|
- //
|
|
|
|
- // It's extraordinarily rare to have the number/order of attributes change
|
|
|
|
- // In these cases, we just completely erase the old set and make a new set
|
|
|
|
- //
|
|
|
|
- // TODO: take a more efficient path than this
|
|
|
|
- if old.attributes.len() == new.attributes.len() {
|
|
|
|
- for (old_attr, new_attr) in old.attributes.iter().zip(new.attributes.iter()) {
|
|
|
|
- if old_attr.value != new_attr.value {
|
|
|
|
- please_commit(&mut self.mutations.edits);
|
|
|
|
- self.edit_set_attribute(new_attr);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- } else {
|
|
|
|
- // TODO: provide some sort of report on how "good" the diffing was
|
|
|
|
- please_commit(&mut self.mutations.edits);
|
|
|
|
- for attribute in old.attributes {
|
|
|
|
- self.edit_remove_attribute(attribute);
|
|
|
|
- }
|
|
|
|
- for attribute in new.attributes {
|
|
|
|
- self.edit_set_attribute(attribute)
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Diff listeners
|
|
|
|
- //
|
|
|
|
- // It's extraordinarily rare to have the number/order of listeners change
|
|
|
|
- // In the cases where the listeners change, we completely wipe the data attributes and add new ones
|
|
|
|
- //
|
|
|
|
- // We also need to make sure that all listeners are properly attached to the parent scope (fix_listener)
|
|
|
|
- //
|
|
|
|
- // TODO: take a more efficient path than this
|
|
|
|
- let cur_scope: ScopeId = self.scope_stack.last().unwrap().clone();
|
|
|
|
- if old.listeners.len() == new.listeners.len() {
|
|
|
|
- for (old_l, new_l) in old.listeners.iter().zip(new.listeners.iter()) {
|
|
|
|
- if old_l.event != new_l.event {
|
|
|
|
- please_commit(&mut self.mutations.edits);
|
|
|
|
- self.edit_remove_event_listener(old_l.event);
|
|
|
|
- self.edit_new_event_listener(new_l, cur_scope);
|
|
|
|
- }
|
|
|
|
- new_l.mounted_node.set(old_l.mounted_node.get());
|
|
|
|
- self.fix_listener(new_l);
|
|
|
|
- }
|
|
|
|
- } else {
|
|
|
|
- please_commit(&mut self.mutations.edits);
|
|
|
|
- for listener in old.listeners {
|
|
|
|
- self.edit_remove_event_listener(listener.event);
|
|
|
|
- }
|
|
|
|
- for listener in new.listeners {
|
|
|
|
- listener.mounted_node.set(Some(root));
|
|
|
|
- self.edit_new_event_listener(listener, cur_scope);
|
|
|
|
-
|
|
|
|
- // Make sure the listener gets attached to the scope list
|
|
|
|
- self.fix_listener(listener);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if has_comitted {
|
|
|
|
- self.edit_pop();
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- self.diff_children(old.children, new.children);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- (VNodeKind::Component(old), VNodeKind::Component(new)) => {
|
|
|
|
- let scope_addr = old.ass_scope.get().unwrap();
|
|
|
|
-
|
|
|
|
- // Make sure we're dealing with the same component (by function pointer)
|
|
|
|
- if old.user_fc == new.user_fc {
|
|
|
|
- //
|
|
|
|
- self.scope_stack.push(scope_addr);
|
|
|
|
-
|
|
|
|
- // Make sure the new component vnode is referencing the right scope id
|
|
|
|
- new.ass_scope.set(Some(scope_addr));
|
|
|
|
-
|
|
|
|
- // make sure the component's caller function is up to date
|
|
|
|
- let scope = self.get_scope_mut(&scope_addr).unwrap();
|
|
|
|
-
|
|
|
|
- scope
|
|
|
|
- .update_scope_dependencies(new.caller.clone(), ScopeChildren(new.children));
|
|
|
|
-
|
|
|
|
- // React doesn't automatically memoize, but we do.
|
|
|
|
- let compare = old.comparator.unwrap();
|
|
|
|
-
|
|
|
|
- match compare(new) {
|
|
|
|
- true => {
|
|
|
|
- // the props are the same...
|
|
|
|
- }
|
|
|
|
- false => {
|
|
|
|
- // the props are different...
|
|
|
|
- scope.run_scope().unwrap();
|
|
|
|
- self.diff_node(scope.frames.wip_head(), scope.frames.fin_head());
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- self.scope_stack.pop();
|
|
|
|
-
|
|
|
|
- self.seen_scopes.insert(scope_addr);
|
|
|
|
- } else {
|
|
|
|
- let mut old_iter = RealChildIterator::new(old_node, &self.vdom);
|
|
|
|
- let first = old_iter
|
|
|
|
- .next()
|
|
|
|
- .expect("Components should generate a placeholder root");
|
|
|
|
-
|
|
|
|
- // remove any leftovers
|
|
|
|
- for to_remove in old_iter {
|
|
|
|
- self.edit_push_root(to_remove.direct_id());
|
|
|
|
- self.edit_remove();
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // seems like we could combine this into a single instruction....
|
|
|
|
- self.replace_node_with_node(first.direct_id(), old_node, new_node);
|
|
|
|
-
|
|
|
|
- // Wipe the old one and plant the new one
|
|
|
|
- let old_scope = old.ass_scope.get().unwrap();
|
|
|
|
- self.destroy_scopes(old_scope);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- (VNodeKind::Fragment(old), VNodeKind::Fragment(new)) => {
|
|
|
|
- // This is the case where options or direct vnodes might be used.
|
|
|
|
- // In this case, it's faster to just skip ahead to their diff
|
|
|
|
- if old.children.len() == 1 && new.children.len() == 1 {
|
|
|
|
- self.diff_node(&old.children[0], &new.children[0]);
|
|
|
|
- return;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- self.diff_children(old.children, new.children);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- (VNodeKind::Anchor(old), VNodeKind::Anchor(new)) => {
|
|
|
|
- new.dom_id.set(old.dom_id.get());
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // The strategy here is to pick the first possible node from the previous set and use that as our replace with root
|
|
|
|
- //
|
|
|
|
- // We also walk the "real node" list to make sure all latent roots are claened up
|
|
|
|
- // This covers the case any time a fragment or component shows up with pretty much anything else
|
|
|
|
- //
|
|
|
|
- // This likely isn't the fastest way to go about replacing one node with a virtual node, but the "insane" cases
|
|
|
|
- // are pretty rare. IE replacing a list (component or fragment) with a single node.
|
|
|
|
- (
|
|
|
|
- VNodeKind::Component(_)
|
|
|
|
- | VNodeKind::Fragment(_)
|
|
|
|
- | VNodeKind::Text(_)
|
|
|
|
- | VNodeKind::Element(_)
|
|
|
|
- | VNodeKind::Anchor(_),
|
|
|
|
- VNodeKind::Component(_)
|
|
|
|
- | VNodeKind::Fragment(_)
|
|
|
|
- | VNodeKind::Text(_)
|
|
|
|
- | VNodeKind::Element(_)
|
|
|
|
- | VNodeKind::Anchor(_),
|
|
|
|
- ) => {
|
|
|
|
- self.replace_and_create_many_with_many([old_node], [new_node]);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // TODO
|
|
|
|
- (VNodeKind::Suspended(old), new) => {
|
|
|
|
- //
|
|
|
|
- self.replace_and_create_many_with_many([old_node], [new_node]);
|
|
|
|
- }
|
|
|
|
- // a node that was once real is now suspended
|
|
|
|
- (old, VNodeKind::Suspended(_)) => {
|
|
|
|
- //
|
|
|
|
- self.replace_and_create_many_with_many([old_node], [new_node]);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Emit instructions to create the given virtual node.
|
|
|
|
- //
|
|
|
|
- // The change list stack may have any shape upon entering this function:
|
|
|
|
- //
|
|
|
|
- // [...]
|
|
|
|
- //
|
|
|
|
- // When this function returns, the new node is on top of the change list stack:
|
|
|
|
- //
|
|
|
|
- // [... node]
|
|
|
|
- pub fn create_vnode(&mut self, node: &'bump VNode<'bump>) -> CreateMeta {
|
|
|
|
- match &node.kind {
|
|
|
|
- VNodeKind::Text(text) => {
|
|
|
|
- let real_id = self.vdom.reserve_node();
|
|
|
|
- self.edit_create_text_node(text.text, real_id);
|
|
|
|
- text.dom_id.set(Some(real_id));
|
|
|
|
- CreateMeta::new(text.is_static, 1)
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- VNodeKind::Anchor(anchor) => {
|
|
|
|
- let real_id = self.vdom.reserve_node();
|
|
|
|
- self.edit_create_placeholder(real_id);
|
|
|
|
- anchor.dom_id.set(Some(real_id));
|
|
|
|
- CreateMeta::new(false, 1)
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- VNodeKind::Element(el) => {
|
|
|
|
- // we have the potential to completely eliminate working on this node in the future(!)
|
|
|
|
- //
|
|
|
|
- // This can only be done if all of the elements properties (attrs, children, listeners, etc) are static
|
|
|
|
- // While creating these things, keep track if we can memoize this element.
|
|
|
|
- // At the end, we'll set this flag on the element to skip it
|
|
|
|
- let mut is_static: bool = true;
|
|
|
|
-
|
|
|
|
- let VElement {
|
|
|
|
- tag_name,
|
|
|
|
- listeners,
|
|
|
|
- attributes,
|
|
|
|
- children,
|
|
|
|
- namespace,
|
|
|
|
- static_attrs: _,
|
|
|
|
- static_children: _,
|
|
|
|
- static_listeners: _,
|
|
|
|
- dom_id,
|
|
|
|
- } = el;
|
|
|
|
-
|
|
|
|
- let real_id = self.vdom.reserve_node();
|
|
|
|
- self.edit_create_element(tag_name, *namespace, real_id);
|
|
|
|
- dom_id.set(Some(real_id));
|
|
|
|
-
|
|
|
|
- let cur_scope = self.current_scope().unwrap();
|
|
|
|
-
|
|
|
|
- listeners.iter().for_each(|listener| {
|
|
|
|
- self.fix_listener(listener);
|
|
|
|
- listener.mounted_node.set(Some(real_id));
|
|
|
|
- self.edit_new_event_listener(listener, cur_scope.clone());
|
|
|
|
-
|
|
|
|
- // if the node has an event listener, then it must be visited ?
|
|
|
|
- is_static = false;
|
|
|
|
- });
|
|
|
|
-
|
|
|
|
- for attr in *attributes {
|
|
|
|
- is_static = is_static && attr.is_static;
|
|
|
|
- self.edit_set_attribute(attr);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Fast path: if there is a single text child, it is faster to
|
|
|
|
- // create-and-append the text node all at once via setting the
|
|
|
|
- // parent's `textContent` in a single change list instruction than
|
|
|
|
- // to emit three instructions to (1) create a text node, (2) set its
|
|
|
|
- // text content, and finally (3) append the text node to this
|
|
|
|
- // parent.
|
|
|
|
- //
|
|
|
|
- // Notice: this is a web-specific optimization and may be changed in the future
|
|
|
|
- //
|
|
|
|
- // TODO move over
|
|
|
|
- // if children.len() == 1 {
|
|
|
|
- // if let VNodeKind::Text(text) = &children[0].kind {
|
|
|
|
- // self.set_text(text.text);
|
|
|
|
- // return CreateMeta::new(is_static, 1);
|
|
|
|
- // }
|
|
|
|
- // }
|
|
|
|
-
|
|
|
|
- for child in *children {
|
|
|
|
- let child_meta = self.create_vnode(child);
|
|
|
|
- is_static = is_static && child_meta.is_static;
|
|
|
|
-
|
|
|
|
- // append whatever children were generated by this call
|
|
|
|
- self.edit_append_children(child_meta.added_to_stack);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- CreateMeta::new(is_static, 1)
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- VNodeKind::Component(vcomponent) => {
|
|
|
|
- let caller = vcomponent.caller.clone();
|
|
|
|
-
|
|
|
|
- let parent_idx = self.scope_stack.last().unwrap().clone();
|
|
|
|
-
|
|
|
|
- // Insert a new scope into our component list
|
|
|
|
- let new_idx = self.vdom.insert_scope_with_key(|new_idx| {
|
|
|
|
- let parent_scope = self.get_scope(&parent_idx).unwrap();
|
|
|
|
- let height = parent_scope.height + 1;
|
|
|
|
- Scope::new(
|
|
|
|
- caller,
|
|
|
|
- new_idx,
|
|
|
|
- Some(parent_idx),
|
|
|
|
- height,
|
|
|
|
- ScopeChildren(vcomponent.children),
|
|
|
|
- self.vdom.clone(),
|
|
|
|
- )
|
|
|
|
- });
|
|
|
|
-
|
|
|
|
- // Actually initialize the caller's slot with the right address
|
|
|
|
- vcomponent.ass_scope.set(Some(new_idx));
|
|
|
|
-
|
|
|
|
- if !vcomponent.can_memoize {
|
|
|
|
- let cur_scope = self.get_scope_mut(&parent_idx).unwrap();
|
|
|
|
- let extended = *vcomponent as *const VComponent;
|
|
|
|
- let extended: *const VComponent<'static> =
|
|
|
|
- unsafe { std::mem::transmute(extended) };
|
|
|
|
- cur_scope.borrowed_props.borrow_mut().push(extended);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // TODO:
|
|
|
|
- // add noderefs to current noderef list Noderefs
|
|
|
|
- // add effects to current effect list Effects
|
|
|
|
-
|
|
|
|
- let new_component = self.get_scope_mut(&new_idx).unwrap();
|
|
|
|
-
|
|
|
|
- // Run the scope for one iteration to initialize it
|
|
|
|
- match new_component.run_scope() {
|
|
|
|
- Ok(_) => {
|
|
|
|
- // all good, new nodes exist
|
|
|
|
- }
|
|
|
|
- Err(err) => {
|
|
|
|
- // failed to run. this is the first time the component ran, and it failed
|
|
|
|
- // we manually set its head node to an empty fragment
|
|
|
|
- panic!("failing components not yet implemented");
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Take the node that was just generated from running the component
|
|
|
|
- let nextnode = new_component.frames.fin_head();
|
|
|
|
-
|
|
|
|
- // Push the new scope onto the stack
|
|
|
|
- self.scope_stack.push(new_idx);
|
|
|
|
-
|
|
|
|
- // Run the creation algorithm with this scope on the stack
|
|
|
|
- let meta = self.create_vnode(nextnode);
|
|
|
|
-
|
|
|
|
- // pop the scope off the stack
|
|
|
|
- self.scope_stack.pop();
|
|
|
|
-
|
|
|
|
- if meta.added_to_stack == 0 {
|
|
|
|
- panic!("Components should *always* generate nodes - even if they fail");
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Finally, insert this scope as a seen node.
|
|
|
|
- self.seen_scopes.insert(new_idx);
|
|
|
|
-
|
|
|
|
- CreateMeta::new(vcomponent.is_static, meta.added_to_stack)
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Fragments are the only nodes that can contain dynamic content (IE through curlies or iterators).
|
|
|
|
- // We can never ignore their contents, so the prescence of a fragment indicates that we need always diff them.
|
|
|
|
- // Fragments will just put all their nodes onto the stack after creation
|
|
|
|
- VNodeKind::Fragment(frag) => self.create_children(frag.children),
|
|
|
|
-
|
|
|
|
- VNodeKind::Suspended(VSuspended { node: real_node }) => {
|
|
|
|
- let id = self.vdom.reserve_node();
|
|
|
|
- self.edit_create_placeholder(id);
|
|
|
|
- real_node.set(Some(id));
|
|
|
|
- CreateMeta::new(false, 1)
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- fn create_children(&mut self, children: &'bump [VNode<'bump>]) -> CreateMeta {
|
|
|
|
- let mut is_static = true;
|
|
|
|
- let mut added_to_stack = 0;
|
|
|
|
-
|
|
|
|
- // add them backwards
|
|
|
|
- for child in children.iter().rev() {
|
|
|
|
- let child_meta = self.create_vnode(child);
|
|
|
|
- is_static = is_static && child_meta.is_static;
|
|
|
|
- added_to_stack += child_meta.added_to_stack;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- CreateMeta {
|
|
|
|
- is_static,
|
|
|
|
- added_to_stack,
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /// Destroy a scope and all of its descendents.
|
|
|
|
- ///
|
|
|
|
- /// Calling this will run the destuctors on all hooks in the tree.
|
|
|
|
- /// It will also add the destroyed nodes to the `seen_nodes` cache to prevent them from being renderered.
|
|
|
|
- fn destroy_scopes(&mut self, old_scope: ScopeId) {
|
|
|
|
- let mut nodes_to_delete = vec![old_scope];
|
|
|
|
- let mut scopes_to_explore = vec![old_scope];
|
|
|
|
-
|
|
|
|
- // explore the scope tree breadth first
|
|
|
|
- while let Some(scope_id) = scopes_to_explore.pop() {
|
|
|
|
- // If we're planning on deleting this node, then we don't need to both rendering it
|
|
|
|
- self.seen_scopes.insert(scope_id);
|
|
|
|
- let scope = self.get_scope(&scope_id).unwrap();
|
|
|
|
- for child in scope.descendents.borrow().iter() {
|
|
|
|
- // Add this node to be explored
|
|
|
|
- scopes_to_explore.push(child.clone());
|
|
|
|
-
|
|
|
|
- // Also add it for deletion
|
|
|
|
- nodes_to_delete.push(child.clone());
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Delete all scopes that we found as part of this subtree
|
|
|
|
- for node in nodes_to_delete {
|
|
|
|
- log::debug!("Removing scope {:#?}", node);
|
|
|
|
- let _scope = self.vdom.try_remove(node).unwrap();
|
|
|
|
- // do anything we need to do to delete the scope
|
|
|
|
- // I think we need to run the destructors on the hooks
|
|
|
|
- // TODO
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Diff the given set of old and new children.
|
|
|
|
- //
|
|
|
|
- // The parent must be on top of the change list stack when this function is
|
|
|
|
- // entered:
|
|
|
|
- //
|
|
|
|
- // [... parent]
|
|
|
|
- //
|
|
|
|
- // the change list stack is in the same state when this function returns.
|
|
|
|
- //
|
|
|
|
- // If old no anchors are provided, then it's assumed that we can freely append to the parent.
|
|
|
|
- //
|
|
|
|
- // Remember, non-empty lists does not mean that there are real elements, just that there are virtual elements.
|
|
|
|
- fn diff_children(&mut self, old: &'bump [VNode<'bump>], new: &'bump [VNode<'bump>]) {
|
|
|
|
- const IS_EMPTY: bool = true;
|
|
|
|
- const IS_NOT_EMPTY: bool = false;
|
|
|
|
-
|
|
|
|
- match (old.is_empty(), new.is_empty()) {
|
|
|
|
- (IS_EMPTY, IS_EMPTY) => {}
|
|
|
|
-
|
|
|
|
- // Completely adding new nodes, removing any placeholder if it exists
|
|
|
|
- (IS_EMPTY, IS_NOT_EMPTY) => {
|
|
|
|
- let meta = self.create_children(new);
|
|
|
|
- self.edit_append_children(meta.added_to_stack);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Completely removing old nodes and putting an anchor in its place
|
|
|
|
- // no anchor (old has nodes) and the new is empty
|
|
|
|
- // remove all the old nodes
|
|
|
|
- (IS_NOT_EMPTY, IS_EMPTY) => {
|
|
|
|
- for node in old {
|
|
|
|
- self.remove_vnode(node);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- (IS_NOT_EMPTY, IS_NOT_EMPTY) => {
|
|
|
|
- let first_old = &old[0];
|
|
|
|
- let first_new = &new[0];
|
|
|
|
-
|
|
|
|
- match (&first_old.kind, &first_new.kind) {
|
|
|
|
- // Anchors can only appear in empty fragments
|
|
|
|
- (VNodeKind::Anchor(old_anchor), VNodeKind::Anchor(new_anchor)) => {
|
|
|
|
- old_anchor.dom_id.set(new_anchor.dom_id.get());
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Replace the anchor with whatever new nodes are coming down the pipe
|
|
|
|
- (VNodeKind::Anchor(anchor), _) => {
|
|
|
|
- self.edit_push_root(anchor.dom_id.get().unwrap());
|
|
|
|
- let mut added = 0;
|
|
|
|
- for el in new {
|
|
|
|
- let meta = self.create_vnode(el);
|
|
|
|
- added += meta.added_to_stack;
|
|
|
|
- }
|
|
|
|
- self.edit_replace_with(1, added);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Replace whatever nodes are sitting there with the anchor
|
|
|
|
- (_, VNodeKind::Anchor(anchor)) => {
|
|
|
|
- self.replace_and_create_many_with_many(old, [first_new]);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Use the complex diff algorithm to diff the nodes
|
|
|
|
- _ => {
|
|
|
|
- let new_is_keyed = new[0].key.is_some();
|
|
|
|
- let old_is_keyed = old[0].key.is_some();
|
|
|
|
-
|
|
|
|
- debug_assert!(
|
|
|
|
- new.iter().all(|n| n.key.is_some() == new_is_keyed),
|
|
|
|
- "all siblings must be keyed or all siblings must be non-keyed"
|
|
|
|
- );
|
|
|
|
- debug_assert!(
|
|
|
|
- old.iter().all(|o| o.key.is_some() == old_is_keyed),
|
|
|
|
- "all siblings must be keyed or all siblings must be non-keyed"
|
|
|
|
- );
|
|
|
|
-
|
|
|
|
- if new_is_keyed && old_is_keyed {
|
|
|
|
- self.diff_keyed_children(old, new);
|
|
|
|
- } else {
|
|
|
|
- self.diff_non_keyed_children(old, new);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Diffing "keyed" children.
|
|
|
|
- //
|
|
|
|
- // With keyed children, we care about whether we delete, move, or create nodes
|
|
|
|
- // versus mutate existing nodes in place. Presumably there is some sort of CSS
|
|
|
|
- // transition animation that makes the virtual DOM diffing algorithm
|
|
|
|
- // observable. By specifying keys for nodes, we know which virtual DOM nodes
|
|
|
|
- // must reuse (or not reuse) the same physical DOM nodes.
|
|
|
|
- //
|
|
|
|
- // This is loosely based on Inferno's keyed patching implementation. However, we
|
|
|
|
- // have to modify the algorithm since we are compiling the diff down into change
|
|
|
|
- // list instructions that will be executed later, rather than applying the
|
|
|
|
- // changes to the DOM directly as we compare virtual DOMs.
|
|
|
|
- //
|
|
|
|
- // https://github.com/infernojs/inferno/blob/36fd96/packages/inferno/src/DOM/patching.ts#L530-L739
|
|
|
|
- //
|
|
|
|
- // The stack is empty upon entry.
|
|
|
|
- fn diff_keyed_children(&mut self, old: &'bump [VNode<'bump>], new: &'bump [VNode<'bump>]) {
|
|
|
|
- if cfg!(debug_assertions) {
|
|
|
|
- let mut keys = fxhash::FxHashSet::default();
|
|
|
|
- let mut assert_unique_keys = |children: &'bump [VNode<'bump>]| {
|
|
|
|
- keys.clear();
|
|
|
|
- for child in children {
|
|
|
|
- let key = child.key;
|
|
|
|
- debug_assert!(
|
|
|
|
- key.is_some(),
|
|
|
|
- "if any sibling is keyed, all siblings must be keyed"
|
|
|
|
- );
|
|
|
|
- keys.insert(key);
|
|
|
|
- }
|
|
|
|
- debug_assert_eq!(
|
|
|
|
- children.len(),
|
|
|
|
- keys.len(),
|
|
|
|
- "keyed siblings must each have a unique key"
|
|
|
|
- );
|
|
|
|
- };
|
|
|
|
- assert_unique_keys(old);
|
|
|
|
- assert_unique_keys(new);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // First up, we diff all the nodes with the same key at the beginning of the
|
|
|
|
- // children.
|
|
|
|
- //
|
|
|
|
- // `shared_prefix_count` is the count of how many nodes at the start of
|
|
|
|
- // `new` and `old` share the same keys.
|
|
|
|
- //
|
|
|
|
- // TODO: just inline this
|
|
|
|
- let shared_prefix_count = match self.diff_keyed_prefix(old, new) {
|
|
|
|
- KeyedPrefixResult::Finished => return,
|
|
|
|
- KeyedPrefixResult::MoreWorkToDo(count) => count,
|
|
|
|
- };
|
|
|
|
-
|
|
|
|
- // Next, we find out how many of the nodes at the end of the children have
|
|
|
|
- // the same key. We do _not_ diff them yet, since we want to emit the change
|
|
|
|
- // list instructions such that they can be applied in a single pass over the
|
|
|
|
- // DOM. Instead, we just save this information for later.
|
|
|
|
- //
|
|
|
|
- // `shared_suffix_count` is the count of how many nodes at the end of `new`
|
|
|
|
- // and `old` share the same keys.
|
|
|
|
- let shared_suffix_count = old[shared_prefix_count..]
|
|
|
|
- .iter()
|
|
|
|
- .rev()
|
|
|
|
- .zip(new[shared_prefix_count..].iter().rev())
|
|
|
|
- .take_while(|&(old, new)| old.key == new.key)
|
|
|
|
- .count();
|
|
|
|
-
|
|
|
|
- let old_shared_suffix_start = old.len() - shared_suffix_count;
|
|
|
|
- let new_shared_suffix_start = new.len() - shared_suffix_count;
|
|
|
|
-
|
|
|
|
- // Ok, we now hopefully have a smaller range of children in the middle
|
|
|
|
- // within which to re-order nodes with the same keys, remove old nodes with
|
|
|
|
- // now-unused keys, and create new nodes with fresh keys.
|
|
|
|
- self.diff_keyed_middle(
|
|
|
|
- &old[shared_prefix_count..old_shared_suffix_start],
|
|
|
|
- &new[shared_prefix_count..new_shared_suffix_start],
|
|
|
|
- shared_prefix_count,
|
|
|
|
- shared_suffix_count,
|
|
|
|
- old_shared_suffix_start,
|
|
|
|
- );
|
|
|
|
-
|
|
|
|
- // Finally, diff the nodes at the end of `old` and `new` that share keys.
|
|
|
|
- let old_suffix = &old[old_shared_suffix_start..];
|
|
|
|
- let new_suffix = &new[new_shared_suffix_start..];
|
|
|
|
- debug_assert_eq!(old_suffix.len(), new_suffix.len());
|
|
|
|
- if !old_suffix.is_empty() {
|
|
|
|
- self.diff_keyed_suffix(old_suffix, new_suffix, new_shared_suffix_start)
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Diff the prefix of children in `new` and `old` that share the same keys in
|
|
|
|
- // the same order.
|
|
|
|
- //
|
|
|
|
- // The stack is empty upon entry.
|
|
|
|
- fn diff_keyed_prefix(
|
|
|
|
- &mut self,
|
|
|
|
- old: &'bump [VNode<'bump>],
|
|
|
|
- new: &'bump [VNode<'bump>],
|
|
|
|
- ) -> KeyedPrefixResult {
|
|
|
|
- let mut shared_prefix_count = 0;
|
|
|
|
-
|
|
|
|
- for (old, new) in old.iter().zip(new.iter()) {
|
|
|
|
- // abort early if we finally run into nodes with different keys
|
|
|
|
- if old.key() != new.key() {
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- self.diff_node(old, new);
|
|
|
|
- shared_prefix_count += 1;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // If that was all of the old children, then create and append the remaining
|
|
|
|
- // new children and we're finished.
|
|
|
|
- if shared_prefix_count == old.len() {
|
|
|
|
- // Load the last element
|
|
|
|
- let last_node = self.find_last_element(new.last().unwrap()).direct_id();
|
|
|
|
- self.edit_push_root(last_node);
|
|
|
|
-
|
|
|
|
- // Create the new children and insert them after
|
|
|
|
- let meta = self.create_children(&new[shared_prefix_count..]);
|
|
|
|
- self.edit_insert_after(meta.added_to_stack);
|
|
|
|
-
|
|
|
|
- return KeyedPrefixResult::Finished;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // And if that was all of the new children, then remove all of the remaining
|
|
|
|
- // old children and we're finished.
|
|
|
|
- if shared_prefix_count == new.len() {
|
|
|
|
- self.remove_children(&old[shared_prefix_count..]);
|
|
|
|
- return KeyedPrefixResult::Finished;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- KeyedPrefixResult::MoreWorkToDo(shared_prefix_count)
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Create the given children and append them to the parent node.
|
|
|
|
- //
|
|
|
|
- // The parent node must currently be on top of the change list stack:
|
|
|
|
- //
|
|
|
|
- // [... parent]
|
|
|
|
- //
|
|
|
|
- // When this function returns, the change list stack is in the same state.
|
|
|
|
- pub fn create_and_append_children(&mut self, new: &'bump [VNode<'bump>]) {
|
|
|
|
- for child in new {
|
|
|
|
- let meta = self.create_vnode(child);
|
|
|
|
- self.edit_append_children(meta.added_to_stack);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // The most-general, expensive code path for keyed children diffing.
|
|
|
|
- //
|
|
|
|
- // We find the longest subsequence within `old` of children that are relatively
|
|
|
|
- // ordered the same way in `new` (via finding a longest-increasing-subsequence
|
|
|
|
- // of the old child's index within `new`). The children that are elements of
|
|
|
|
- // this subsequence will remain in place, minimizing the number of DOM moves we
|
|
|
|
- // will have to do.
|
|
|
|
- //
|
|
|
|
- // Upon entry to this function, the change list stack must be empty.
|
|
|
|
- //
|
|
|
|
- // This function will load the appropriate nodes onto the stack and do diffing in place.
|
|
|
|
- //
|
|
|
|
- // Upon exit from this function, it will be restored to that same state.
|
|
|
|
- fn diff_keyed_middle(
|
|
|
|
- &mut self,
|
|
|
|
- old: &'bump [VNode<'bump>],
|
|
|
|
- mut new: &'bump [VNode<'bump>],
|
|
|
|
- shared_prefix_count: usize,
|
|
|
|
- shared_suffix_count: usize,
|
|
|
|
- old_shared_suffix_start: usize,
|
|
|
|
- ) {
|
|
|
|
- // Should have already diffed the shared-key prefixes and suffixes.
|
|
|
|
- debug_assert_ne!(new.first().map(|n| n.key()), old.first().map(|o| o.key()));
|
|
|
|
- debug_assert_ne!(new.last().map(|n| n.key()), old.last().map(|o| o.key()));
|
|
|
|
-
|
|
|
|
- // // The algorithm below relies upon using `u32::MAX` as a sentinel
|
|
|
|
- // // value, so if we have that many new nodes, it won't work. This
|
|
|
|
- // // check is a bit academic (hence only enabled in debug), since
|
|
|
|
- // // wasm32 doesn't have enough address space to hold that many nodes
|
|
|
|
- // // in memory.
|
|
|
|
- // debug_assert!(new.len() < u32::MAX as usize);
|
|
|
|
-
|
|
|
|
- // Map from each `old` node's key to its index within `old`.
|
|
|
|
- // IE if the keys were A B C, then we would have (A, 1) (B, 2) (C, 3).
|
|
|
|
- let mut old_key_to_old_index = old
|
|
|
|
- .iter()
|
|
|
|
- .enumerate()
|
|
|
|
- .map(|(i, o)| (o.key().unwrap(), i))
|
|
|
|
- .collect::<FxHashMap<_, _>>();
|
|
|
|
-
|
|
|
|
- // The set of shared keys between `new` and `old`.
|
|
|
|
- let mut shared_keys = FxHashSet::default();
|
|
|
|
- // let mut to_remove = FxHashSet::default();
|
|
|
|
- let mut to_add = FxHashSet::default();
|
|
|
|
-
|
|
|
|
- // Map from each index in `new` to the index of the node in `old` that
|
|
|
|
- // has the same key.
|
|
|
|
- let mut new_index_to_old_index = new
|
|
|
|
- .iter()
|
|
|
|
- .map(|n| {
|
|
|
|
- let key = n.key().unwrap();
|
|
|
|
- match old_key_to_old_index.get(&key) {
|
|
|
|
- Some(&index) => {
|
|
|
|
- shared_keys.insert(key);
|
|
|
|
- index
|
|
|
|
- }
|
|
|
|
- None => {
|
|
|
|
- //
|
|
|
|
- to_add.insert(key);
|
|
|
|
- u32::MAX as usize
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- })
|
|
|
|
- .collect::<Vec<_>>();
|
|
|
|
-
|
|
|
|
- dbg!(&shared_keys);
|
|
|
|
- dbg!(&to_add);
|
|
|
|
-
|
|
|
|
- // If none of the old keys are reused by the new children, then we
|
|
|
|
- // remove all the remaining old children and create the new children
|
|
|
|
- // afresh.
|
|
|
|
- if shared_suffix_count == 0 && shared_keys.is_empty() {
|
|
|
|
- self.replace_and_create_many_with_many(old, new);
|
|
|
|
- return;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // // Remove any old children whose keys were not reused in the new
|
|
|
|
- // // children. Remove from the end first so that we don't mess up indices.
|
|
|
|
- // for old_child in old.iter().rev() {
|
|
|
|
- // if !shared_keys.contains(&old_child.key()) {
|
|
|
|
- // self.remove_child(old_child);
|
|
|
|
- // }
|
|
|
|
- // }
|
|
|
|
-
|
|
|
|
- // let old_keyds = old.iter().map(|f| f.key()).collect::<Vec<_>>();
|
|
|
|
- // let new_keyds = new.iter().map(|f| f.key()).collect::<Vec<_>>();
|
|
|
|
- // dbg!(old_keyds);
|
|
|
|
- // dbg!(new_keyds);
|
|
|
|
-
|
|
|
|
- // // If there aren't any more new children, then we are done!
|
|
|
|
- // if new.is_empty() {
|
|
|
|
- // return;
|
|
|
|
- // }
|
|
|
|
-
|
|
|
|
- // The longest increasing subsequence within `new_index_to_old_index`. This
|
|
|
|
- // is the longest sequence on DOM nodes in `old` that are relatively ordered
|
|
|
|
- // correctly within `new`. We will leave these nodes in place in the DOM,
|
|
|
|
- // and only move nodes that are not part of the LIS. This results in the
|
|
|
|
- // maximum number of DOM nodes left in place, AKA the minimum number of DOM
|
|
|
|
- // nodes moved.
|
|
|
|
- let mut new_index_is_in_lis = FxHashSet::default();
|
|
|
|
- new_index_is_in_lis.reserve(new_index_to_old_index.len());
|
|
|
|
-
|
|
|
|
- let mut predecessors = vec![0; new_index_to_old_index.len()];
|
|
|
|
- let mut starts = vec![0; new_index_to_old_index.len()];
|
|
|
|
-
|
|
|
|
- longest_increasing_subsequence::lis_with(
|
|
|
|
- &new_index_to_old_index,
|
|
|
|
- &mut new_index_is_in_lis,
|
|
|
|
- |a, b| a < b,
|
|
|
|
- &mut predecessors,
|
|
|
|
- &mut starts,
|
|
|
|
- );
|
|
|
|
-
|
|
|
|
- dbg!(&new_index_is_in_lis);
|
|
|
|
- // use the old nodes to navigate the new nodes
|
|
|
|
-
|
|
|
|
- let mut lis_in_order = new_index_is_in_lis.into_iter().collect::<Vec<_>>();
|
|
|
|
- lis_in_order.sort_unstable();
|
|
|
|
-
|
|
|
|
- dbg!(&lis_in_order);
|
|
|
|
-
|
|
|
|
- // we walk front to back, creating the head node
|
|
|
|
-
|
|
|
|
- // diff the shared, in-place nodes first
|
|
|
|
- // this makes sure we can rely on their first/last nodes being correct later on
|
|
|
|
- for id in &lis_in_order {
|
|
|
|
- let new_node = &new[*id];
|
|
|
|
- let key = new_node.key().unwrap();
|
|
|
|
- let old_index = old_key_to_old_index.get(&key).unwrap();
|
|
|
|
- let old_node = &old[*old_index];
|
|
|
|
- self.diff_node(old_node, new_node);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // return the old node from the key
|
|
|
|
- let load_old_node_from_lsi = |key| -> &VNode {
|
|
|
|
- let old_index = old_key_to_old_index.get(key).unwrap();
|
|
|
|
- let old_node = &old[*old_index];
|
|
|
|
- old_node
|
|
|
|
- };
|
|
|
|
-
|
|
|
|
- let mut root = None;
|
|
|
|
- let mut new_iter = new.iter().enumerate();
|
|
|
|
- for lis_id in &lis_in_order {
|
|
|
|
- eprintln!("tracking {:?}", lis_id);
|
|
|
|
- // this is the next milestone node we are working up to
|
|
|
|
- let new_anchor = &new[*lis_id];
|
|
|
|
- root = Some(new_anchor);
|
|
|
|
-
|
|
|
|
- let anchor_el = self.find_first_element(new_anchor);
|
|
|
|
- self.edit_push_root(anchor_el.direct_id());
|
|
|
|
- // let mut pushed = false;
|
|
|
|
-
|
|
|
|
- 'inner: loop {
|
|
|
|
- let (next_id, next_new) = new_iter.next().unwrap();
|
|
|
|
- if next_id == *lis_id {
|
|
|
|
- // we've reached the milestone, break this loop so we can step to the next milestone
|
|
|
|
- // remember: we already diffed this node
|
|
|
|
- eprintln!("breaking {:?}", next_id);
|
|
|
|
- break 'inner;
|
|
|
|
- } else {
|
|
|
|
- let key = next_new.key().unwrap();
|
|
|
|
- eprintln!("found key {:?}", key);
|
|
|
|
- if shared_keys.contains(&key) {
|
|
|
|
- eprintln!("key is contained {:?}", key);
|
|
|
|
- shared_keys.remove(key);
|
|
|
|
- // diff the two nodes
|
|
|
|
- let old_node = load_old_node_from_lsi(key);
|
|
|
|
- self.diff_node(old_node, next_new);
|
|
|
|
-
|
|
|
|
- // now move all the nodes into the right spot
|
|
|
|
- for child in RealChildIterator::new(next_new, self.vdom) {
|
|
|
|
- let el = child.direct_id();
|
|
|
|
- self.edit_push_root(el);
|
|
|
|
- self.edit_insert_before(1);
|
|
|
|
- }
|
|
|
|
- } else {
|
|
|
|
- eprintln!("key is not contained {:?}", key);
|
|
|
|
- // new node needs to be created
|
|
|
|
- // insert it before the current milestone
|
|
|
|
- let meta = self.create_vnode(next_new);
|
|
|
|
- self.edit_insert_before(meta.added_to_stack);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- self.edit_pop();
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- let final_lis_node = root.unwrap();
|
|
|
|
- let final_el_node = self.find_last_element(final_lis_node);
|
|
|
|
- let final_el = final_el_node.direct_id();
|
|
|
|
- self.edit_push_root(final_el);
|
|
|
|
-
|
|
|
|
- let mut last_iter = new.iter().rev().enumerate();
|
|
|
|
- let last_key = final_lis_node.key().unwrap();
|
|
|
|
- loop {
|
|
|
|
- let (last_id, last_node) = last_iter.next().unwrap();
|
|
|
|
- let key = last_node.key().unwrap();
|
|
|
|
-
|
|
|
|
- eprintln!("checking final nodes {:?}", key);
|
|
|
|
-
|
|
|
|
- if last_key == key {
|
|
|
|
- eprintln!("breaking final nodes");
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if shared_keys.contains(&key) {
|
|
|
|
- eprintln!("key is contained {:?}", key);
|
|
|
|
- shared_keys.remove(key);
|
|
|
|
- // diff the two nodes
|
|
|
|
- let old_node = load_old_node_from_lsi(key);
|
|
|
|
- self.diff_node(old_node, last_node);
|
|
|
|
-
|
|
|
|
- // now move all the nodes into the right spot
|
|
|
|
- for child in RealChildIterator::new(last_node, self.vdom) {
|
|
|
|
- let el = child.direct_id();
|
|
|
|
- self.edit_push_root(el);
|
|
|
|
- self.edit_insert_after(1);
|
|
|
|
- }
|
|
|
|
- } else {
|
|
|
|
- eprintln!("key is not contained {:?}", key);
|
|
|
|
- // new node needs to be created
|
|
|
|
- // insert it before the current milestone
|
|
|
|
- let meta = self.create_vnode(last_node);
|
|
|
|
- self.edit_insert_after(meta.added_to_stack);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- self.edit_pop();
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Diff the suffix of keyed children that share the same keys in the same order.
|
|
|
|
- //
|
|
|
|
- // The parent must be on the change list stack when we enter this function:
|
|
|
|
- //
|
|
|
|
- // [... parent]
|
|
|
|
- //
|
|
|
|
- // When this function exits, the change list stack remains the same.
|
|
|
|
- fn diff_keyed_suffix(
|
|
|
|
- &mut self,
|
|
|
|
- old: &'bump [VNode<'bump>],
|
|
|
|
- new: &'bump [VNode<'bump>],
|
|
|
|
- new_shared_suffix_start: usize,
|
|
|
|
- ) {
|
|
|
|
- debug_assert_eq!(old.len(), new.len());
|
|
|
|
- debug_assert!(!old.is_empty());
|
|
|
|
-
|
|
|
|
- for (old_child, new_child) in old.iter().zip(new.iter()) {
|
|
|
|
- self.diff_node(old_child, new_child);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Diff children that are not keyed.
|
|
|
|
- //
|
|
|
|
- // The parent must be on the top of the change list stack when entering this
|
|
|
|
- // function:
|
|
|
|
- //
|
|
|
|
- // [... parent]
|
|
|
|
- //
|
|
|
|
- // the change list stack is in the same state when this function returns.
|
|
|
|
- async fn diff_non_keyed_children(
|
|
|
|
- &mut self,
|
|
|
|
- old: &'bump [VNode<'bump>],
|
|
|
|
- new: &'bump [VNode<'bump>],
|
|
|
|
- ) {
|
|
|
|
- // Handled these cases in `diff_children` before calling this function.
|
|
|
|
- //
|
|
|
|
- debug_assert!(!new.is_empty());
|
|
|
|
- debug_assert!(!old.is_empty());
|
|
|
|
-
|
|
|
|
- match old.len().cmp(&new.len()) {
|
|
|
|
- // old.len > new.len -> removing some nodes
|
|
|
|
- Ordering::Greater => {
|
|
|
|
- // diff them together
|
|
|
|
- for (new_child, old_child) in new.iter().zip(old.iter()) {
|
|
|
|
- self.diff_node(old_child, new_child);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // todo: we would emit fewer instructions if we just did a replace many
|
|
|
|
- // remove whatever is still dangling
|
|
|
|
- for item in &old[new.len()..] {
|
|
|
|
- for i in RealChildIterator::new(item, self.vdom) {
|
|
|
|
- self.edit_push_root(i.direct_id());
|
|
|
|
- self.edit_remove();
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // old.len < new.len -> adding some nodes
|
|
|
|
- // this is wrong in the case where we're diffing fragments
|
|
|
|
- //
|
|
|
|
- // we need to save the last old element and then replace it with all the new ones
|
|
|
|
- Ordering::Less => {
|
|
|
|
- // Add the new elements to the last old element while it still exists
|
|
|
|
- let last = self.find_last_element(old.last().unwrap());
|
|
|
|
- self.edit_push_root(last.direct_id());
|
|
|
|
-
|
|
|
|
- // create the rest and insert them
|
|
|
|
- let meta = self.create_children(&new[old.len()..]);
|
|
|
|
- self.edit_insert_after(meta.added_to_stack);
|
|
|
|
-
|
|
|
|
- self.edit_pop();
|
|
|
|
-
|
|
|
|
- // diff the rest
|
|
|
|
- for (new_child, old_child) in new.iter().zip(old.iter()) {
|
|
|
|
- self.diff_node(old_child, new_child).await
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // old.len == new.len -> no nodes added/removed, but perhaps changed
|
|
|
|
- Ordering::Equal => {
|
|
|
|
- for (new_child, old_child) in new.iter().zip(old.iter()) {
|
|
|
|
- self.diff_node(old_child, new_child).await;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // ======================
|
|
|
|
- // Support methods
|
|
|
|
- // ======================
|
|
|
|
- // Remove all of a node's children.
|
|
|
|
- //
|
|
|
|
- // The change list stack must have this shape upon entry to this function:
|
|
|
|
- //
|
|
|
|
- // [... parent]
|
|
|
|
- //
|
|
|
|
- // When this function returns, the change list stack is in the same state.
|
|
|
|
- fn remove_all_children(&mut self, old: &'bump [VNode<'bump>]) {
|
|
|
|
- // debug_assert!(self.traversal_is_committed());
|
|
|
|
- log::debug!("REMOVING CHILDREN");
|
|
|
|
- for _child in old {
|
|
|
|
- // registry.remove_subtree(child);
|
|
|
|
- }
|
|
|
|
- // Fast way to remove all children: set the node's textContent to an empty
|
|
|
|
- // string.
|
|
|
|
- todo!()
|
|
|
|
- // self.set_inner_text("");
|
|
|
|
- }
|
|
|
|
- // Remove the current child and all of its following siblings.
|
|
|
|
- //
|
|
|
|
- // The change list stack must have this shape upon entry to this function:
|
|
|
|
- //
|
|
|
|
- // [... parent child]
|
|
|
|
- //
|
|
|
|
- // After the function returns, the child is no longer on the change list stack:
|
|
|
|
- //
|
|
|
|
- // [... parent]
|
|
|
|
- fn remove_children(&mut self, old: &'bump [VNode<'bump>]) {
|
|
|
|
- self.replace_and_create_many_with_many(old, None)
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- fn find_last_element(&mut self, vnode: &'bump VNode<'bump>) -> &'bump VNode<'bump> {
|
|
|
|
- let mut search_node = Some(vnode);
|
|
|
|
-
|
|
|
|
- loop {
|
|
|
|
- let node = search_node.take().unwrap();
|
|
|
|
- match &node.kind {
|
|
|
|
- // the ones that have a direct id
|
|
|
|
- VNodeKind::Text(_)
|
|
|
|
- | VNodeKind::Element(_)
|
|
|
|
- | VNodeKind::Anchor(_)
|
|
|
|
- | VNodeKind::Suspended(_) => break node,
|
|
|
|
-
|
|
|
|
- VNodeKind::Fragment(frag) => {
|
|
|
|
- search_node = frag.children.last();
|
|
|
|
- }
|
|
|
|
- VNodeKind::Component(el) => {
|
|
|
|
- let scope_id = el.ass_scope.get().unwrap();
|
|
|
|
- let scope = self.get_scope(&scope_id).unwrap();
|
|
|
|
- search_node = Some(scope.root());
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- fn find_first_element(&mut self, vnode: &'bump VNode<'bump>) -> &'bump VNode<'bump> {
|
|
|
|
- let mut search_node = Some(vnode);
|
|
|
|
-
|
|
|
|
- loop {
|
|
|
|
- let node = search_node.take().unwrap();
|
|
|
|
- match &node.kind {
|
|
|
|
- // the ones that have a direct id
|
|
|
|
- VNodeKind::Text(_)
|
|
|
|
- | VNodeKind::Element(_)
|
|
|
|
- | VNodeKind::Anchor(_)
|
|
|
|
- | VNodeKind::Suspended(_) => break node,
|
|
|
|
-
|
|
|
|
- VNodeKind::Fragment(frag) => {
|
|
|
|
- search_node = Some(&frag.children[0]);
|
|
|
|
- }
|
|
|
|
- VNodeKind::Component(el) => {
|
|
|
|
- let scope_id = el.ass_scope.get().unwrap();
|
|
|
|
- let scope = self.get_scope(&scope_id).unwrap();
|
|
|
|
- search_node = Some(scope.root());
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- fn remove_child(&mut self, node: &'bump VNode<'bump>) {
|
|
|
|
- self.replace_and_create_many_with_many(Some(node), None);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /// Remove all the old nodes and replace them with newly created new nodes.
|
|
|
|
- ///
|
|
|
|
- /// The new nodes *will* be created - don't create them yourself!
|
|
|
|
- fn replace_and_create_many_with_many(
|
|
|
|
- &mut self,
|
|
|
|
- old_nodes: impl IntoIterator<Item = &'bump VNode<'bump>>,
|
|
|
|
- new_nodes: impl IntoIterator<Item = &'bump VNode<'bump>>,
|
|
|
|
- ) {
|
|
|
|
- let mut nodes_to_replace = Vec::new();
|
|
|
|
- let mut nodes_to_search = old_nodes.into_iter().collect::<Vec<_>>();
|
|
|
|
- let mut scopes_obliterated = Vec::new();
|
|
|
|
- while let Some(node) = nodes_to_search.pop() {
|
|
|
|
- match &node.kind {
|
|
|
|
- // the ones that have a direct id return immediately
|
|
|
|
- VNodeKind::Text(el) => nodes_to_replace.push(el.dom_id.get().unwrap()),
|
|
|
|
- VNodeKind::Element(el) => nodes_to_replace.push(el.dom_id.get().unwrap()),
|
|
|
|
- VNodeKind::Anchor(el) => nodes_to_replace.push(el.dom_id.get().unwrap()),
|
|
|
|
- VNodeKind::Suspended(el) => nodes_to_replace.push(el.node.get().unwrap()),
|
|
|
|
-
|
|
|
|
- // Fragments will either have a single anchor or a list of children
|
|
|
|
- VNodeKind::Fragment(frag) => {
|
|
|
|
- for child in frag.children {
|
|
|
|
- nodes_to_search.push(child);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Components can be any of the nodes above
|
|
|
|
- // However, we do need to track which components need to be removed
|
|
|
|
- VNodeKind::Component(el) => {
|
|
|
|
- let scope_id = el.ass_scope.get().unwrap();
|
|
|
|
- let scope = self.get_scope(&scope_id).unwrap();
|
|
|
|
- let root = scope.root();
|
|
|
|
- nodes_to_search.push(root);
|
|
|
|
- scopes_obliterated.push(scope_id);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- // TODO: enable internal garabge collection
|
|
|
|
- // self.create_garbage(node);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- let n = nodes_to_replace.len();
|
|
|
|
- for node in nodes_to_replace {
|
|
|
|
- self.edit_push_root(node);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- let mut nodes_created = 0;
|
|
|
|
- for node in new_nodes {
|
|
|
|
- let meta = self.create_vnode(node);
|
|
|
|
- nodes_created += meta.added_to_stack;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // if 0 nodes are created, then it gets interperted as a deletion
|
|
|
|
- self.edit_replace_with(n as u32, nodes_created);
|
|
|
|
-
|
|
|
|
- // obliterate!
|
|
|
|
- for scope in scopes_obliterated {
|
|
|
|
- self.destroy_scopes(scope);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- fn create_garbage(&mut self, node: &'bump VNode<'bump>) {
|
|
|
|
- match self.current_scope().and_then(|id| self.get_scope(&id)) {
|
|
|
|
- Some(scope) => {
|
|
|
|
- let garbage: &'bump VNode<'static> = unsafe { std::mem::transmute(node) };
|
|
|
|
- scope.pending_garbage.borrow_mut().push(garbage);
|
|
|
|
- }
|
|
|
|
- None => {
|
|
|
|
- log::info!("No scope to collect garbage into")
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- fn immediately_dispose_garabage(&mut self, node: ElementId) {
|
|
|
|
- self.vdom.collect_garbage(node)
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- fn replace_node_with_node(
|
|
|
|
- &mut self,
|
|
|
|
- anchor: ElementId,
|
|
|
|
- old_node: &'bump VNode<'bump>,
|
|
|
|
- new_node: &'bump VNode<'bump>,
|
|
|
|
- ) {
|
|
|
|
- self.edit_push_root(anchor);
|
|
|
|
- let meta = self.create_vnode(new_node);
|
|
|
|
- self.edit_replace_with(1, meta.added_to_stack);
|
|
|
|
- self.create_garbage(old_node);
|
|
|
|
- self.edit_pop();
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- fn remove_vnode(&mut self, node: &'bump VNode<'bump>) {
|
|
|
|
- match &node.kind {
|
|
|
|
- VNodeKind::Text(el) => self.immediately_dispose_garabage(node.direct_id()),
|
|
|
|
- VNodeKind::Element(el) => {
|
|
|
|
- self.immediately_dispose_garabage(node.direct_id());
|
|
|
|
- for child in el.children {
|
|
|
|
- self.remove_vnode(&child);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- VNodeKind::Anchor(a) => {
|
|
|
|
- //
|
|
|
|
- }
|
|
|
|
- VNodeKind::Fragment(frag) => {
|
|
|
|
- for child in frag.children {
|
|
|
|
- self.remove_vnode(&child);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- VNodeKind::Component(el) => {
|
|
|
|
- //
|
|
|
|
- // self.destroy_scopes(old_scope)
|
|
|
|
- }
|
|
|
|
- VNodeKind::Suspended(_) => todo!(),
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- fn current_scope(&self) -> Option<ScopeId> {
|
|
|
|
- self.scope_stack.last().map(|f| f.clone())
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- fn fix_listener<'a>(&mut self, listener: &'a Listener<'a>) {
|
|
|
|
- let scope_id = self.current_scope();
|
|
|
|
- if let Some(scope_id) = scope_id {
|
|
|
|
- let scope = self.get_scope(&scope_id).unwrap();
|
|
|
|
- let mut queue = scope.listeners.borrow_mut();
|
|
|
|
- let long_listener: &'a Listener<'static> = unsafe { std::mem::transmute(listener) };
|
|
|
|
- queue.push(long_listener as *const _)
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- pub fn get_scope_mut(&mut self, id: &ScopeId) -> Option<&'bump mut Scope> {
|
|
|
|
- // ensure we haven't seen this scope before
|
|
|
|
- // if we have, then we're trying to alias it, which is not allowed
|
|
|
|
- debug_assert!(!self.seen_scopes.contains(id));
|
|
|
|
-
|
|
|
|
- unsafe { self.vdom.get_scope_mut(*id) }
|
|
|
|
- }
|
|
|
|
- pub fn get_scope(&mut self, id: &ScopeId) -> Option<&'bump Scope> {
|
|
|
|
- // ensure we haven't seen this scope before
|
|
|
|
- // if we have, then we're trying to alias it, which is not allowed
|
|
|
|
- unsafe { self.vdom.get_scope(*id) }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Navigation
|
|
|
|
- pub(crate) fn edit_push_root(&mut self, root: ElementId) {
|
|
|
|
- let id = root.as_u64();
|
|
|
|
- self.mutations.edits.push(PushRoot { id });
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- pub(crate) fn edit_pop(&mut self) {
|
|
|
|
- self.mutations.edits.push(PopRoot {});
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Add Nodes to the dom
|
|
|
|
- // add m nodes from the stack
|
|
|
|
- pub(crate) fn edit_append_children(&mut self, many: u32) {
|
|
|
|
- self.mutations.edits.push(AppendChildren { many });
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // replace the n-m node on the stack with the m nodes
|
|
|
|
- // ends with the last element of the chain on the top of the stack
|
|
|
|
- pub(crate) fn edit_replace_with(&mut self, n: u32, m: u32) {
|
|
|
|
- self.mutations.edits.push(ReplaceWith { n, m });
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- pub(crate) fn edit_insert_after(&mut self, n: u32) {
|
|
|
|
- self.mutations.edits.push(InsertAfter { n });
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- pub(crate) fn edit_insert_before(&mut self, n: u32) {
|
|
|
|
- self.mutations.edits.push(InsertBefore { n });
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Remove Nodesfrom the dom
|
|
|
|
- pub(crate) fn edit_remove(&mut self) {
|
|
|
|
- self.mutations.edits.push(Remove);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Create
|
|
|
|
- pub(crate) fn edit_create_text_node(&mut self, text: &'bump str, id: ElementId) {
|
|
|
|
- let id = id.as_u64();
|
|
|
|
- self.mutations.edits.push(CreateTextNode { text, id });
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- pub(crate) fn edit_create_element(
|
|
|
|
- &mut self,
|
|
|
|
- tag: &'static str,
|
|
|
|
- ns: Option<&'static str>,
|
|
|
|
- id: ElementId,
|
|
|
|
- ) {
|
|
|
|
- let id = id.as_u64();
|
|
|
|
- match ns {
|
|
|
|
- Some(ns) => self.mutations.edits.push(CreateElementNs { id, ns, tag }),
|
|
|
|
- None => self.mutations.edits.push(CreateElement { id, tag }),
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // placeholders are nodes that don't get rendered but still exist as an "anchor" in the real dom
|
|
|
|
- pub(crate) fn edit_create_placeholder(&mut self, id: ElementId) {
|
|
|
|
- let id = id.as_u64();
|
|
|
|
- self.mutations.edits.push(CreatePlaceholder { id });
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // events
|
|
|
|
- pub(crate) fn edit_new_event_listener(&mut self, listener: &Listener, scope: ScopeId) {
|
|
|
|
- let Listener {
|
|
|
|
- event,
|
|
|
|
- mounted_node,
|
|
|
|
- ..
|
|
|
|
- } = listener;
|
|
|
|
-
|
|
|
|
- let element_id = mounted_node.get().unwrap().as_u64();
|
|
|
|
-
|
|
|
|
- self.mutations.edits.push(NewEventListener {
|
|
|
|
- scope,
|
|
|
|
- event_name: event,
|
|
|
|
- mounted_node_id: element_id,
|
|
|
|
- });
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- pub(crate) fn edit_remove_event_listener(&mut self, event: &'static str) {
|
|
|
|
- self.mutations.edits.push(RemoveEventListener { event });
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // modify
|
|
|
|
- pub(crate) fn edit_set_text(&mut self, text: &'bump str) {
|
|
|
|
- self.mutations.edits.push(SetText { text });
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- pub(crate) fn edit_set_attribute(&mut self, attribute: &'bump Attribute) {
|
|
|
|
- let Attribute {
|
|
|
|
- name,
|
|
|
|
- value,
|
|
|
|
- is_static,
|
|
|
|
- is_volatile,
|
|
|
|
- namespace,
|
|
|
|
- } = attribute;
|
|
|
|
- // field: &'static str,
|
|
|
|
- // value: &'bump str,
|
|
|
|
- // ns: Option<&'static str>,
|
|
|
|
- self.mutations.edits.push(SetAttribute {
|
|
|
|
- field: name,
|
|
|
|
- value,
|
|
|
|
- ns: *namespace,
|
|
|
|
- });
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- pub(crate) fn edit_set_attribute_ns(
|
|
|
|
- &mut self,
|
|
|
|
- attribute: &'bump Attribute,
|
|
|
|
- namespace: &'bump str,
|
|
|
|
- ) {
|
|
|
|
- let Attribute {
|
|
|
|
- name,
|
|
|
|
- value,
|
|
|
|
- is_static,
|
|
|
|
- is_volatile,
|
|
|
|
- // namespace,
|
|
|
|
- ..
|
|
|
|
- } = attribute;
|
|
|
|
- // field: &'static str,
|
|
|
|
- // value: &'bump str,
|
|
|
|
- // ns: Option<&'static str>,
|
|
|
|
- self.mutations.edits.push(SetAttribute {
|
|
|
|
- field: name,
|
|
|
|
- value,
|
|
|
|
- ns: Some(namespace),
|
|
|
|
- });
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- pub(crate) fn edit_remove_attribute(&mut self, attribute: &Attribute) {
|
|
|
|
- let name = attribute.name;
|
|
|
|
- self.mutations.edits.push(RemoveAttribute { name });
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-// When we create new nodes, we need to propagate some information back up the call chain.
|
|
|
|
-// This gives the caller some information on how to handle things like insertins, appending, and subtree discarding.
|
|
|
|
-#[derive(Debug)]
|
|
|
|
-pub struct CreateMeta {
|
|
|
|
- pub is_static: bool,
|
|
|
|
- pub added_to_stack: u32,
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-impl CreateMeta {
|
|
|
|
- fn new(is_static: bool, added_to_tack: u32) -> Self {
|
|
|
|
- Self {
|
|
|
|
- is_static,
|
|
|
|
- added_to_stack: added_to_tack,
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-enum KeyedPrefixResult {
|
|
|
|
- // Fast path: we finished diffing all the children just by looking at the
|
|
|
|
- // prefix of shared keys!
|
|
|
|
- Finished,
|
|
|
|
- // There is more diffing work to do. Here is a count of how many children at
|
|
|
|
- // the beginning of `new` and `old` we already processed.
|
|
|
|
- MoreWorkToDo(usize),
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-fn find_first_real_node<'a>(
|
|
|
|
- nodes: impl IntoIterator<Item = &'a VNode<'a>>,
|
|
|
|
- scopes: &'a SharedResources,
|
|
|
|
-) -> Option<&'a VNode<'a>> {
|
|
|
|
- for node in nodes {
|
|
|
|
- let mut iter = RealChildIterator::new(node, scopes);
|
|
|
|
- if let Some(node) = iter.next() {
|
|
|
|
- return Some(node);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- None
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/// This iterator iterates through a list of virtual children and only returns real children (Elements, Text, Anchors).
|
|
|
|
-///
|
|
|
|
-/// This iterator is useful when it's important to load the next real root onto the top of the stack for operations like
|
|
|
|
-/// "InsertBefore".
|
|
|
|
-pub struct RealChildIterator<'a> {
|
|
|
|
- scopes: &'a SharedResources,
|
|
|
|
-
|
|
|
|
- // Heuristcally we should never bleed into 4 completely nested fragments/components
|
|
|
|
- // Smallvec lets us stack allocate our little stack machine so the vast majority of cases are sane
|
|
|
|
- // TODO: use const generics instead of the 4 estimation
|
|
|
|
- stack: smallvec::SmallVec<[(u16, &'a VNode<'a>); 4]>,
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-impl<'a> RealChildIterator<'a> {
|
|
|
|
- pub fn new(starter: &'a VNode<'a>, scopes: &'a SharedResources) -> Self {
|
|
|
|
- Self {
|
|
|
|
- scopes,
|
|
|
|
- stack: smallvec::smallvec![(0, starter)],
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- // keep the memory around
|
|
|
|
- pub fn reset_with(&mut self, node: &'a VNode<'a>) {
|
|
|
|
- self.stack.clear();
|
|
|
|
- self.stack.push((0, node));
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-impl<'a> Iterator for RealChildIterator<'a> {
|
|
|
|
- type Item = &'a VNode<'a>;
|
|
|
|
-
|
|
|
|
- fn next(&mut self) -> Option<&'a VNode<'a>> {
|
|
|
|
- let mut should_pop = false;
|
|
|
|
- let mut returned_node: Option<&'a VNode<'a>> = None;
|
|
|
|
- let mut should_push = None;
|
|
|
|
-
|
|
|
|
- while returned_node.is_none() {
|
|
|
|
- if let Some((count, node)) = self.stack.last_mut() {
|
|
|
|
- match &node.kind {
|
|
|
|
- // We can only exit our looping when we get "real" nodes
|
|
|
|
- // This includes fragments and components when they're empty (have a single root)
|
|
|
|
- VNodeKind::Element(_) | VNodeKind::Text(_) => {
|
|
|
|
- // We've recursed INTO an element/text
|
|
|
|
- // We need to recurse *out* of it and move forward to the next
|
|
|
|
- should_pop = true;
|
|
|
|
- returned_node = Some(&*node);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // If we get a fragment we push the next child
|
|
|
|
- VNodeKind::Fragment(frag) => {
|
|
|
|
- let subcount = *count as usize;
|
|
|
|
-
|
|
|
|
- if frag.children.len() == 0 {
|
|
|
|
- should_pop = true;
|
|
|
|
- returned_node = Some(&*node);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if subcount >= frag.children.len() {
|
|
|
|
- should_pop = true;
|
|
|
|
- } else {
|
|
|
|
- should_push = Some(&frag.children[subcount]);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- // // If we get a fragment we push the next child
|
|
|
|
- // VNodeKind::Fragment(frag) => {
|
|
|
|
- // let subcount = *count as usize;
|
|
|
|
-
|
|
|
|
- // if frag.children.len() == 0 {
|
|
|
|
- // should_pop = true;
|
|
|
|
- // returned_node = Some(&*node);
|
|
|
|
- // }
|
|
|
|
-
|
|
|
|
- // if subcount >= frag.children.len() {
|
|
|
|
- // should_pop = true;
|
|
|
|
- // } else {
|
|
|
|
- // should_push = Some(&frag.children[subcount]);
|
|
|
|
- // }
|
|
|
|
- // }
|
|
|
|
-
|
|
|
|
- // Immediately abort suspended nodes - can't do anything with them yet
|
|
|
|
- VNodeKind::Suspended(node) => {
|
|
|
|
- // VNodeKind::Suspended => should_pop = true,
|
|
|
|
- todo!()
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- VNodeKind::Anchor(a) => {
|
|
|
|
- todo!()
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // For components, we load their root and push them onto the stack
|
|
|
|
- VNodeKind::Component(sc) => {
|
|
|
|
- let scope =
|
|
|
|
- unsafe { self.scopes.get_scope(sc.ass_scope.get().unwrap()) }.unwrap();
|
|
|
|
- // let scope = self.scopes.get(sc.ass_scope.get().unwrap()).unwrap();
|
|
|
|
-
|
|
|
|
- // Simply swap the current node on the stack with the root of the component
|
|
|
|
- *node = scope.frames.fin_head();
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- } else {
|
|
|
|
- // If there's no more items on the stack, we're done!
|
|
|
|
- return None;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if should_pop {
|
|
|
|
- self.stack.pop();
|
|
|
|
- if let Some((id, _)) = self.stack.last_mut() {
|
|
|
|
- *id += 1;
|
|
|
|
- }
|
|
|
|
- should_pop = false;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if let Some(push) = should_push {
|
|
|
|
- self.stack.push((0, push));
|
|
|
|
- should_push = None;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- returned_node
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-fn compare_strs(a: &str, b: &str) -> bool {
|
|
|
|
- // Check by pointer, optimizing for static strs
|
|
|
|
- if !std::ptr::eq(a, b) {
|
|
|
|
- // If the pointers are different then check by value
|
|
|
|
- a == b
|
|
|
|
- } else {
|
|
|
|
- true
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-struct DfsIterator<'a> {
|
|
|
|
- idx: usize,
|
|
|
|
- node: Option<(&'a VNode<'a>, &'a VNode<'a>)>,
|
|
|
|
- nodes: Option<(&'a [VNode<'a>], &'a [VNode<'a>])>,
|
|
|
|
-}
|
|
|
|
-impl<'a> Iterator for DfsIterator<'a> {
|
|
|
|
- type Item = (&'a VNode<'a>, &'a VNode<'a>);
|
|
|
|
-
|
|
|
|
- fn next(&mut self) -> Option<Self::Item> {
|
|
|
|
- todo!()
|
|
|
|
- }
|
|
|
|
-}
|
|
|