|
@@ -1,4 +1,7 @@
|
|
|
+use std::any::Any;
|
|
|
+
|
|
|
use crate::virtualdom::VirtualDom;
|
|
|
+use crate::{Attribute, AttributeValue, TemplateNode};
|
|
|
|
|
|
use crate::any_props::VComponentProps;
|
|
|
|
|
@@ -13,6 +16,7 @@ use crate::{
|
|
|
nodes::VNode,
|
|
|
scopes::{ScopeId, ScopeState},
|
|
|
};
|
|
|
+use fxhash::{FxHashMap, FxHashSet};
|
|
|
use slab::Slab;
|
|
|
|
|
|
pub struct DirtyScope {
|
|
@@ -20,16 +24,574 @@ pub struct DirtyScope {
|
|
|
id: ScopeId,
|
|
|
}
|
|
|
|
|
|
-impl VirtualDom {
|
|
|
- fn diff_scope<'a>(&'a mut self, mutations: &mut Vec<Mutation<'a>>, scope: ScopeId) {
|
|
|
+impl<'b> VirtualDom {
|
|
|
+ pub fn diff_scope(&mut self, mutations: &mut Vec<Mutation<'b>>, scope: ScopeId) {
|
|
|
let scope_state = &mut self.scopes[scope.0];
|
|
|
}
|
|
|
|
|
|
- fn diff_template<'a>(
|
|
|
- &'a mut self,
|
|
|
- mutations: &mut Vec<Mutation<'a>>,
|
|
|
- left: &VNode,
|
|
|
- right: &VNode,
|
|
|
+ pub fn diff_node(
|
|
|
+ &mut self,
|
|
|
+ muts: &mut Vec<Mutation<'b>>,
|
|
|
+ left_template: &'b VNode<'b>,
|
|
|
+ right_template: &'b VNode<'b>,
|
|
|
+ ) {
|
|
|
+ if left_template.template.id != right_template.template.id {
|
|
|
+ // do a light diff of the roots nodes.
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (_idx, (left_attr, right_attr)) in left_template
|
|
|
+ .dynamic_attrs
|
|
|
+ .iter()
|
|
|
+ .zip(right_template.dynamic_attrs.iter())
|
|
|
+ .enumerate()
|
|
|
+ {
|
|
|
+ debug_assert!(left_attr.name == right_attr.name);
|
|
|
+ debug_assert!(left_attr.value == right_attr.value);
|
|
|
+
|
|
|
+ // Move over the ID from the old to the new
|
|
|
+ right_attr
|
|
|
+ .mounted_element
|
|
|
+ .set(left_attr.mounted_element.get());
|
|
|
+
|
|
|
+ if left_attr.value != right_attr.value {
|
|
|
+ let value = "todo!()";
|
|
|
+ muts.push(Mutation::SetAttribute {
|
|
|
+ id: left_attr.mounted_element.get(),
|
|
|
+ name: left_attr.name,
|
|
|
+ value,
|
|
|
+ });
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ for (idx, (left_node, right_node)) in left_template
|
|
|
+ .dynamic_nodes
|
|
|
+ .iter()
|
|
|
+ .zip(right_template.dynamic_nodes.iter())
|
|
|
+ .enumerate()
|
|
|
+ {
|
|
|
+ #[rustfmt::skip]
|
|
|
+ match (left_node, right_node) {
|
|
|
+ (DynamicNode::Component { props: lprops, .. }, DynamicNode::Component { is_static , props: rprops, .. }) => {
|
|
|
+ let left_props = unsafe { &mut *lprops.get()};
|
|
|
+ let right_props = unsafe { &mut *rprops.get()};
|
|
|
+
|
|
|
+ // Ensure these two props are of the same component type
|
|
|
+ match left_props.as_ptr() == right_props.as_ptr() {
|
|
|
+ true => {
|
|
|
+ //
|
|
|
+
|
|
|
+ if *is_static {
|
|
|
+ let props_are_same = unsafe { left_props.memoize(right_props) };
|
|
|
+
|
|
|
+ if props_are_same{
|
|
|
+ //
|
|
|
+ } else {
|
|
|
+ //
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ },
|
|
|
+ false => todo!(),
|
|
|
+ }
|
|
|
+ //
|
|
|
+ },
|
|
|
+
|
|
|
+ // Make sure to drop the component properly
|
|
|
+ (DynamicNode::Component { .. }, right) => {
|
|
|
+ // remove all the component roots except for the first
|
|
|
+ // replace the first with the new node
|
|
|
+ let m = self.create_dynamic_node(muts, right_template, right, idx);
|
|
|
+ todo!()
|
|
|
+ },
|
|
|
+
|
|
|
+ (DynamicNode::Text { id: lid, value: lvalue }, DynamicNode::Text { id: rid, value: rvalue }) => {
|
|
|
+ rid.set(lid.get());
|
|
|
+ if lvalue != rvalue {
|
|
|
+ muts.push(Mutation::SetText {
|
|
|
+ id: lid.get(),
|
|
|
+ value: rvalue,
|
|
|
+ });
|
|
|
+ }
|
|
|
+ },
|
|
|
+
|
|
|
+ (DynamicNode::Text { id: lid, .. }, right) => {
|
|
|
+ let m = self.create_dynamic_node(muts, right_template, right, idx);
|
|
|
+ muts.push(Mutation::Replace { id: lid.get(), m });
|
|
|
+ }
|
|
|
+
|
|
|
+ (DynamicNode::Placeholder(_), DynamicNode::Placeholder(_)) => todo!(),
|
|
|
+ (DynamicNode::Placeholder(_), _) => todo!(),
|
|
|
+
|
|
|
+
|
|
|
+ (DynamicNode::Fragment (l), DynamicNode::Fragment (r)) => {
|
|
|
+
|
|
|
+
|
|
|
+ // match (old, new) {
|
|
|
+ // ([], []) => rp.set(lp.get()),
|
|
|
+ // ([], _) => {
|
|
|
+ // //
|
|
|
+ // todo!()
|
|
|
+ // },
|
|
|
+ // (_, []) => {
|
|
|
+ // todo!()
|
|
|
+ // },
|
|
|
+ // _ => {
|
|
|
+ // let new_is_keyed = new[0].key.is_some();
|
|
|
+ // let old_is_keyed = old[0].key.is_some();
|
|
|
+
|
|
|
+ // debug_assert!(
|
|
|
+ // new.iter().all(|n| n.key.is_some() == new_is_keyed),
|
|
|
+ // "all siblings must be keyed or all siblings must be non-keyed"
|
|
|
+ // );
|
|
|
+ // debug_assert!(
|
|
|
+ // old.iter().all(|o| o.key.is_some() == old_is_keyed),
|
|
|
+ // "all siblings must be keyed or all siblings must be non-keyed"
|
|
|
+ // );
|
|
|
+
|
|
|
+ // if new_is_keyed && old_is_keyed {
|
|
|
+ // self.diff_keyed_children(muts, old, new);
|
|
|
+ // } else {
|
|
|
+ // self.diff_non_keyed_children(muts, old, new);
|
|
|
+ // }
|
|
|
+ // }
|
|
|
+ // }
|
|
|
+ },
|
|
|
+
|
|
|
+ // Make sure to drop all the fragment children properly
|
|
|
+ (DynamicNode::Fragment { .. }, right) => todo!(),
|
|
|
+ };
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Diff children that are not keyed.
|
|
|
+ //
|
|
|
+ // The parent must be on the top of the change list stack when entering this
|
|
|
+ // function:
|
|
|
+ //
|
|
|
+ // [... parent]
|
|
|
+ //
|
|
|
+ // the change list stack is in the same state when this function returns.
|
|
|
+ fn diff_non_keyed_children(
|
|
|
+ &mut self,
|
|
|
+ muts: &mut Vec<Mutation<'b>>,
|
|
|
+ old: &'b [VNode<'b>],
|
|
|
+ new: &'b [VNode<'b>],
|
|
|
+ ) {
|
|
|
+ use std::cmp::Ordering;
|
|
|
+
|
|
|
+ // Handled these cases in `diff_children` before calling this function.
|
|
|
+ debug_assert!(!new.is_empty());
|
|
|
+ debug_assert!(!old.is_empty());
|
|
|
+
|
|
|
+ match old.len().cmp(&new.len()) {
|
|
|
+ Ordering::Greater => self.remove_nodes(muts, &old[new.len()..]),
|
|
|
+ Ordering::Less => todo!(),
|
|
|
+ // Ordering::Less => self.create_and_insert_after(&new[old.len()..], old.last().unwrap()),
|
|
|
+ Ordering::Equal => {}
|
|
|
+ }
|
|
|
+
|
|
|
+ for (new, old) in new.iter().zip(old.iter()) {
|
|
|
+ self.diff_node(muts, old, new);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Diffing "keyed" children.
|
|
|
+ //
|
|
|
+ // With keyed children, we care about whether we delete, move, or create nodes
|
|
|
+ // versus mutate existing nodes in place. Presumably there is some sort of CSS
|
|
|
+ // transition animation that makes the virtual DOM diffing algorithm
|
|
|
+ // observable. By specifying keys for nodes, we know which virtual DOM nodes
|
|
|
+ // must reuse (or not reuse) the same physical DOM nodes.
|
|
|
+ //
|
|
|
+ // This is loosely based on Inferno's keyed patching implementation. However, we
|
|
|
+ // have to modify the algorithm since we are compiling the diff down into change
|
|
|
+ // list instructions that will be executed later, rather than applying the
|
|
|
+ // changes to the DOM directly as we compare virtual DOMs.
|
|
|
+ //
|
|
|
+ // https://github.com/infernojs/inferno/blob/36fd96/packages/inferno/src/DOM/patching.ts#L530-L739
|
|
|
+ //
|
|
|
+ // The stack is empty upon entry.
|
|
|
+ fn diff_keyed_children(
|
|
|
+ &mut self,
|
|
|
+ muts: &mut Vec<Mutation<'b>>,
|
|
|
+ old: &'b [VNode<'b>],
|
|
|
+ new: &'b [VNode<'b>],
|
|
|
) {
|
|
|
+ // if cfg!(debug_assertions) {
|
|
|
+ // let mut keys = fxhash::FxHashSet::default();
|
|
|
+ // let mut assert_unique_keys = |children: &'b [VNode<'b>]| {
|
|
|
+ // keys.clear();
|
|
|
+ // for child in children {
|
|
|
+ // let key = child.key;
|
|
|
+ // debug_assert!(
|
|
|
+ // key.is_some(),
|
|
|
+ // "if any sibling is keyed, all siblings must be keyed"
|
|
|
+ // );
|
|
|
+ // keys.insert(key);
|
|
|
+ // }
|
|
|
+ // debug_assert_eq!(
|
|
|
+ // children.len(),
|
|
|
+ // keys.len(),
|
|
|
+ // "keyed siblings must each have a unique key"
|
|
|
+ // );
|
|
|
+ // };
|
|
|
+ // assert_unique_keys(old);
|
|
|
+ // assert_unique_keys(new);
|
|
|
+ // }
|
|
|
+
|
|
|
+ // // First up, we diff all the nodes with the same key at the beginning of the
|
|
|
+ // // children.
|
|
|
+ // //
|
|
|
+ // // `shared_prefix_count` is the count of how many nodes at the start of
|
|
|
+ // // `new` and `old` share the same keys.
|
|
|
+ // let (left_offset, right_offset) = match self.diff_keyed_ends(muts, old, new) {
|
|
|
+ // Some(count) => count,
|
|
|
+ // None => return,
|
|
|
+ // };
|
|
|
+
|
|
|
+ // // Ok, we now hopefully have a smaller range of children in the middle
|
|
|
+ // // within which to re-order nodes with the same keys, remove old nodes with
|
|
|
+ // // now-unused keys, and create new nodes with fresh keys.
|
|
|
+
|
|
|
+ // let old_middle = &old[left_offset..(old.len() - right_offset)];
|
|
|
+ // let new_middle = &new[left_offset..(new.len() - right_offset)];
|
|
|
+
|
|
|
+ // debug_assert!(
|
|
|
+ // !((old_middle.len() == new_middle.len()) && old_middle.is_empty()),
|
|
|
+ // "keyed children must have the same number of children"
|
|
|
+ // );
|
|
|
+
|
|
|
+ // if new_middle.is_empty() {
|
|
|
+ // // remove the old elements
|
|
|
+ // self.remove_nodes(muts, old_middle);
|
|
|
+ // } else if old_middle.is_empty() {
|
|
|
+ // // there were no old elements, so just create the new elements
|
|
|
+ // // we need to find the right "foothold" though - we shouldn't use the "append" at all
|
|
|
+ // if left_offset == 0 {
|
|
|
+ // // insert at the beginning of the old list
|
|
|
+ // let foothold = &old[old.len() - right_offset];
|
|
|
+ // self.create_and_insert_before(new_middle, foothold);
|
|
|
+ // } else if right_offset == 0 {
|
|
|
+ // // insert at the end the old list
|
|
|
+ // let foothold = old.last().unwrap();
|
|
|
+ // self.create_and_insert_after(new_middle, foothold);
|
|
|
+ // } else {
|
|
|
+ // // inserting in the middle
|
|
|
+ // let foothold = &old[left_offset - 1];
|
|
|
+ // self.create_and_insert_after(new_middle, foothold);
|
|
|
+ // }
|
|
|
+ // } else {
|
|
|
+ // self.diff_keyed_middle(muts, old_middle, new_middle);
|
|
|
+ // }
|
|
|
+ }
|
|
|
+
|
|
|
+ // /// Diff both ends of the children that share keys.
|
|
|
+ // ///
|
|
|
+ // /// Returns a left offset and right offset of that indicates a smaller section to pass onto the middle diffing.
|
|
|
+ // ///
|
|
|
+ // /// If there is no offset, then this function returns None and the diffing is complete.
|
|
|
+ // fn diff_keyed_ends(
|
|
|
+ // &mut self,
|
|
|
+ // muts: &mut Vec<Mutation<'b>>,
|
|
|
+ // old: &'b [VNode<'b>],
|
|
|
+ // new: &'b [VNode<'b>],
|
|
|
+ // ) -> Option<(usize, usize)> {
|
|
|
+ // let mut left_offset = 0;
|
|
|
+
|
|
|
+ // for (old, new) in old.iter().zip(new.iter()) {
|
|
|
+ // // abort early if we finally run into nodes with different keys
|
|
|
+ // if old.key != new.key {
|
|
|
+ // break;
|
|
|
+ // }
|
|
|
+ // self.diff_node(muts, old, new);
|
|
|
+ // left_offset += 1;
|
|
|
+ // }
|
|
|
+
|
|
|
+ // // If that was all of the old children, then create and append the remaining
|
|
|
+ // // new children and we're finished.
|
|
|
+ // if left_offset == old.len() {
|
|
|
+ // self.create_and_insert_after(&new[left_offset..], old.last().unwrap());
|
|
|
+ // return None;
|
|
|
+ // }
|
|
|
+
|
|
|
+ // // And if that was all of the new children, then remove all of the remaining
|
|
|
+ // // old children and we're finished.
|
|
|
+ // if left_offset == new.len() {
|
|
|
+ // self.remove_nodes(muts, &old[left_offset..]);
|
|
|
+ // return None;
|
|
|
+ // }
|
|
|
+
|
|
|
+ // // if the shared prefix is less than either length, then we need to walk backwards
|
|
|
+ // let mut right_offset = 0;
|
|
|
+ // for (old, new) in old.iter().rev().zip(new.iter().rev()) {
|
|
|
+ // // abort early if we finally run into nodes with different keys
|
|
|
+ // if old.key != new.key {
|
|
|
+ // break;
|
|
|
+ // }
|
|
|
+ // self.diff_node(muts, old, new);
|
|
|
+ // right_offset += 1;
|
|
|
+ // }
|
|
|
+
|
|
|
+ // Some((left_offset, right_offset))
|
|
|
+ // }
|
|
|
+
|
|
|
+ // // The most-general, expensive code path for keyed children diffing.
|
|
|
+ // //
|
|
|
+ // // We find the longest subsequence within `old` of children that are relatively
|
|
|
+ // // ordered the same way in `new` (via finding a longest-increasing-subsequence
|
|
|
+ // // of the old child's index within `new`). The children that are elements of
|
|
|
+ // // this subsequence will remain in place, minimizing the number of DOM moves we
|
|
|
+ // // will have to do.
|
|
|
+ // //
|
|
|
+ // // Upon entry to this function, the change list stack must be empty.
|
|
|
+ // //
|
|
|
+ // // This function will load the appropriate nodes onto the stack and do diffing in place.
|
|
|
+ // //
|
|
|
+ // // Upon exit from this function, it will be restored to that same self.
|
|
|
+ // #[allow(clippy::too_many_lines)]
|
|
|
+ // fn diff_keyed_middle(
|
|
|
+ // &mut self,
|
|
|
+ // muts: &mut Vec<Mutation<'b>>,
|
|
|
+ // old: &'b [VNode<'b>],
|
|
|
+ // new: &'b [VNode<'b>],
|
|
|
+ // ) {
|
|
|
+ // /*
|
|
|
+ // 1. Map the old keys into a numerical ordering based on indices.
|
|
|
+ // 2. Create a map of old key to its index
|
|
|
+ // 3. Map each new key to the old key, carrying over the old index.
|
|
|
+ // - IE if we have ABCD becomes BACD, our sequence would be 1,0,2,3
|
|
|
+ // - if we have ABCD to ABDE, our sequence would be 0,1,3,MAX because E doesn't exist
|
|
|
+
|
|
|
+ // now, we should have a list of integers that indicates where in the old list the new items map to.
|
|
|
+
|
|
|
+ // 4. Compute the LIS of this list
|
|
|
+ // - this indicates the longest list of new children that won't need to be moved.
|
|
|
+
|
|
|
+ // 5. Identify which nodes need to be removed
|
|
|
+ // 6. Identify which nodes will need to be diffed
|
|
|
+
|
|
|
+ // 7. Going along each item in the new list, create it and insert it before the next closest item in the LIS.
|
|
|
+ // - if the item already existed, just move it to the right place.
|
|
|
+
|
|
|
+ // 8. Finally, generate instructions to remove any old children.
|
|
|
+ // 9. Generate instructions to finally diff children that are the same between both
|
|
|
+ // */
|
|
|
+ // // 0. Debug sanity checks
|
|
|
+ // // Should have already diffed the shared-key prefixes and suffixes.
|
|
|
+ // debug_assert_ne!(new.first().map(|i| i.key), old.first().map(|i| i.key));
|
|
|
+ // debug_assert_ne!(new.last().map(|i| i.key), old.last().map(|i| i.key));
|
|
|
+
|
|
|
+ // // 1. Map the old keys into a numerical ordering based on indices.
|
|
|
+ // // 2. Create a map of old key to its index
|
|
|
+ // // IE if the keys were A B C, then we would have (A, 1) (B, 2) (C, 3).
|
|
|
+ // let old_key_to_old_index = old
|
|
|
+ // .iter()
|
|
|
+ // .enumerate()
|
|
|
+ // .map(|(i, o)| (o.key.unwrap(), i))
|
|
|
+ // .collect::<FxHashMap<_, _>>();
|
|
|
+
|
|
|
+ // let mut shared_keys = FxHashSet::default();
|
|
|
+
|
|
|
+ // // 3. Map each new key to the old key, carrying over the old index.
|
|
|
+ // let new_index_to_old_index = new
|
|
|
+ // .iter()
|
|
|
+ // .map(|node| {
|
|
|
+ // let key = node.key.unwrap();
|
|
|
+ // if let Some(&index) = old_key_to_old_index.get(&key) {
|
|
|
+ // shared_keys.insert(key);
|
|
|
+ // index
|
|
|
+ // } else {
|
|
|
+ // u32::MAX as usize
|
|
|
+ // }
|
|
|
+ // })
|
|
|
+ // .collect::<Vec<_>>();
|
|
|
+
|
|
|
+ // // If none of the old keys are reused by the new children, then we remove all the remaining old children and
|
|
|
+ // // create the new children afresh.
|
|
|
+ // if shared_keys.is_empty() {
|
|
|
+ // if let Some(first_old) = old.get(0) {
|
|
|
+ // self.remove_nodes(muts, &old[1..]);
|
|
|
+ // let nodes_created = self.create_children(new);
|
|
|
+ // self.replace_inner(first_old, nodes_created);
|
|
|
+ // } else {
|
|
|
+ // // I think this is wrong - why are we appending?
|
|
|
+ // // only valid of the if there are no trailing elements
|
|
|
+ // self.create_and_append_children(new);
|
|
|
+ // }
|
|
|
+ // return;
|
|
|
+ // }
|
|
|
+
|
|
|
+ // // remove any old children that are not shared
|
|
|
+ // // todo: make this an iterator
|
|
|
+ // for child in old {
|
|
|
+ // let key = child.key.unwrap();
|
|
|
+ // if !shared_keys.contains(&key) {
|
|
|
+ // todo!("remove node");
|
|
|
+ // // self.remove_nodes(muts, [child]);
|
|
|
+ // }
|
|
|
+ // }
|
|
|
+
|
|
|
+ // // 4. Compute the LIS of this list
|
|
|
+ // let mut lis_sequence = Vec::default();
|
|
|
+ // lis_sequence.reserve(new_index_to_old_index.len());
|
|
|
+
|
|
|
+ // let mut predecessors = vec![0; new_index_to_old_index.len()];
|
|
|
+ // let mut starts = vec![0; new_index_to_old_index.len()];
|
|
|
+
|
|
|
+ // longest_increasing_subsequence::lis_with(
|
|
|
+ // &new_index_to_old_index,
|
|
|
+ // &mut lis_sequence,
|
|
|
+ // |a, b| a < b,
|
|
|
+ // &mut predecessors,
|
|
|
+ // &mut starts,
|
|
|
+ // );
|
|
|
+
|
|
|
+ // // the lis comes out backwards, I think. can't quite tell.
|
|
|
+ // lis_sequence.sort_unstable();
|
|
|
+
|
|
|
+ // // if a new node gets u32 max and is at the end, then it might be part of our LIS (because u32 max is a valid LIS)
|
|
|
+ // if lis_sequence.last().map(|f| new_index_to_old_index[*f]) == Some(u32::MAX as usize) {
|
|
|
+ // lis_sequence.pop();
|
|
|
+ // }
|
|
|
+
|
|
|
+ // for idx in &lis_sequence {
|
|
|
+ // self.diff_node(muts, &old[new_index_to_old_index[*idx]], &new[*idx]);
|
|
|
+ // }
|
|
|
+
|
|
|
+ // let mut nodes_created = 0;
|
|
|
+
|
|
|
+ // // add mount instruction for the first items not covered by the lis
|
|
|
+ // let last = *lis_sequence.last().unwrap();
|
|
|
+ // if last < (new.len() - 1) {
|
|
|
+ // for (idx, new_node) in new[(last + 1)..].iter().enumerate() {
|
|
|
+ // let new_idx = idx + last + 1;
|
|
|
+ // let old_index = new_index_to_old_index[new_idx];
|
|
|
+ // if old_index == u32::MAX as usize {
|
|
|
+ // nodes_created += self.create(muts, new_node);
|
|
|
+ // } else {
|
|
|
+ // self.diff_node(muts, &old[old_index], new_node);
|
|
|
+ // nodes_created += self.push_all_real_nodes(new_node);
|
|
|
+ // }
|
|
|
+ // }
|
|
|
+
|
|
|
+ // self.mutations.insert_after(
|
|
|
+ // self.find_last_element(&new[last]).unwrap(),
|
|
|
+ // nodes_created as u32,
|
|
|
+ // );
|
|
|
+ // nodes_created = 0;
|
|
|
+ // }
|
|
|
+
|
|
|
+ // // for each spacing, generate a mount instruction
|
|
|
+ // let mut lis_iter = lis_sequence.iter().rev();
|
|
|
+ // let mut last = *lis_iter.next().unwrap();
|
|
|
+ // for next in lis_iter {
|
|
|
+ // if last - next > 1 {
|
|
|
+ // for (idx, new_node) in new[(next + 1)..last].iter().enumerate() {
|
|
|
+ // let new_idx = idx + next + 1;
|
|
|
+ // let old_index = new_index_to_old_index[new_idx];
|
|
|
+ // if old_index == u32::MAX as usize {
|
|
|
+ // nodes_created += self.create(muts, new_node);
|
|
|
+ // } else {
|
|
|
+ // self.diff_node(muts, &old[old_index], new_node);
|
|
|
+ // nodes_created += self.push_all_real_nodes(new_node);
|
|
|
+ // }
|
|
|
+ // }
|
|
|
+
|
|
|
+ // self.mutations.insert_before(
|
|
|
+ // self.find_first_element(&new[last]).unwrap(),
|
|
|
+ // nodes_created as u32,
|
|
|
+ // );
|
|
|
+
|
|
|
+ // nodes_created = 0;
|
|
|
+ // }
|
|
|
+ // last = *next;
|
|
|
+ // }
|
|
|
+
|
|
|
+ // // add mount instruction for the last items not covered by the lis
|
|
|
+ // let first_lis = *lis_sequence.first().unwrap();
|
|
|
+ // if first_lis > 0 {
|
|
|
+ // for (idx, new_node) in new[..first_lis].iter().enumerate() {
|
|
|
+ // let old_index = new_index_to_old_index[idx];
|
|
|
+ // if old_index == u32::MAX as usize {
|
|
|
+ // nodes_created += self.create_node(new_node);
|
|
|
+ // } else {
|
|
|
+ // self.diff_node(muts, &old[old_index], new_node);
|
|
|
+ // nodes_created += self.push_all_real_nodes(new_node);
|
|
|
+ // }
|
|
|
+ // }
|
|
|
+
|
|
|
+ // self.mutations.insert_before(
|
|
|
+ // self.find_first_element(&new[first_lis]).unwrap(),
|
|
|
+ // nodes_created as u32,
|
|
|
+ // );
|
|
|
+ // }
|
|
|
+ // }
|
|
|
+
|
|
|
+ /// Remove these nodes from the dom
|
|
|
+ /// Wont generate mutations for the inner nodes
|
|
|
+ fn remove_nodes(&mut self, muts: &mut Vec<Mutation<'b>>, nodes: &'b [VNode<'b>]) {
|
|
|
+ //
|
|
|
}
|
|
|
}
|
|
|
+
|
|
|
+// /// Lightly diff the two templates and apply their edits to the dom
|
|
|
+// fn light_diff_template_roots(
|
|
|
+// &'a mut self,
|
|
|
+// mutations: &mut Vec<Mutation<'a>>,
|
|
|
+// left: &VNode,
|
|
|
+// right: &VNode,
|
|
|
+// ) {
|
|
|
+// match right.template.roots.len().cmp(&left.template.roots.len()) {
|
|
|
+// std::cmp::Ordering::Less => {
|
|
|
+// // remove the old nodes at the end
|
|
|
+// }
|
|
|
+// std::cmp::Ordering::Greater => {
|
|
|
+// // add the extra nodes.
|
|
|
+// }
|
|
|
+// std::cmp::Ordering::Equal => {}
|
|
|
+// }
|
|
|
+
|
|
|
+// for (left_node, right_node) in left.template.roots.iter().zip(right.template.roots.iter()) {
|
|
|
+// if let (TemplateNode::Dynamic(lidx), TemplateNode::Dynamic(ridx)) =
|
|
|
+// (left_node, right_node)
|
|
|
+// {
|
|
|
+// let left_node = &left.dynamic_nodes[*lidx];
|
|
|
+// let right_node = &right.dynamic_nodes[*ridx];
|
|
|
+
|
|
|
+// // match (left_node, right_node) {
|
|
|
+// // (
|
|
|
+// // DynamicNode::Component {
|
|
|
+// // name,
|
|
|
+// // can_memoize,
|
|
|
+// // props,
|
|
|
+// // },
|
|
|
+// // DynamicNode::Component {
|
|
|
+// // name,
|
|
|
+// // can_memoize,
|
|
|
+// // props,
|
|
|
+// // },
|
|
|
+// // ) => todo!(),
|
|
|
+// // (
|
|
|
+// // DynamicNode::Component {
|
|
|
+// // name,
|
|
|
+// // can_memoize,
|
|
|
+// // props,
|
|
|
+// // },
|
|
|
+// // DynamicNode::Fragment { children },
|
|
|
+// // ) => todo!(),
|
|
|
+// // (
|
|
|
+// // DynamicNode::Fragment { children },
|
|
|
+// // DynamicNode::Component {
|
|
|
+// // name,
|
|
|
+// // can_memoize,
|
|
|
+// // props,
|
|
|
+// // },
|
|
|
+// // ) => todo!(),
|
|
|
+// // _ => {}
|
|
|
+// // }
|
|
|
+// }
|
|
|
+// }
|
|
|
+// }
|