use proc_macro2::TokenStream; use quote::{quote, ToTokens, TokenStreamExt}; use syn::parse::{Parse, ParseStream}; use syn::spanned::Spanned; use syn::*; pub struct ComponentBody { pub item_fn: ItemFn, } impl Parse for ComponentBody { fn parse(input: ParseStream) -> Result { let item_fn: ItemFn = input.parse()?; validate_component_fn_signature(&item_fn)?; Ok(Self { item_fn }) } } impl ToTokens for ComponentBody { fn to_tokens(&self, tokens: &mut TokenStream) { // https://github.com/DioxusLabs/dioxus/issues/1938 // If there's only one input and the input is `props: Props`, we don't need to generate a props struct // Just attach the non_snake_case attribute to the function // eventually we'll dump this metadata into devtooling that lets us find all these components if self.is_explicit_props_ident() { let comp_fn = &self.item_fn; tokens.append_all(quote! { #[allow(non_snake_case)] #comp_fn }); return; } let comp_fn = self.comp_fn(); // If there's no props declared, we simply omit the props argument // This is basically so you can annotate the App component with #[component] and still be compatible with the // launch signatures that take fn() -> Element let props_struct = match self.item_fn.sig.inputs.is_empty() { // No props declared, so we don't need to generate a props struct true => quote! {}, // Props declared, so we generate a props struct and thatn also attach the doc attributes to it false => { let doc = format!("Properties for the [`{}`] component.", &comp_fn.sig.ident); let props_struct = self.props_struct(); quote! { #[doc = #doc] #props_struct } } }; tokens.append_all(quote! { #props_struct #[allow(non_snake_case)] #comp_fn }); } } impl ComponentBody { // build a new item fn, transforming the original item fn fn comp_fn(&self) -> ItemFn { let ComponentBody { item_fn, .. } = self; let ItemFn { attrs, vis, sig, block, } = item_fn; let Signature { inputs, ident: fn_ident, generics, output: fn_output, asyncness, .. } = sig; let Generics { where_clause, .. } = generics; let (_, ty_generics, _) = generics.split_for_impl(); // We generate a struct with the same name as the component but called `Props` let struct_ident = Ident::new(&format!("{fn_ident}Props"), fn_ident.span()); // We pull in the field names from the original function signature, but need to strip off the mutability let struct_field_names = inputs.iter().filter_map(rebind_mutability); let props_docs = self.props_docs(inputs.iter().skip(1).collect()); // Don't generate the props argument if there are no inputs // This means we need to skip adding the argument to the function signature, and also skip the expanded struct let props_ident = match inputs.is_empty() { true => quote! {}, false => quote! { mut __props: #struct_ident #ty_generics }, }; let expanded_struct = match inputs.is_empty() { true => quote! {}, false => quote! { let #struct_ident { #(#struct_field_names),* } = __props; }, }; parse_quote! { #(#attrs)* #(#props_docs)* #asyncness #vis fn #fn_ident #generics (#props_ident) #fn_output #where_clause { #expanded_struct #block } } } /// Build an associated struct for the props of the component /// /// This will expand to the typed-builder implementation that we have vendored in this crate. /// TODO: don't vendor typed-builder and instead transform the tokens we give it before expansion. /// TODO: cache these tokens since this codegen is rather expensive (lots of tokens) /// /// We try our best to transfer over any declared doc attributes from the original function signature onto the /// props struct fields. fn props_struct(&self) -> ItemStruct { let ItemFn { vis, sig, .. } = &self.item_fn; let Signature { inputs, ident, generics, .. } = sig; let struct_fields = inputs.iter().map(move |f| make_prop_struct_field(f, vis)); let struct_ident = Ident::new(&format!("{ident}Props"), ident.span()); parse_quote! { #[derive(Props, Clone, PartialEq)] #[allow(non_camel_case_types)] #vis struct #struct_ident #generics { #(#struct_fields),* } } } /// Convert a list of function arguments into a list of doc attributes for the props struct /// /// This lets us generate set of attributes that we can apply to the props struct to give it a nice docstring. fn props_docs(&self, inputs: Vec<&FnArg>) -> Vec { let fn_ident = &self.item_fn.sig.ident; if inputs.len() <= 1 { return Vec::new(); } let arg_docs = inputs .iter() .filter_map(|f| build_doc_fields(f)) .collect::>(); let mut props_docs = Vec::with_capacity(5); let props_def_link = fn_ident.to_string() + "Props"; let header = format!("# Props\n*For details, see the [props struct definition]({props_def_link}).*"); props_docs.push(parse_quote! { #[doc = #header] }); for arg in arg_docs { let DocField { arg_name, arg_type, deprecation, input_arg_doc, } = arg; let arg_name = arg_name.into_token_stream().to_string(); let arg_type = crate::utils::format_type_string(arg_type); let input_arg_doc = keep_up_to_n_consecutive_chars(input_arg_doc.trim(), 2, '\n') .replace("\n\n", "

"); let prop_def_link = format!("{props_def_link}::{arg_name}"); let mut arg_doc = format!("- [`{arg_name}`]({prop_def_link}) : `{arg_type}`"); if let Some(deprecation) = deprecation { arg_doc.push_str("

👎 Deprecated"); if let Some(since) = deprecation.since { arg_doc.push_str(&format!(" since {since}")); } if let Some(note) = deprecation.note { let note = keep_up_to_n_consecutive_chars(¬e, 1, '\n').replace('\n', " "); let note = keep_up_to_n_consecutive_chars(¬e, 1, '\t').replace('\t', " "); arg_doc.push_str(&format!(": {note}")); } arg_doc.push_str("

"); if !input_arg_doc.is_empty() { arg_doc.push_str("
"); } } if !input_arg_doc.is_empty() { arg_doc.push_str(&format!("

{input_arg_doc}

")); } props_docs.push(parse_quote! { #[doc = #arg_doc] }); } props_docs } fn is_explicit_props_ident(&self) -> bool { if self.item_fn.sig.inputs.len() == 1 { if let FnArg::Typed(PatType { pat, .. }) = &self.item_fn.sig.inputs[0] { if let Pat::Ident(ident) = pat.as_ref() { return ident.ident == "props"; } } } false } } struct DocField<'a> { arg_name: &'a Pat, arg_type: &'a Type, deprecation: Option, input_arg_doc: String, } fn build_doc_fields(f: &FnArg) -> Option { let FnArg::Typed(pt) = f else { unreachable!() }; let arg_doc = pt .attrs .iter() .filter_map(|attr| { // TODO: Error reporting // Check if the path of the attribute is "doc" if !is_attr_doc(attr) { return None; }; let Meta::NameValue(meta_name_value) = &attr.meta else { return None; }; let Expr::Lit(doc_lit) = &meta_name_value.value else { return None; }; let Lit::Str(doc_lit_str) = &doc_lit.lit else { return None; }; Some(doc_lit_str.value()) }) .fold(String::new(), |mut doc, next_doc_line| { doc.push('\n'); doc.push_str(&next_doc_line); doc }); Some(DocField { arg_name: &pt.pat, arg_type: &pt.ty, deprecation: pt.attrs.iter().find_map(|attr| { if attr.path() != &parse_quote!(deprecated) { return None; } let res = crate::utils::DeprecatedAttribute::from_meta(&attr.meta); match res { Err(e) => panic!("{}", e.to_string()), Ok(v) => Some(v), } }), input_arg_doc: arg_doc, }) } fn validate_component_fn_signature(item_fn: &ItemFn) -> Result<()> { // Do some validation.... // 1. Ensure the component returns *something* if item_fn.sig.output == ReturnType::Default { return Err(Error::new( item_fn.sig.output.span(), "Must return a ".to_string(), )); } // 2. make sure there's no lifetimes on the component - we don't know how to handle those if item_fn.sig.generics.lifetimes().count() > 0 { return Err(Error::new( item_fn.sig.generics.span(), "Lifetimes are not supported in components".to_string(), )); } // 3. we can't handle async components if item_fn.sig.asyncness.is_some() { return Err(Error::new( item_fn.sig.asyncness.span(), "Async components are not supported".to_string(), )); } // 4. we can't handle const components if item_fn.sig.constness.is_some() { return Err(Error::new( item_fn.sig.constness.span(), "Const components are not supported".to_string(), )); } // 5. no receiver parameters if item_fn .sig .inputs .iter() .any(|f| matches!(f, FnArg::Receiver(_))) { return Err(Error::new( item_fn.sig.inputs.span(), "Receiver parameters are not supported".to_string(), )); } Ok(()) } /// Convert a function arg with a given visibility (provided by the function) and then generate a field for the /// associated props struct. fn make_prop_struct_field(f: &FnArg, vis: &Visibility) -> TokenStream { // There's no receivers (&self) allowed in the component body let FnArg::Typed(pt) = f else { unreachable!() }; let arg_pat = match pt.pat.as_ref() { // rip off mutability // todo: we actually don't want any of the extra bits of the field pattern Pat::Ident(f) => { let mut f = f.clone(); f.mutability = None; quote! { #f } } a => quote! { #a }, }; let PatType { attrs, ty, colon_token, .. } = pt; quote! { #(#attrs)* #vis #arg_pat #colon_token #ty } } fn rebind_mutability(f: &FnArg) -> Option { // There's no receivers (&self) allowed in the component body let FnArg::Typed(pt) = f else { unreachable!() }; let pat = &pt.pat; let mut pat = pat.clone(); // rip off mutability, but still write it out eventually if let Pat::Ident(ref mut pat_ident) = pat.as_mut() { pat_ident.mutability = None; } Some(quote!(mut #pat)) } /// Checks if the attribute is a `#[doc]` attribute. fn is_attr_doc(attr: &Attribute) -> bool { attr.path() == &parse_quote!(doc) } fn keep_up_to_n_consecutive_chars( input: &str, n_of_consecutive_chars_allowed: usize, target_char: char, ) -> String { let mut output = String::new(); let mut prev_char: Option = None; let mut consecutive_count = 0; for c in input.chars() { match prev_char { Some(prev) if c == target_char && prev == target_char => { if consecutive_count < n_of_consecutive_chars_allowed { output.push(c); consecutive_count += 1; } } _ => { output.push(c); prev_char = Some(c); consecutive_count = 1; } } } output }