Main topics covered here:
All components in Dioxus are backed by something called the Scope
. As a user, you will never directly interact with the Scope
as most calls are shuttled through Context
. Scopes manage all the internal state for components including hooks, bump arenas, and (unsafe!) lifetime management.
Whenever a new component is created from within a user's component, a new "caller" closure is created that captures the component's properties. In contrast to Yew, we allow components to borrow from their parents, provided their memo
(essentially canComponentUpdate) method returns false for non-static items. The Props
macro figures this out automatically, and implements the Properties
trait with the correct canComponentUpdate
flag. Implementing this method manually is unsafe! With the Props
macro you can manually disable memoization, but cannot manually enable memoization for non 'static properties structs without invoking unsafe. For 99% of cases, this is fine.
During diffing, the "caller" closure is updated if the props are not `static. This is very important! If the props change, the old version will be referencing stale data that exists in an "old" bump frame. However, if we cycled the bump frames twice without updating the closure, then the props will point to invalid data and cause memory safety issues. Therefore, it's an invariant to ensure that non-'static Props are always updated during diffing.
Hooks are a form of state that's slightly more finicky than structs but more extensible overall. Hooks cannot be used in conditionals, but are portable enough to run on most targets.
The Dioxus hook model uses a Bump arena where user's data lives.
Initializing hooks:
Running hooks:
Dropping hooks:
The entire diffing logic for Dioxus lives in one file (diff.rs). Diffing in Dioxus is hyper-optimized for the types of structures generated by the rsx! and html! macros.
The diffing engine in Dioxus expects the RealDom
Dioxus uses patches - not imperative methods - to modify the real dom. This speeds up the diffing operation and makes diffing cancelable which is useful for cooperative scheduling. In general, the RealDom trait exists so renderers can share "Node pointers" across runtime boundaries.
There are no contractual obligations between the VirtualDOM and RealDOM. When the VirtualDOM finishes its work, it releases a Vec of Edits (patches) which the RealDOM can use to update itself.
When an EventTrigger enters the queue and "progress" is called (an async function), Dioxus will get to work running scopes and diffing nodes. Scopes are run and nodes are diffed together. Dioxus records which scopes get diffed to track the progress of its work.
While descending through the stack frame, Dioxus will query the RealDom for "time remaining." When the time runs out, Dioxus will escape the stack frame by queuing whatever work it didn't get to, and then bubbling up out of "diff_node". Dioxus will also bubble out of "diff_node" if more important work gets queued while it was descending.
Once bubbled out of diff_node, Dioxus will request the next idle callback and await for it to become available. The return of this callback is a "Deadline" object which Dioxus queries through the RealDom.
All of this is orchestrated to keep high priority events moving through the VirtualDOM and scheduling lower-priority work around the RealDOM's animations and periodic tasks.
// returns a "deadline" object
function idle() {
return new Promise(resolve => requestIdleCallback(resolve));
}
In React, "suspense" is the ability render nodes outside of the traditional lifecycle. React will wait on a future to complete, and once the data is ready, will render those nodes. React's version of suspense is designed to make working with promises in components easier.
In Dioxus, we have similar philosophy, but the use and details of suspense is slightly different. For starters, we don't currently allow using futures in the element structure. Technically, we can allow futures - and we do with "Signals" - but the "suspense" feature itself is meant to be self-contained within a single component. This forces you to handle all the loading states within your component, instead of outside the component, keeping things a bit more containerized.
Internally, the flow of suspense works like this:
/* Welcome to Dioxus's cooperative, priority-based scheduler.
I hope you enjoy your stay.
Some essential reading:
Dioxus is a framework for "user experience" - not just "user interfaces." Part of the "experience" is keeping the UI snappy and "jank free" even under heavy work loads. Dioxus already has the "speed" part figured out - but there's no point in being "fast" if you can't also be "responsive."
As such, Dioxus can manually decide on what work is most important at any given moment in time. With a properly tuned priority system, Dioxus can ensure that user interaction is prioritized and committed as soon as possible (sub 100ms). The controller responsible for this priority management is called the "scheduler" and is responsible for juggling many different types of work simultaneously.
Per the RAIL guide, we want to make sure that A) inputs are handled ASAP and B) animations are not blocked. React-three-fiber is a testament to how amazing this can be - a ThreeJS scene is threaded in between work periods of React, and the UI still stays snappy!
While it's straightforward to run code ASAP and be as "fast as possible", what's not not straightforward is how to do this while not blocking the main thread. The current prevailing thought is to stop working periodically so the browser has time to paint and run animations. When the browser is finished, we can step in and continue our work.
React-Fiber uses the "Fiber" concept to achieve a pause-resume functionality. This is worth reading up on, but not necessary to understand what we're doing here. In Dioxus, our DiffMachine is guided by DiffInstructions - essentially "commands" that guide the Diffing algorithm through the tree. Our "diff_scope" method is async - we can literally pause our DiffMachine "mid-sentence" (so to speak) by just stopping the poll on the future. The DiffMachine periodically yields so Rust's async machinery can take over, allowing us to customize when exactly to pause it.
React's "should_yield" method is more complex than ours, and I assume we'll move in that direction as Dioxus matures. For now, Dioxus just assumes a TimeoutFuture, and selects! on both the Diff algorithm and timeout. If the DiffMachine finishes before the timeout, then Dioxus will work on any pending work in the interim. If there is no pending work, then the changes are committed, and coroutines are polled during the idle period. However, if the timeout expires, then the DiffMachine future is paused and saved (self-referentially).
So far, we've been able to thread our Dioxus work between animation frames - the main thread is not blocked! But that doesn't help us under load. How do we still stay snappy... even if we're doing a lot of work? Well, that's where priorities come into play. The goal with priorities is to schedule shorter work as a "high" priority and longer work as a "lower" priority. That way, we can interrupt long-running low-priority work with short-running high-priority work.
React's priority system is quite complex.
There are 5 levels of priority and 2 distinctions between UI events (discrete, continuous). I believe React really only uses 3 priority levels and "idle" priority isn't used... Regardless, there's some batching going on.
For Dioxus, we're going with a 4 tier priority system:
In "Sync" state, we abort our "idle wait" future, and resolve the sync queue immediately and escape. Because we completed work before the next rAF, any edits can be immediately processed before the frame ends. Generally though, we want to leave as much time to rAF as possible. "Sync" is currently only used by onInput - we'll leave some docs telling people not to do anything too arduous from onInput.
For the rest, we defer to the rIC period and work down each queue from high to low. */