123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779 |
- //! # VirtualDOM Implementation for Rust
- //!
- //! This module provides the primary mechanics to create a hook-based, concurrent VDOM for Rust.
- use crate::innerlude::*;
- use futures_channel::mpsc::{UnboundedReceiver, UnboundedSender};
- use futures_util::{Future, StreamExt};
- use fxhash::FxHashSet;
- use indexmap::IndexSet;
- use smallvec::SmallVec;
- use std::{any::Any, collections::VecDeque, pin::Pin, sync::Arc, task::Poll};
- /// A virtual node s ystem that progresses user events and diffs UI trees.
- ///
- ///
- /// ## Guide
- ///
- /// Components are defined as simple functions that take [`Context`] and a [`Properties`] type and return an [`Element`].
- ///
- /// ```rust, ignore
- /// #[derive(Props, PartialEq)]
- /// struct AppProps {
- /// title: String
- /// }
- ///
- /// fn App(cx: Context, props: &AppProps) -> Element {
- /// cx.render(rsx!(
- /// div {"hello, {props.title}"}
- /// ))
- /// }
- /// ```
- ///
- /// Components may be composed to make complex apps.
- ///
- /// ```rust, ignore
- /// fn App(cx: Context, props: &AppProps) -> Element {
- /// cx.render(rsx!(
- /// NavBar { routes: ROUTES }
- /// Title { "{props.title}" }
- /// Footer {}
- /// ))
- /// }
- /// ```
- ///
- /// To start an app, create a [`VirtualDom`] and call [`VirtualDom::rebuild`] to get the list of edits required to
- /// draw the UI.
- ///
- /// ```rust, ignore
- /// let mut vdom = VirtualDom::new(App);
- /// let edits = vdom.rebuild();
- /// ```
- ///
- /// To inject UserEvents into the VirtualDom, call [`VirtualDom::get_scheduler_channel`] to get access to the scheduler.
- ///
- /// ```rust, ignore
- /// let channel = vdom.get_scheduler_channel();
- /// channel.send_unbounded(SchedulerMsg::UserEvent(UserEvent {
- /// // ...
- /// }))
- /// ```
- ///
- /// While waiting for UserEvents to occur, call [`VirtualDom::wait_for_work`] to poll any futures inside the VirtualDom.
- ///
- /// ```rust, ignore
- /// vdom.wait_for_work().await;
- /// ```
- ///
- /// Once work is ready, call [`VirtualDom::work_with_deadline`] to compute the differences between the previous and
- /// current UI trees. This will return a [`Mutations`] object that contains Edits, Effects, and NodeRefs that need to be
- /// handled by the renderer.
- ///
- /// ```rust, ignore
- /// let mutations = vdom.work_with_deadline(|| false);
- /// for edit in mutations {
- /// apply(edit);
- /// }
- /// ```
- ///
- /// ## Building an event loop around Dioxus:
- ///
- /// Putting everything together, you can build an event loop around Dioxus by using the methods outlined above.
- ///
- /// ```rust, ignore
- /// fn App(cx: Context, props: &()) -> Element {
- /// cx.render(rsx!{
- /// div { "Hello World" }
- /// })
- /// }
- ///
- /// async fn main() {
- /// let mut dom = VirtualDom::new(App);
- ///
- /// let mut inital_edits = dom.rebuild();
- /// apply_edits(inital_edits);
- ///
- /// loop {
- /// dom.wait_for_work().await;
- /// let frame_timeout = TimeoutFuture::new(Duration::from_millis(16));
- /// let deadline = || (&mut frame_timeout).now_or_never();
- /// let edits = dom.run_with_deadline(deadline).await;
- /// apply_edits(edits);
- /// }
- /// }
- /// ```
- pub struct VirtualDom {
- base_scope: ScopeId,
- // it's stored here so the props are dropped when the VirtualDom is dropped
- _root_caller: Box<dyn for<'r> Fn(&'r ScopeState) -> Element<'r> + 'static>,
- scopes: Box<ScopeArena>,
- receiver: UnboundedReceiver<SchedulerMsg>,
- sender: UnboundedSender<SchedulerMsg>,
- pending_messages: VecDeque<SchedulerMsg>,
- dirty_scopes: IndexSet<ScopeId>,
- }
- // Methods to create the VirtualDom
- impl VirtualDom {
- /// Create a new VirtualDOM with a component that does not have special props.
- ///
- /// # Description
- ///
- /// Later, the props can be updated by calling "update" with a new set of props, causing a set of re-renders.
- ///
- /// This is useful when a component tree can be driven by external state (IE SSR) but it would be too expensive
- /// to toss out the entire tree.
- ///
- ///
- /// # Example
- /// ```rust, ignore
- /// fn Example(cx: Scope<()>) -> Element {
- /// cx.render(rsx!( div { "hello world" } ))
- /// }
- ///
- /// let dom = VirtualDom::new(Example);
- /// ```
- ///
- /// Note: the VirtualDOM is not progressed, you must either "run_with_deadline" or use "rebuild" to progress it.
- pub fn new(root: Component<()>) -> Self {
- Self::new_with_props(root, ())
- }
- /// Create a new VirtualDOM with the given properties for the root component.
- ///
- /// # Description
- ///
- /// Later, the props can be updated by calling "update" with a new set of props, causing a set of re-renders.
- ///
- /// This is useful when a component tree can be driven by external state (IE SSR) but it would be too expensive
- /// to toss out the entire tree.
- ///
- ///
- /// # Example
- /// ```rust, ignore
- /// #[derive(PartialEq, Props)]
- /// struct SomeProps {
- /// name: &'static str
- /// }
- ///
- /// fn Example(cx: Scope<SomeProps>) -> Element {
- /// cx.render(rsx!{ div{ "hello {cx.props.name}" } })
- /// }
- ///
- /// let dom = VirtualDom::new(Example);
- /// ```
- ///
- /// Note: the VirtualDOM is not progressed on creation. You must either "run_with_deadline" or use "rebuild" to progress it.
- ///
- /// ```rust, ignore
- /// let mut dom = VirtualDom::new_with_props(Example, SomeProps { name: "jane" });
- /// let mutations = dom.rebuild();
- /// ```
- pub fn new_with_props<P: 'static>(root: Component<P>, root_props: P) -> Self {
- let (sender, receiver) = futures_channel::mpsc::unbounded::<SchedulerMsg>();
- Self::new_with_props_and_scheduler(root, root_props, sender, receiver)
- }
- /// Launch the VirtualDom, but provide your own channel for receiving and sending messages into the scheduler
- ///
- /// This is useful when the VirtualDom must be driven from outside a thread and it doesn't make sense to wait for the
- /// VirtualDom to be created just to retrieve its channel receiver.
- ///
- /// ```rust
- /// let (sender, receiver) = futures_channel::mpsc::unbounded();
- /// let dom = VirtualDom::new_with_scheduler(Example, (), sender, receiver);
- /// ```
- pub fn new_with_props_and_scheduler<P: 'static>(
- root: Component<P>,
- root_props: P,
- sender: UnboundedSender<SchedulerMsg>,
- receiver: UnboundedReceiver<SchedulerMsg>,
- ) -> Self {
- // move these two things onto the heap so we have stable ptrs
- let scopes = Box::new(ScopeArena::new(sender.clone()));
- let root_props = Box::new(root_props);
- // create the root caller which will properly drop its props when the VirtualDom is dropped
- let mut _root_caller: Box<dyn for<'r> Fn(&'r ScopeState) -> Element<'r> + 'static> =
- Box::new(move |scope: &ScopeState| -> Element {
- // Safety: The props at this pointer can never be moved.
- // Also, this closure will never be ran when the VirtualDom is destroyed.
- // This is where the root lifetime of the VirtualDom originates.
- let props: *const P = root_props.as_ref();
- let props = unsafe { &*props };
- root(Scope { scope, props })
- });
- // safety: the raw pointer is aliased or used after this point.
- let caller: *mut dyn Fn(&ScopeState) -> Element = _root_caller.as_mut();
- let base_scope = scopes.new_with_key(root as _, caller, None, ElementId(0), 0, 0);
- let mut dirty_scopes = IndexSet::new();
- dirty_scopes.insert(base_scope);
- // todo: add a pending message to the scheduler to start the scheduler?
- let pending_messages = VecDeque::new();
- Self {
- scopes,
- base_scope,
- receiver,
- _root_caller,
- pending_messages,
- dirty_scopes,
- sender,
- }
- }
- /// Get the [`Scope`] for the root component.
- ///
- /// This is useful for traversing the tree from the root for heuristics or alternsative renderers that use Dioxus
- /// directly.
- ///
- /// # Example
- pub fn base_scope(&self) -> &ScopeState {
- self.get_scope(self.base_scope).unwrap()
- }
- /// Get the [`ScopeState`] for a component given its [`ScopeId`]
- ///
- /// # Example
- ///
- ///
- ///
- pub fn get_scope<'a>(&'a self, id: ScopeId) -> Option<&'a ScopeState> {
- self.scopes.get_scope(id)
- }
- /// Get an [`UnboundedSender`] handle to the channel used by the scheduler.
- ///
- /// # Example
- ///
- /// ```rust, ignore
- /// let dom = VirtualDom::new(App);
- /// let sender = dom.get_scheduler_channel();
- /// ```
- pub fn get_scheduler_channel(&self) -> futures_channel::mpsc::UnboundedSender<SchedulerMsg> {
- self.sender.clone()
- }
- /// Add a new message to the scheduler queue directly.
- ///
- ///
- /// This method makes it possible to send messages to the scheduler from outside the VirtualDom without having to
- /// call `get_schedule_channel` and then `send`.
- ///
- /// # Example
- /// ```rust, ignore
- /// let dom = VirtualDom::new(App);
- /// dom.insert_scheduler_message(SchedulerMsg::Immediate(ScopeId(0)));
- /// ```
- pub fn insert_scheduler_message(&self, msg: SchedulerMsg) {
- self.sender.unbounded_send(msg).unwrap()
- }
- /// Check if the [`VirtualDom`] has any pending updates or work to be done.
- ///
- /// # Example
- ///
- /// ```rust, ignore
- /// let dom = VirtualDom::new(App);
- ///
- /// // the dom is "dirty" when it is started and must be rebuilt to get the first render
- /// assert!(dom.has_any_work());
- /// ```
- pub fn has_work(&self) -> bool {
- !(self.dirty_scopes.is_empty() && self.pending_messages.is_empty())
- }
- /// Wait for the scheduler to have any work.
- ///
- /// This method polls the internal future queue *and* the scheduler channel.
- /// To add work to the VirtualDom, insert a message via the scheduler channel.
- ///
- /// This lets us poll async tasks during idle periods without blocking the main thread.
- ///
- /// # Example
- ///
- /// ```rust, ignore
- /// let dom = VirtualDom::new(App);
- /// let sender = dom.get_scheduler_channel();
- /// ```
- pub async fn wait_for_work(&mut self) {
- loop {
- if !self.dirty_scopes.is_empty() && self.pending_messages.is_empty() {
- break;
- }
- if self.pending_messages.is_empty() {
- if self.scopes.pending_futures.borrow().is_empty() {
- self.pending_messages
- .push_front(self.receiver.next().await.unwrap());
- } else {
- use futures_util::future::{select, Either};
- match select(PollTasks(&mut self.scopes), self.receiver.next()).await {
- Either::Left((_, _)) => {}
- Either::Right((msg, _)) => self.pending_messages.push_front(msg.unwrap()),
- }
- }
- }
- while let Ok(Some(msg)) = self.receiver.try_next() {
- self.pending_messages.push_front(msg);
- }
- if let Some(msg) = self.pending_messages.pop_back() {
- match msg {
- // just keep looping, the task is now saved but we should actually poll it
- SchedulerMsg::NewTask(id) => {
- self.scopes.pending_futures.borrow_mut().insert(id);
- }
- SchedulerMsg::UiEvent(event) => {
- if let Some(element) = event.element {
- self.scopes.call_listener_with_bubbling(event, element);
- }
- }
- SchedulerMsg::Immediate(s) => {
- self.dirty_scopes.insert(s);
- }
- }
- }
- }
- }
- /// Run the virtualdom with a deadline.
- ///
- /// This method will perform any outstanding diffing work and try to return as many mutations as possible before the
- /// deadline is reached. This method accepts a closure that returns `true` if the deadline has been reached. To wrap
- /// your future into a deadline, consider the `now_or_never` method from `future_utils`.
- ///
- /// ```rust, ignore
- /// let mut vdom = VirtualDom::new(App);
- ///
- /// let timeout = TimeoutFuture::from_ms(16);
- /// let deadline = || (&mut timeout).now_or_never();
- ///
- /// let mutations = vdom.work_with_deadline(deadline);
- /// ```
- ///
- /// This method is useful when needing to schedule the virtualdom around other tasks on the main thread to prevent
- /// "jank". It will try to finish whatever work it has by the deadline to free up time for other work.
- ///
- /// If the work is not finished by the deadline, Dioxus will store it for later and return when work_with_deadline
- /// is called again. This means you can ensure some level of free time on the VirtualDom's thread during the work phase.
- ///
- /// For use in the web, it is expected that this method will be called to be executed during "idle times" and the
- /// mutations to be applied during the "paint times" IE "animation frames". With this strategy, it is possible to craft
- /// entirely jank-free applications that perform a ton of work.
- ///
- /// In general use, Dioxus is plenty fast enough to not need to worry about this.
- ///
- /// # Example
- ///
- /// ```rust, ignore
- /// fn App(cx: Context, props: &()) -> Element {
- /// cx.render(rsx!( div {"hello"} ))
- /// }
- ///
- /// let mut dom = VirtualDom::new(App);
- ///
- /// loop {
- /// let mut timeout = TimeoutFuture::from_ms(16);
- /// let deadline = move || (&mut timeout).now_or_never();
- ///
- /// let mutations = dom.run_with_deadline(deadline).await;
- ///
- /// apply_mutations(mutations);
- /// }
- /// ```
- pub fn work_with_deadline(&mut self, mut deadline: impl FnMut() -> bool) -> Vec<Mutations> {
- let mut committed_mutations = vec![];
- while !self.dirty_scopes.is_empty() {
- let scopes = &self.scopes;
- let mut diff_state = DiffState::new(scopes);
- let mut ran_scopes = FxHashSet::default();
- // Sort the scopes by height. Theoretically, we'll de-duplicate scopes by height
- self.dirty_scopes
- .retain(|id| scopes.get_scope(*id).is_some());
- self.dirty_scopes.sort_by(|a, b| {
- let h1 = scopes.get_scope(*a).unwrap().height;
- let h2 = scopes.get_scope(*b).unwrap().height;
- h1.cmp(&h2).reverse()
- });
- if let Some(scopeid) = self.dirty_scopes.pop() {
- if !ran_scopes.contains(&scopeid) {
- ran_scopes.insert(scopeid);
- if self.scopes.run_scope(scopeid) {
- let (old, new) =
- (self.scopes.wip_head(scopeid), self.scopes.fin_head(scopeid));
- diff_state.stack.push(DiffInstruction::Diff { new, old });
- diff_state.stack.scope_stack.push(scopeid);
- let scope = scopes.get_scope(scopeid).unwrap();
- diff_state.stack.element_stack.push(scope.container);
- }
- }
- }
- if diff_state.work(&mut deadline) {
- let DiffState { mutations, .. } = diff_state;
- for scope in &mutations.dirty_scopes {
- self.dirty_scopes.remove(scope);
- }
- committed_mutations.push(mutations);
- } else {
- // leave the work in an incomplete state
- //
- // todo: we should store the edits and re-apply them later
- // for now, we just dump the work completely (threadsafe)
- return committed_mutations;
- }
- }
- committed_mutations
- }
- /// Performs a *full* rebuild of the virtual dom, returning every edit required to generate the actual dom from scratch.
- ///
- /// The diff machine expects the RealDom's stack to be the root of the application.
- ///
- /// Tasks will not be polled with this method, nor will any events be processed from the event queue. Instead, the
- /// root component will be ran once and then diffed. All updates will flow out as mutations.
- ///
- /// All state stored in components will be completely wiped away.
- ///
- /// # Example
- /// ```rust, ignore
- /// static App: FC<()> = |cx, props| cx.render(rsx!{ "hello world" });
- /// let mut dom = VirtualDom::new();
- /// let edits = dom.rebuild();
- ///
- /// apply_edits(edits);
- /// ```
- pub fn rebuild(&mut self) -> Mutations {
- let mut diff_state = DiffState::new(&self.scopes);
- let scope_id = self.base_scope;
- if self.scopes.run_scope(scope_id) {
- diff_state
- .stack
- .create_node(self.scopes.fin_head(scope_id), MountType::Append);
- diff_state.stack.element_stack.push(ElementId(0));
- diff_state.stack.scope_stack.push(scope_id);
- diff_state.work(|| false);
- }
- diff_state.mutations
- }
- /// Compute a manual diff of the VirtualDOM between states.
- ///
- /// This can be useful when state inside the DOM is remotely changed from the outside, but not propagated as an event.
- ///
- /// In this case, every component will be diffed, even if their props are memoized. This method is intended to be used
- /// to force an update of the DOM when the state of the app is changed outside of the app.
- ///
- /// # Example
- /// ```rust, ignore
- /// #[derive(PartialEq, Props)]
- /// struct AppProps {
- /// value: Shared<&'static str>,
- /// }
- ///
- /// static App: FC<AppProps> = |cx, props|{
- /// let val = cx.value.borrow();
- /// cx.render(rsx! { div { "{val}" } })
- /// };
- ///
- /// let value = Rc::new(RefCell::new("Hello"));
- /// let mut dom = VirtualDom::new_with_props(App, AppProps { value: value.clone(), });
- ///
- /// let _ = dom.rebuild();
- ///
- /// *value.borrow_mut() = "goodbye";
- ///
- /// let edits = dom.diff();
- /// ```
- pub fn hard_diff<'a>(&'a mut self, scope_id: ScopeId) -> Option<Mutations<'a>> {
- let mut diff_machine = DiffState::new(&self.scopes);
- if self.scopes.run_scope(scope_id) {
- diff_machine.force_diff = true;
- diff_machine.diff_scope(scope_id);
- }
- Some(diff_machine.mutations)
- }
- /// Renders an `rsx` call into the Base Scope's allocator.
- ///
- /// Useful when needing to render nodes from outside the VirtualDom, such as in a test.
- ///
- /// ```rust
- /// fn Base(cx: Context, props: &()) -> Element {
- /// rsx!(cx, div {})
- /// }
- ///
- /// let dom = VirtualDom::new(Base);
- /// let nodes = dom.render_nodes(rsx!("div"));
- /// ```
- pub fn render_vnodes<'a>(&'a self, lazy_nodes: Option<LazyNodes<'a, '_>>) -> &'a VNode<'a> {
- let scope = self.scopes.get_scope(self.base_scope).unwrap();
- let frame = scope.wip_frame();
- let factory = NodeFactory { bump: &frame.bump };
- let node = lazy_nodes.unwrap().call(factory);
- frame.bump.alloc(node)
- }
- /// Renders an `rsx` call into the Base Scope's allocator.
- ///
- /// Useful when needing to render nodes from outside the VirtualDom, such as in a test.
- ///
- /// ```rust
- /// fn Base(cx: Context, props: &()) -> Element {
- /// rsx!(cx, div {})
- /// }
- ///
- /// let dom = VirtualDom::new(Base);
- /// let nodes = dom.render_nodes(rsx!("div"));
- /// ```
- pub fn diff_vnodes<'a>(&'a self, old: &'a VNode<'a>, new: &'a VNode<'a>) -> Mutations<'a> {
- let mut machine = DiffState::new(&self.scopes);
- machine.stack.push(DiffInstruction::Diff { new, old });
- machine.stack.element_stack.push(ElementId(0));
- machine.stack.scope_stack.push(self.base_scope);
- machine.work(|| false);
- machine.mutations
- }
- /// Renders an `rsx` call into the Base Scope's allocator.
- ///
- /// Useful when needing to render nodes from outside the VirtualDom, such as in a test.
- ///
- ///
- /// ```rust
- /// fn Base(cx: Context, props: &()) -> Element {
- /// rsx!(cx, div {})
- /// }
- ///
- /// let dom = VirtualDom::new(Base);
- /// let nodes = dom.render_nodes(rsx!("div"));
- /// ```
- pub fn create_vnodes<'a>(&'a self, left: Option<LazyNodes<'a, '_>>) -> Mutations<'a> {
- let nodes = self.render_vnodes(left);
- let mut machine = DiffState::new(&self.scopes);
- machine.stack.element_stack.push(ElementId(0));
- machine.stack.create_node(nodes, MountType::Append);
- machine.work(|| false);
- machine.mutations
- }
- /// Renders an `rsx` call into the Base Scopes's arena.
- ///
- /// Useful when needing to diff two rsx! calls from outside the VirtualDom, such as in a test.
- ///
- ///
- /// ```rust
- /// fn Base(cx: Context, props: &()) -> Element {
- /// rsx!(cx, div {})
- /// }
- ///
- /// let dom = VirtualDom::new(Base);
- /// let nodes = dom.render_nodes(rsx!("div"));
- /// ```
- pub fn diff_lazynodes<'a>(
- &'a self,
- left: Option<LazyNodes<'a, '_>>,
- right: Option<LazyNodes<'a, '_>>,
- ) -> (Mutations<'a>, Mutations<'a>) {
- let (old, new) = (self.render_vnodes(left), self.render_vnodes(right));
- let mut create = DiffState::new(&self.scopes);
- create.stack.scope_stack.push(self.base_scope);
- create.stack.element_stack.push(ElementId(0));
- create.stack.create_node(old, MountType::Append);
- create.work(|| false);
- let mut edit = DiffState::new(&self.scopes);
- edit.stack.scope_stack.push(self.base_scope);
- edit.stack.element_stack.push(ElementId(0));
- edit.stack.push(DiffInstruction::Diff { old, new });
- edit.work(&mut || false);
- (create.mutations, edit.mutations)
- }
- }
- #[derive(Debug)]
- pub enum SchedulerMsg {
- // events from the host
- UiEvent(UserEvent),
- // setstate
- Immediate(ScopeId),
- // an async task pushed from an event handler (or just spawned)
- NewTask(ScopeId),
- }
- /// User Events are events that are shuttled from the renderer into the VirtualDom trhough the scheduler channel.
- ///
- /// These events will be passed to the appropriate Element given by `mounted_dom_id` and then bubbled up through the tree
- /// where each listener is checked and fired if the event name matches.
- ///
- /// It is the expectation that the event name matches the corresponding event listener, otherwise Dioxus will panic in
- /// attempting to downcast the event data.
- ///
- /// Because Event Data is sent across threads, it must be `Send + Sync`. We are hoping to lift the `Sync` restriction but
- /// `Send` will not be lifted. The entire `UserEvent` must also be `Send + Sync` due to its use in the scheduler channel.
- ///
- /// # Example
- /// ```rust
- /// fn App(cx: Context, props: &()) -> Element {
- /// rsx!(cx, div {
- /// onclick: move |_| println!("Clicked!")
- /// })
- /// }
- ///
- /// let mut dom = VirtualDom::new(App);
- /// let mut scheduler = dom.get_scheduler_channel();
- /// scheduler.unbounded_send(SchedulerMsg::UiEvent(
- /// UserEvent {
- /// scope_id: None,
- /// priority: EventPriority::Medium,
- /// name: "click",
- /// element: Some(ElementId(0)),
- /// data: Arc::new(ClickEvent { .. })
- /// }
- /// )).unwrap();
- /// ```
- #[derive(Debug)]
- pub struct UserEvent {
- /// The originator of the event trigger
- pub scope_id: Option<ScopeId>,
- pub priority: EventPriority,
- /// The optional real node associated with the trigger
- pub element: Option<ElementId>,
- /// The event type IE "onclick" or "onmouseover"
- ///
- /// The name that the renderer will use to mount the listener.
- pub name: &'static str,
- /// Event Data
- pub data: Arc<dyn Any + Send + Sync>,
- }
- /// Priority of Event Triggers.
- ///
- /// Internally, Dioxus will abort work that's taking too long if new, more important work arrives. Unlike React, Dioxus
- /// won't be afraid to pause work or flush changes to the RealDOM. This is called "cooperative scheduling". Some Renderers
- /// implement this form of scheduling internally, however Dioxus will perform its own scheduling as well.
- ///
- /// The ultimate goal of the scheduler is to manage latency of changes, prioritizing "flashier" changes over "subtler" changes.
- ///
- /// React has a 5-tier priority system. However, they break things into "Continuous" and "Discrete" priority. For now,
- /// we keep it simple, and just use a 3-tier priority system.
- ///
- /// - NoPriority = 0
- /// - LowPriority = 1
- /// - NormalPriority = 2
- /// - UserBlocking = 3
- /// - HighPriority = 4
- /// - ImmediatePriority = 5
- ///
- /// We still have a concept of discrete vs continuous though - discrete events won't be batched, but continuous events will.
- /// This means that multiple "scroll" events will be processed in a single frame, but multiple "click" events will be
- /// flushed before proceeding. Multiple discrete events is highly unlikely, though.
- #[derive(Debug, PartialEq, Eq, Clone, Copy, Hash, PartialOrd, Ord)]
- pub enum EventPriority {
- /// Work that must be completed during the EventHandler phase.
- ///
- /// Currently this is reserved for controlled inputs.
- Immediate = 3,
- /// "High Priority" work will not interrupt other high priority work, but will interrupt medium and low priority work.
- ///
- /// This is typically reserved for things like user interaction.
- ///
- /// React calls these "discrete" events, but with an extra category of "user-blocking" (Immediate).
- High = 2,
- /// "Medium priority" work is generated by page events not triggered by the user. These types of events are less important
- /// than "High Priority" events and will take precedence over low priority events.
- ///
- /// This is typically reserved for VirtualEvents that are not related to keyboard or mouse input.
- ///
- /// React calls these "continuous" events (e.g. mouse move, mouse wheel, touch move, etc).
- Medium = 1,
- /// "Low Priority" work will always be preempted unless the work is significantly delayed, in which case it will be
- /// advanced to the front of the work queue until completed.
- ///
- /// The primary user of Low Priority work is the asynchronous work system (Suspense).
- ///
- /// This is considered "idle" work or "background" work.
- Low = 0,
- }
- struct PollTasks<'a>(&'a mut ScopeArena);
- impl<'a> Future for PollTasks<'a> {
- type Output = ();
- fn poll(self: Pin<&mut Self>, cx: &mut std::task::Context<'_>) -> Poll<Self::Output> {
- let mut all_pending = true;
- let mut unfinished_tasks: SmallVec<[_; 10]> = smallvec::smallvec![];
- let mut scopes_to_clear: SmallVec<[_; 10]> = smallvec::smallvec![];
- // Poll every scope manually
- for fut in self.0.pending_futures.borrow().iter().copied() {
- let scope = self.0.get_scope(fut).expect("Scope should never be moved");
- let mut items = scope.items.borrow_mut();
- // really this should just be retain_mut but that doesn't exist yet
- while let Some(mut task) = items.tasks.pop() {
- if task.as_mut().poll(cx).is_ready() {
- all_pending = false
- } else {
- unfinished_tasks.push(task);
- }
- }
- if unfinished_tasks.is_empty() {
- scopes_to_clear.push(fut);
- }
- items.tasks.extend(unfinished_tasks.drain(..));
- }
- for scope in scopes_to_clear {
- self.0.pending_futures.borrow_mut().remove(&scope);
- }
- // Resolve the future if any singular task is ready
- match all_pending {
- true => Poll::Pending,
- false => Poll::Ready(()),
- }
- }
- }
|