1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378 |
- //! This module contains the stateful DiffMachine and all methods to diff VNodes, their properties, and their children.
- //! The DiffMachine calculates the diffs between the old and new frames, updates the new nodes, and modifies the real dom.
- //!
- //! Notice:
- //! ------
- //!
- //! The inspiration and code for this module was originally taken from Dodrio (@fitzgen) and modified to support Components,
- //! Fragments, Suspense, and additional batching operations.
- //!
- //! Implementation Details:
- //! -----------------------
- //!
- //! All nodes are addressed by their IDs. The RealDom provides an imperative interface for making changes to these nodes.
- //! We don't necessarily intend for changes to happen exactly during the diffing process, so the implementor may choose
- //! to batch nodes if it is more performant for their application. The u32 should be a no-op to hash,
- //!
- //!
- //! Further Reading and Thoughts
- //! ----------------------------
- //!
- //! There are more ways of increasing diff performance here that are currently not implemented.
- //! More info on how to improve this diffing algorithm:
- //! - https://hacks.mozilla.org/2019/03/fast-bump-allocated-virtual-doms-with-rust-and-wasm/
- use crate::{arena::ScopeArena, innerlude::*};
- use fxhash::{FxHashMap, FxHashSet};
- use std::{
- any::Any,
- cell::Cell,
- cmp::Ordering,
- rc::{Rc, Weak},
- };
- /// The accompanying "real dom" exposes an imperative API for controlling the UI layout
- ///
- /// Instead of having handles directly over nodes, Dioxus uses simple u32s as node IDs.
- /// This allows layouts with up to 4,294,967,295 nodes. If we use nohasher, then retrieving is very fast.
- /// The "RealDom" abstracts over the... real dom. Elements are mapped by ID. The RealDom is inteded to maintain a stack
- /// of real nodes as the diffing algorithm descenes through the tree. This means that whatever is on top of the stack
- /// will receive modifications. However, instead of using child-based methods for descending through the tree, we instead
- /// ask the RealDom to either push or pop real nodes onto the stack. This saves us the indexing cost while working on a
- /// single node
- pub trait RealDom {
- // Navigation
- fn push_root(&mut self, root: RealDomNode);
- // Add Nodes to the dom
- fn append_child(&mut self);
- fn replace_with(&mut self);
- // Remove Nodesfrom the dom
- fn remove(&mut self);
- fn remove_all_children(&mut self);
- // Create
- fn create_text_node(&mut self, text: &str) -> RealDomNode;
- fn create_element(&mut self, tag: &str) -> RealDomNode;
- fn create_element_ns(&mut self, tag: &str, namespace: &str) -> RealDomNode;
- // events
- fn new_event_listener(
- &mut self,
- event: &str,
- scope: ScopeIdx,
- element_id: usize,
- realnode: RealDomNode,
- );
- // fn new_event_listener(&mut self, event: &str);
- fn remove_event_listener(&mut self, event: &str);
- // modify
- fn set_text(&mut self, text: &str);
- fn set_attribute(&mut self, name: &str, value: &str, is_namespaced: bool);
- fn remove_attribute(&mut self, name: &str);
- // node ref
- fn raw_node_as_any_mut(&self) -> &mut dyn Any;
- }
- /// The DiffState is a cursor internal to the VirtualDOM's diffing algorithm that allows persistence of state while
- /// diffing trees of components. This means we can "re-enter" a subtree of a component by queuing a "NeedToDiff" event.
- ///
- /// By re-entering via NodeDiff, we can connect disparate edits together into a single EditList. This batching of edits
- /// leads to very fast re-renders (all done in a single animation frame).
- ///
- /// It also means diffing two trees is only ever complex as diffing a single smaller tree, and then re-entering at a
- /// different cursor position.
- ///
- /// The order of these re-entrances is stored in the DiffState itself. The DiffState comes pre-loaded with a set of components
- /// that were modified by the eventtrigger. This prevents doubly evaluating components if they were both updated via
- /// subscriptions and props changes.
- pub struct DiffMachine<'a, Dom: RealDom> {
- pub dom: &'a mut Dom,
- pub cur_idx: ScopeIdx,
- pub diffed: FxHashSet<ScopeIdx>,
- pub components: ScopeArena,
- pub event_queue: EventQueue,
- pub seen_nodes: FxHashSet<ScopeIdx>,
- }
- impl<'a, Dom: RealDom> DiffMachine<'a, Dom> {
- pub fn new(
- dom: &'a mut Dom,
- components: ScopeArena,
- cur_idx: ScopeIdx,
- event_queue: EventQueue,
- ) -> Self {
- Self {
- components,
- dom,
- cur_idx,
- event_queue,
- diffed: FxHashSet::default(),
- seen_nodes: FxHashSet::default(),
- }
- }
- // Diff the `old` node with the `new` node. Emits instructions to modify a
- // physical DOM node that reflects `old` into something that reflects `new`.
- //
- // Upon entry to this function, the physical DOM node must be on the top of the
- // change list stack:
- //
- // [... node]
- //
- // The change list stack is in the same state when this function exits.
- // In the case of Fragments, the parent node is on the stack
- pub fn diff_node(&mut self, old_node: &VNode<'a>, new_node: &VNode<'a>) {
- // pub fn diff_node(&self, old: &VNode<'a>, new: &VNode<'a>) {
- /*
- For each valid case, we "commit traversal", meaning we save this current position in the tree.
- Then, we diff and queue an edit event (via chagelist). s single trees - when components show up, we save that traversal and then re-enter later.
- When re-entering, we reuse the EditList in DiffState
- */
- match old_node {
- VNode::Element(old) => match new_node {
- // New node is an element, old node was en element, need to investiage more deeply
- VNode::Element(new) => {
- // If the element type is completely different, the element needs to be re-rendered completely
- // This is an optimization React makes due to how users structure their code
- if new.tag_name != old.tag_name || new.namespace != old.namespace {
- self.create(new_node);
- self.dom.replace_with();
- return;
- }
- new.dom_id.set(old.dom_id.get());
- self.diff_listeners(old.listeners, new.listeners);
- self.diff_attr(old.attributes, new.attributes, new.namespace.is_some());
- self.diff_children(old.children, new.children);
- }
- // New node is a text element, need to replace the element with a simple text node
- VNode::Text(_) => {
- log::debug!("Replacing el with text");
- self.create(new_node);
- self.dom.replace_with();
- }
- // New node is a component
- // Make the component and replace our element on the stack with it
- VNode::Component(_) => {
- self.create(new_node);
- self.dom.replace_with();
- }
- // New node is actually a sequence of nodes.
- // We need to replace this one node with a sequence of nodes
- // Not yet implement because it's kinda hairy
- VNode::Fragment(_) => todo!(),
- // New Node is actually suspended. Todo
- VNode::Suspended => todo!(),
- },
- // Old element was text
- VNode::Text(old) => match new_node {
- VNode::Text(new) => {
- if old.text != new.text {
- log::debug!("Text has changed {}, {}", old.text, new.text);
- self.dom.set_text(new.text);
- }
- new.dom_id.set(old.dom_id.get());
- }
- VNode::Element(_) | VNode::Component(_) => {
- self.create(new_node);
- self.dom.replace_with();
- }
- // TODO on handling these types
- VNode::Fragment(frag) => {
- if frag.children.len() == 0 {
- // do nothing
- } else {
- self.create(&frag.children[0]);
- self.dom.replace_with();
- for child in frag.children.iter().skip(1) {
- self.create(child);
- self.dom.append_child();
- }
- }
- }
- VNode::Suspended => todo!(),
- },
- // Old element was a component
- VNode::Component(old) => {
- match new_node {
- // It's something entirely different
- VNode::Element(_) | VNode::Text(_) => {
- self.create(new_node);
- self.dom.replace_with();
- }
- // It's also a component
- VNode::Component(new) => {
- match old.user_fc == new.user_fc {
- // Make sure we're dealing with the same component (by function pointer)
- true => {
- // Make sure the new component vnode is referencing the right scope id
- let scope_id = old.ass_scope.borrow().clone();
- *new.ass_scope.borrow_mut() = scope_id;
- // make sure the component's caller function is up to date
- self.components
- .with_scope(scope_id.unwrap(), |scope| {
- scope.caller = Rc::downgrade(&new.caller)
- })
- .unwrap();
- // React doesn't automatically memoize, but we do.
- // The cost is low enough to make it worth checking
- let should_render = match old.comparator {
- Some(comparator) => comparator(new),
- None => true,
- };
- if should_render {
- // // self.dom.commit_traversal();
- self.components
- .with_scope(scope_id.unwrap(), |f| {
- f.run_scope().unwrap();
- })
- .unwrap();
- // diff_machine.change_list.load_known_root(root_id);
- // run the scope
- //
- } else {
- // Component has memoized itself and doesn't need to be re-rendered.
- // We still need to make sure the child's props are up-to-date.
- // Don't commit traversal
- }
- }
- // It's an entirely different component
- false => {
- // A new component has shown up! We need to destroy the old node
- // Wipe the old one and plant the new one
- // self.dom.commit_traversal();
- // self.dom.replace_node_with(old.dom_id, new.dom_id);
- // self.create(new_node);
- // self.dom.replace_with();
- self.create(new_node);
- // self.create_and_repalce(new_node, old.mounted_root.get());
- // Now we need to remove the old scope and all of its descendents
- let old_scope = old.ass_scope.borrow().as_ref().unwrap().clone();
- self.destroy_scopes(old_scope);
- }
- }
- }
- VNode::Fragment(_) => todo!(),
- VNode::Suspended => todo!(),
- }
- }
- VNode::Fragment(old) => {
- //
- match new_node {
- VNode::Fragment(_) => todo!(),
- // going from fragment to element means we're going from many (or potentially none) to one
- VNode::Element(new) => {}
- VNode::Text(_) => todo!(),
- VNode::Suspended => todo!(),
- VNode::Component(_) => todo!(),
- }
- }
- // a suspended node will perform a mem-copy of the previous elements until it is ready
- // this means that event listeners will need to be disabled and removed
- // it also means that props will need to disabled - IE if the node "came out of hibernation" any props should be considered outdated
- VNode::Suspended => {
- //
- match new_node {
- VNode::Suspended => todo!(),
- VNode::Element(_) => todo!(),
- VNode::Text(_) => todo!(),
- VNode::Fragment(_) => todo!(),
- VNode::Component(_) => todo!(),
- }
- }
- }
- }
- // Emit instructions to create the given virtual node.
- //
- // The change list stack may have any shape upon entering this function:
- //
- // [...]
- //
- // When this function returns, the new node is on top of the change list stack:
- //
- // [... node]
- fn create(&mut self, node: &VNode<'a>) {
- // debug_assert!(self.dom.traversal_is_committed());
- match node {
- VNode::Text(text) => {
- let real_id = self.dom.create_text_node(text.text);
- text.dom_id.set(real_id);
- }
- VNode::Element(el) => {
- let VElement {
- key,
- tag_name,
- listeners,
- attributes,
- children,
- namespace,
- dom_id,
- } = el;
- // log::info!("Creating {:#?}", node);
- let real_id = if let Some(namespace) = namespace {
- self.dom.create_element_ns(tag_name, namespace)
- } else {
- self.dom.create_element(tag_name)
- };
- el.dom_id.set(real_id);
- listeners.iter().enumerate().for_each(|(idx, listener)| {
- self.dom
- .new_event_listener(listener.event, listener.scope, idx, real_id);
- listener.mounted_node.set(real_id);
- });
- for attr in *attributes {
- self.dom
- .set_attribute(&attr.name, &attr.value, namespace.is_some());
- }
- // Fast path: if there is a single text child, it is faster to
- // create-and-append the text node all at once via setting the
- // parent's `textContent` in a single change list instruction than
- // to emit three instructions to (1) create a text node, (2) set its
- // text content, and finally (3) append the text node to this
- // parent.
- // if children.len() == 1 {
- // if let VNode::Text(text) = &children[0] {
- // self.dom.set_text(text.text);
- // return;
- // }
- // }
- for child in *children {
- self.create(child);
- if let VNode::Fragment(_) = child {
- // do nothing
- // fragments append themselves
- } else {
- self.dom.append_child();
- }
- }
- }
- VNode::Component(component) => {
- self.dom.create_text_node("placeholder for vcomponent");
- // let root_id = next_id();
- // self.dom.save_known_root(root_id);
- log::debug!("Mounting a new component");
- let caller: Weak<OpaqueComponent> = Rc::downgrade(&component.caller);
- // We're modifying the component arena while holding onto references into the assoiated bump arenas of its children
- // those references are stable, even if the component arena moves around in memory, thanks to the bump arenas.
- // However, there is no way to convey this to rust, so we need to use unsafe to pierce through the lifetime.
- let parent_idx = self.cur_idx;
- // Insert a new scope into our component list
- let idx = self
- .components
- .with(|components| {
- components.insert_with(|new_idx| {
- let parent_scope = self.components.try_get(parent_idx).unwrap();
- let height = parent_scope.height + 1;
- Scope::new(
- caller,
- new_idx,
- Some(parent_idx),
- height,
- self.event_queue.new_channel(height, new_idx),
- self.components.clone(),
- component.children,
- )
- })
- })
- .unwrap();
- {
- let cur_component = self.components.try_get_mut(idx).unwrap();
- let mut ch = cur_component.descendents.borrow_mut();
- ch.insert(idx);
- std::mem::drop(ch);
- }
- // yaaaaay lifetimes out of thin air
- // really tho, we're merging the frame lifetimes together
- let inner: &'a mut _ = unsafe { &mut *self.components.0.borrow().arena.get() };
- let new_component = inner.get_mut(idx).unwrap();
- // Actually initialize the caller's slot with the right address
- *component.ass_scope.borrow_mut() = Some(idx);
- // Run the scope for one iteration to initialize it
- new_component.run_scope().unwrap();
- // And then run the diff algorithm
- // todo!();
- self.diff_node(new_component.old_frame(), new_component.next_frame());
- // Finally, insert this node as a seen node.
- self.seen_nodes.insert(idx);
- }
- // we go the the "known root" but only operate on a sibling basis
- VNode::Fragment(frag) => {
- // create the children directly in the space
- for child in frag.children {
- todo!()
- // self.create(child);
- // self.dom.append_child();
- }
- }
- VNode::Suspended => {
- todo!("Creation of VNode::Suspended not yet supported")
- }
- }
- }
- fn iter_children(&self, node: &VNode<'a>) -> ChildIterator<'a> {
- todo!()
- }
- }
- impl<'a, Dom: RealDom> DiffMachine<'a, Dom> {
- /// Destroy a scope and all of its descendents.
- ///
- /// Calling this will run the destuctors on all hooks in the tree.
- /// It will also add the destroyed nodes to the `seen_nodes` cache to prevent them from being renderered.
- fn destroy_scopes(&mut self, old_scope: ScopeIdx) {
- let mut nodes_to_delete = vec![old_scope];
- let mut scopes_to_explore = vec![old_scope];
- // explore the scope tree breadth first
- while let Some(scope_id) = scopes_to_explore.pop() {
- // If we're planning on deleting this node, then we don't need to both rendering it
- self.seen_nodes.insert(scope_id);
- let scope = self.components.try_get(scope_id).unwrap();
- for child in scope.descendents.borrow().iter() {
- // Add this node to be explored
- scopes_to_explore.push(child.clone());
- // Also add it for deletion
- nodes_to_delete.push(child.clone());
- }
- }
- // Delete all scopes that we found as part of this subtree
- for node in nodes_to_delete {
- log::debug!("Removing scope {:#?}", node);
- let _scope = self.components.try_remove(node).unwrap();
- // do anything we need to do to delete the scope
- // I think we need to run the destructors on the hooks
- // TODO
- }
- }
- // Diff event listeners between `old` and `new`.
- //
- // The listeners' node must be on top of the change list stack:
- //
- // [... node]
- //
- // The change list stack is left unchanged.
- fn diff_listeners(&mut self, old: &[Listener<'_>], new: &[Listener<'_>]) {
- if !old.is_empty() || !new.is_empty() {
- // self.dom.commit_traversal();
- }
- // TODO
- // what does "diffing listeners" even mean?
- 'outer1: for (_l_idx, new_l) in new.iter().enumerate() {
- // go through each new listener
- // find its corresponding partner in the old list
- // if any characteristics changed, remove and then re-add
- // if nothing changed, then just move on
- let event_type = new_l.event;
- for old_l in old {
- if new_l.event == old_l.event {
- new_l.mounted_node.set(old_l.mounted_node.get());
- // if new_l.id != old_l.id {
- // self.dom.remove_event_listener(event_type);
- // // TODO! we need to mess with events and assign them by RealDomNode
- // // self.dom
- // // .update_event_listener(event_type, new_l.scope, new_l.id)
- // }
- continue 'outer1;
- }
- }
- // self.dom
- // .new_event_listener(event_type, new_l.scope, new_l.id);
- }
- // 'outer2: for old_l in old {
- // for new_l in new {
- // if new_l.event == old_l.event {
- // continue 'outer2;
- // }
- // }
- // self.dom.remove_event_listener(old_l.event);
- // }
- }
- // Diff a node's attributes.
- //
- // The attributes' node must be on top of the change list stack:
- //
- // [... node]
- //
- // The change list stack is left unchanged.
- fn diff_attr(
- &mut self,
- old: &'a [Attribute<'a>],
- new: &'a [Attribute<'a>],
- is_namespaced: bool,
- ) {
- // Do O(n^2) passes to add/update and remove attributes, since
- // there are almost always very few attributes.
- //
- // The "fast" path is when the list of attributes name is identical and in the same order
- // With the Rsx and Html macros, this will almost always be the case
- 'outer: for new_attr in new {
- if new_attr.is_volatile() {
- // self.dom.commit_traversal();
- self.dom
- .set_attribute(new_attr.name, new_attr.value, is_namespaced);
- } else {
- for old_attr in old {
- if old_attr.name == new_attr.name {
- if old_attr.value != new_attr.value {
- // self.dom.commit_traversal();
- self.dom
- .set_attribute(new_attr.name, new_attr.value, is_namespaced);
- }
- continue 'outer;
- } else {
- // names are different, a varying order of attributes has arrived
- }
- }
- // self.dom.commit_traversal();
- self.dom
- .set_attribute(new_attr.name, new_attr.value, is_namespaced);
- }
- }
- 'outer2: for old_attr in old {
- for new_attr in new {
- if old_attr.name == new_attr.name {
- continue 'outer2;
- }
- }
- // self.dom.commit_traversal();
- self.dom.remove_attribute(old_attr.name);
- }
- }
- // Diff the given set of old and new children.
- //
- // The parent must be on top of the change list stack when this function is
- // entered:
- //
- // [... parent]
- //
- // the change list stack is in the same state when this function returns.
- fn diff_children(&mut self, old: &'a [VNode<'a>], new: &'a [VNode<'a>]) {
- if new.is_empty() {
- if !old.is_empty() {
- // self.dom.commit_traversal();
- self.remove_all_children(old);
- }
- return;
- }
- if new.len() == 1 {
- match (&old.first(), &new[0]) {
- (Some(VNode::Text(old_vtext)), VNode::Text(new_vtext))
- if old_vtext.text == new_vtext.text =>
- {
- // Don't take this fast path...
- }
- // (_, VNode::Text(text)) => {
- // // self.dom.commit_traversal();
- // log::debug!("using optimized text set");
- // self.dom.set_text(text.text);
- // return;
- // }
- // todo: any more optimizations
- (_, _) => {}
- }
- }
- if old.is_empty() {
- if !new.is_empty() {
- // self.dom.commit_traversal();
- self.create_and_append_children(new);
- }
- return;
- }
- let new_is_keyed = new[0].key().is_some();
- let old_is_keyed = old[0].key().is_some();
- debug_assert!(
- new.iter().all(|n| n.key().is_some() == new_is_keyed),
- "all siblings must be keyed or all siblings must be non-keyed"
- );
- debug_assert!(
- old.iter().all(|o| o.key().is_some() == old_is_keyed),
- "all siblings must be keyed or all siblings must be non-keyed"
- );
- if new_is_keyed && old_is_keyed {
- todo!("Not yet implemented a migration away from temporaries");
- // let t = self.dom.next_temporary();
- // self.diff_keyed_children(old, new);
- // self.dom.set_next_temporary(t);
- } else {
- self.diff_non_keyed_children(old, new);
- }
- }
- // Diffing "keyed" children.
- //
- // With keyed children, we care about whether we delete, move, or create nodes
- // versus mutate existing nodes in place. Presumably there is some sort of CSS
- // transition animation that makes the virtual DOM diffing algorithm
- // observable. By specifying keys for nodes, we know which virtual DOM nodes
- // must reuse (or not reuse) the same physical DOM nodes.
- //
- // This is loosely based on Inferno's keyed patching implementation. However, we
- // have to modify the algorithm since we are compiling the diff down into change
- // list instructions that will be executed later, rather than applying the
- // changes to the DOM directly as we compare virtual DOMs.
- //
- // https://github.com/infernojs/inferno/blob/36fd96/packages/inferno/src/DOM/patching.ts#L530-L739
- //
- // When entering this function, the parent must be on top of the change list
- // stack:
- //
- // [... parent]
- //
- // Upon exiting, the change list stack is in the same state.
- fn diff_keyed_children(&self, old: &[VNode<'a>], new: &[VNode<'a>]) {
- todo!();
- // if cfg!(debug_assertions) {
- // let mut keys = fxhash::FxHashSet::default();
- // let mut assert_unique_keys = |children: &[VNode]| {
- // keys.clear();
- // for child in children {
- // let key = child.key();
- // debug_assert!(
- // key.is_some(),
- // "if any sibling is keyed, all siblings must be keyed"
- // );
- // keys.insert(key);
- // }
- // debug_assert_eq!(
- // children.len(),
- // keys.len(),
- // "keyed siblings must each have a unique key"
- // );
- // };
- // assert_unique_keys(old);
- // assert_unique_keys(new);
- // }
- // First up, we diff all the nodes with the same key at the beginning of the
- // children.
- //
- // `shared_prefix_count` is the count of how many nodes at the start of
- // `new` and `old` share the same keys.
- let shared_prefix_count = match self.diff_keyed_prefix(old, new) {
- KeyedPrefixResult::Finished => return,
- KeyedPrefixResult::MoreWorkToDo(count) => count,
- };
- match self.diff_keyed_prefix(old, new) {
- KeyedPrefixResult::Finished => return,
- KeyedPrefixResult::MoreWorkToDo(count) => count,
- };
- // Next, we find out how many of the nodes at the end of the children have
- // the same key. We do _not_ diff them yet, since we want to emit the change
- // list instructions such that they can be applied in a single pass over the
- // DOM. Instead, we just save this information for later.
- //
- // `shared_suffix_count` is the count of how many nodes at the end of `new`
- // and `old` share the same keys.
- let shared_suffix_count = old[shared_prefix_count..]
- .iter()
- .rev()
- .zip(new[shared_prefix_count..].iter().rev())
- .take_while(|&(old, new)| old.key() == new.key())
- .count();
- let old_shared_suffix_start = old.len() - shared_suffix_count;
- let new_shared_suffix_start = new.len() - shared_suffix_count;
- // Ok, we now hopefully have a smaller range of children in the middle
- // within which to re-order nodes with the same keys, remove old nodes with
- // now-unused keys, and create new nodes with fresh keys.
- self.diff_keyed_middle(
- &old[shared_prefix_count..old_shared_suffix_start],
- &new[shared_prefix_count..new_shared_suffix_start],
- shared_prefix_count,
- shared_suffix_count,
- old_shared_suffix_start,
- );
- // Finally, diff the nodes at the end of `old` and `new` that share keys.
- let old_suffix = &old[old_shared_suffix_start..];
- let new_suffix = &new[new_shared_suffix_start..];
- debug_assert_eq!(old_suffix.len(), new_suffix.len());
- if !old_suffix.is_empty() {
- self.diff_keyed_suffix(old_suffix, new_suffix, new_shared_suffix_start)
- }
- }
- // Diff the prefix of children in `new` and `old` that share the same keys in
- // the same order.
- //
- // Upon entry of this function, the change list stack must be:
- //
- // [... parent]
- //
- // Upon exit, the change list stack is the same.
- fn diff_keyed_prefix(&self, old: &[VNode<'a>], new: &[VNode<'a>]) -> KeyedPrefixResult {
- todo!()
- // self.dom.go_down();
- // let mut shared_prefix_count = 0;
- // for (i, (old, new)) in old.iter().zip(new.iter()).enumerate() {
- // if old.key() != new.key() {
- // break;
- // }
- // self.dom.go_to_sibling(i);
- // self.diff_node(old, new);
- // shared_prefix_count += 1;
- // }
- // // If that was all of the old children, then create and append the remaining
- // // new children and we're finished.
- // if shared_prefix_count == old.len() {
- // self.dom.go_up();
- // // self.dom.commit_traversal();
- // self.create_and_append_children(&new[shared_prefix_count..]);
- // return KeyedPrefixResult::Finished;
- // }
- // // And if that was all of the new children, then remove all of the remaining
- // // old children and we're finished.
- // if shared_prefix_count == new.len() {
- // self.dom.go_to_sibling(shared_prefix_count);
- // // self.dom.commit_traversal();
- // self.remove_self_and_next_siblings(&old[shared_prefix_count..]);
- // return KeyedPrefixResult::Finished;
- // }
- // self.dom.go_up();
- // KeyedPrefixResult::MoreWorkToDo(shared_prefix_count)
- }
- // The most-general, expensive code path for keyed children diffing.
- //
- // We find the longest subsequence within `old` of children that are relatively
- // ordered the same way in `new` (via finding a longest-increasing-subsequence
- // of the old child's index within `new`). The children that are elements of
- // this subsequence will remain in place, minimizing the number of DOM moves we
- // will have to do.
- //
- // Upon entry to this function, the change list stack must be:
- //
- // [... parent]
- //
- // Upon exit from this function, it will be restored to that same state.
- fn diff_keyed_middle(
- &self,
- old: &[VNode<'a>],
- mut new: &[VNode<'a>],
- shared_prefix_count: usize,
- shared_suffix_count: usize,
- old_shared_suffix_start: usize,
- ) {
- todo!()
- // // Should have already diffed the shared-key prefixes and suffixes.
- // debug_assert_ne!(new.first().map(|n| n.key()), old.first().map(|o| o.key()));
- // debug_assert_ne!(new.last().map(|n| n.key()), old.last().map(|o| o.key()));
- // // The algorithm below relies upon using `u32::MAX` as a sentinel
- // // value, so if we have that many new nodes, it won't work. This
- // // check is a bit academic (hence only enabled in debug), since
- // // wasm32 doesn't have enough address space to hold that many nodes
- // // in memory.
- // debug_assert!(new.len() < u32::MAX as usize);
- // // Map from each `old` node's key to its index within `old`.
- // let mut old_key_to_old_index = FxHashMap::default();
- // old_key_to_old_index.reserve(old.len());
- // old_key_to_old_index.extend(old.iter().enumerate().map(|(i, o)| (o.key(), i)));
- // // The set of shared keys between `new` and `old`.
- // let mut shared_keys = FxHashSet::default();
- // // Map from each index in `new` to the index of the node in `old` that
- // // has the same key.
- // let mut new_index_to_old_index = Vec::with_capacity(new.len());
- // new_index_to_old_index.extend(new.iter().map(|n| {
- // let key = n.key();
- // if let Some(&i) = old_key_to_old_index.get(&key) {
- // shared_keys.insert(key);
- // i
- // } else {
- // u32::MAX as usize
- // }
- // }));
- // // If none of the old keys are reused by the new children, then we
- // // remove all the remaining old children and create the new children
- // // afresh.
- // if shared_suffix_count == 0 && shared_keys.is_empty() {
- // if shared_prefix_count == 0 {
- // // self.dom.commit_traversal();
- // self.remove_all_children(old);
- // } else {
- // self.dom.go_down_to_child(shared_prefix_count);
- // // self.dom.commit_traversal();
- // self.remove_self_and_next_siblings(&old[shared_prefix_count..]);
- // }
- // self.create_and_append_children(new);
- // return;
- // }
- // // Save each of the old children whose keys are reused in the new
- // // children.
- // let mut old_index_to_temp = vec![u32::MAX; old.len()];
- // let mut start = 0;
- // loop {
- // let end = (start..old.len())
- // .find(|&i| {
- // let key = old[i].key();
- // !shared_keys.contains(&key)
- // })
- // .unwrap_or(old.len());
- // if end - start > 0 {
- // // self.dom.commit_traversal();
- // let mut t = self.dom.save_children_to_temporaries(
- // shared_prefix_count + start,
- // shared_prefix_count + end,
- // );
- // for i in start..end {
- // old_index_to_temp[i] = t;
- // t += 1;
- // }
- // }
- // debug_assert!(end <= old.len());
- // if end == old.len() {
- // break;
- // } else {
- // start = end + 1;
- // }
- // }
- // // Remove any old children whose keys were not reused in the new
- // // children. Remove from the end first so that we don't mess up indices.
- // let mut removed_count = 0;
- // for (i, old_child) in old.iter().enumerate().rev() {
- // if !shared_keys.contains(&old_child.key()) {
- // // registry.remove_subtree(old_child);
- // // todo
- // // self.dom.commit_traversal();
- // self.dom.remove_child(i + shared_prefix_count);
- // removed_count += 1;
- // }
- // }
- // // If there aren't any more new children, then we are done!
- // if new.is_empty() {
- // return;
- // }
- // // The longest increasing subsequence within `new_index_to_old_index`. This
- // // is the longest sequence on DOM nodes in `old` that are relatively ordered
- // // correctly within `new`. We will leave these nodes in place in the DOM,
- // // and only move nodes that are not part of the LIS. This results in the
- // // maximum number of DOM nodes left in place, AKA the minimum number of DOM
- // // nodes moved.
- // let mut new_index_is_in_lis = FxHashSet::default();
- // new_index_is_in_lis.reserve(new_index_to_old_index.len());
- // let mut predecessors = vec![0; new_index_to_old_index.len()];
- // let mut starts = vec![0; new_index_to_old_index.len()];
- // longest_increasing_subsequence::lis_with(
- // &new_index_to_old_index,
- // &mut new_index_is_in_lis,
- // |a, b| a < b,
- // &mut predecessors,
- // &mut starts,
- // );
- // // Now we will iterate from the end of the new children back to the
- // // beginning, diffing old children we are reusing and if they aren't in the
- // // LIS moving them to their new destination, or creating new children. Note
- // // that iterating in reverse order lets us use `Node.prototype.insertBefore`
- // // to move/insert children.
- // //
- // // But first, we ensure that we have a child on the change list stack that
- // // we can `insertBefore`. We handle this once before looping over `new`
- // // children, so that we don't have to keep checking on every loop iteration.
- // if shared_suffix_count > 0 {
- // // There is a shared suffix after these middle children. We will be
- // // inserting before that shared suffix, so add the first child of that
- // // shared suffix to the change list stack.
- // //
- // // [... parent]
- // self.dom
- // .go_down_to_child(old_shared_suffix_start - removed_count);
- // // [... parent first_child_of_shared_suffix]
- // } else {
- // // There is no shared suffix coming after these middle children.
- // // Therefore we have to process the last child in `new` and move it to
- // // the end of the parent's children if it isn't already there.
- // let last_index = new.len() - 1;
- // // uhhhh why an unwrap?
- // let last = new.last().unwrap();
- // // let last = new.last().unwrap_throw();
- // new = &new[..new.len() - 1];
- // if shared_keys.contains(&last.key()) {
- // let old_index = new_index_to_old_index[last_index];
- // let temp = old_index_to_temp[old_index];
- // // [... parent]
- // self.dom.go_down_to_temp_child(temp);
- // // [... parent last]
- // self.diff_node(&old[old_index], last);
- // if new_index_is_in_lis.contains(&last_index) {
- // // Don't move it, since it is already where it needs to be.
- // } else {
- // // self.dom.commit_traversal();
- // // [... parent last]
- // self.dom.append_child();
- // // [... parent]
- // self.dom.go_down_to_temp_child(temp);
- // // [... parent last]
- // }
- // } else {
- // // self.dom.commit_traversal();
- // // [... parent]
- // self.create(last);
- // // [... parent last]
- // self.dom.append_child();
- // // [... parent]
- // self.dom.go_down_to_reverse_child(0);
- // // [... parent last]
- // }
- // }
- // for (new_index, new_child) in new.iter().enumerate().rev() {
- // let old_index = new_index_to_old_index[new_index];
- // if old_index == u32::MAX as usize {
- // debug_assert!(!shared_keys.contains(&new_child.key()));
- // // self.dom.commit_traversal();
- // // [... parent successor]
- // self.create(new_child);
- // // [... parent successor new_child]
- // self.dom.insert_before();
- // // [... parent new_child]
- // } else {
- // debug_assert!(shared_keys.contains(&new_child.key()));
- // let temp = old_index_to_temp[old_index];
- // debug_assert_ne!(temp, u32::MAX);
- // if new_index_is_in_lis.contains(&new_index) {
- // // [... parent successor]
- // self.dom.go_to_temp_sibling(temp);
- // // [... parent new_child]
- // } else {
- // // self.dom.commit_traversal();
- // // [... parent successor]
- // self.dom.push_temporary(temp);
- // // [... parent successor new_child]
- // self.dom.insert_before();
- // // [... parent new_child]
- // }
- // self.diff_node(&old[old_index], new_child);
- // }
- // }
- // // [... parent child]
- // self.dom.go_up();
- // [... parent]
- }
- // Diff the suffix of keyed children that share the same keys in the same order.
- //
- // The parent must be on the change list stack when we enter this function:
- //
- // [... parent]
- //
- // When this function exits, the change list stack remains the same.
- fn diff_keyed_suffix(
- &self,
- old: &[VNode<'a>],
- new: &[VNode<'a>],
- new_shared_suffix_start: usize,
- ) {
- todo!()
- // debug_assert_eq!(old.len(), new.len());
- // debug_assert!(!old.is_empty());
- // // [... parent]
- // self.dom.go_down();
- // // [... parent new_child]
- // for (i, (old_child, new_child)) in old.iter().zip(new.iter()).enumerate() {
- // self.dom.go_to_sibling(new_shared_suffix_start + i);
- // self.diff_node(old_child, new_child);
- // }
- // // [... parent]
- // self.dom.go_up();
- }
- // Diff children that are not keyed.
- //
- // The parent must be on the top of the change list stack when entering this
- // function:
- //
- // [... parent]
- //
- // the change list stack is in the same state when this function returns.
- fn diff_non_keyed_children(&mut self, old: &'a [VNode<'a>], new: &'a [VNode<'a>]) {
- // Handled these cases in `diff_children` before calling this function.
- debug_assert!(!new.is_empty());
- debug_assert!(!old.is_empty());
- // [... parent]
- // self.dom.go_down();
- // self.dom.push_root()
- // [... parent child]
- // todo!()
- for (i, (new_child, old_child)) in new.iter().zip(old.iter()).enumerate() {
- // [... parent prev_child]
- // self.dom.go_to_sibling(i);
- // [... parent this_child]
- self.dom.push_root(old_child.get_mounted_id().unwrap());
- self.diff_node(old_child, new_child);
- let old_id = old_child.get_mounted_id().unwrap();
- let new_id = new_child.get_mounted_id().unwrap();
- log::debug!(
- "pushed root. {:?}, {:?}",
- old_child.get_mounted_id().unwrap(),
- new_child.get_mounted_id().unwrap()
- );
- if old_id != new_id {
- log::debug!("Mismatch: {:?}", new_child);
- }
- }
- // match old.len().cmp(&new.len()) {
- // // old.len > new.len -> removing some nodes
- // Ordering::Greater => {
- // // [... parent prev_child]
- // self.dom.go_to_sibling(new.len());
- // // [... parent first_child_to_remove]
- // // self.dom.commit_traversal();
- // // support::remove_self_and_next_siblings(state, &old[new.len()..]);
- // self.remove_self_and_next_siblings(&old[new.len()..]);
- // // [... parent]
- // }
- // // old.len < new.len -> adding some nodes
- // Ordering::Less => {
- // // [... parent last_child]
- // self.dom.go_up();
- // // [... parent]
- // // self.dom.commit_traversal();
- // self.create_and_append_children(&new[old.len()..]);
- // }
- // // old.len == new.len -> no nodes added/removed, but πerhaps changed
- // Ordering::Equal => {
- // // [... parent child]
- // self.dom.go_up();
- // // [... parent]
- // }
- // }
- }
- // ======================
- // Support methods
- // ======================
- // Remove all of a node's children.
- //
- // The change list stack must have this shape upon entry to this function:
- //
- // [... parent]
- //
- // When this function returns, the change list stack is in the same state.
- pub fn remove_all_children(&mut self, old: &[VNode<'a>]) {
- // debug_assert!(self.dom.traversal_is_committed());
- log::debug!("REMOVING CHILDREN");
- for _child in old {
- // registry.remove_subtree(child);
- }
- // Fast way to remove all children: set the node's textContent to an empty
- // string.
- todo!()
- // self.dom.set_inner_text("");
- }
- // Create the given children and append them to the parent node.
- //
- // The parent node must currently be on top of the change list stack:
- //
- // [... parent]
- //
- // When this function returns, the change list stack is in the same state.
- pub fn create_and_append_children(&mut self, new: &[VNode<'a>]) {
- // debug_assert!(self.dom.traversal_is_committed());
- for child in new {
- // self.create_and_append(node, parent)
- self.create(child);
- self.dom.append_child();
- }
- }
- // Remove the current child and all of its following siblings.
- //
- // The change list stack must have this shape upon entry to this function:
- //
- // [... parent child]
- //
- // After the function returns, the child is no longer on the change list stack:
- //
- // [... parent]
- pub fn remove_self_and_next_siblings(&self, old: &[VNode<'a>]) {
- // debug_assert!(self.dom.traversal_is_committed());
- for child in old {
- if let VNode::Component(vcomp) = child {
- // dom
- // .create_text_node("placeholder for vcomponent");
- todo!()
- // let root_id = vcomp.stable_addr.as_ref().borrow().unwrap();
- // self.lifecycle_events.push_back(LifeCycleEvent::Remove {
- // root_id,
- // stable_scope_addr: Rc::downgrade(&vcomp.ass_scope),
- // })
- // let id = get_id();
- // *component.stable_addr.as_ref().borrow_mut() = Some(id);
- // self.dom.save_known_root(id);
- // let scope = Rc::downgrade(&component.ass_scope);
- // self.lifecycle_events.push_back(LifeCycleEvent::Mount {
- // caller: Rc::downgrade(&component.caller),
- // root_id: id,
- // stable_scope_addr: scope,
- // });
- }
- // registry.remove_subtree(child);
- }
- todo!()
- // self.dom.remove_self_and_next_siblings();
- }
- }
- enum KeyedPrefixResult {
- // Fast path: we finished diffing all the children just by looking at the
- // prefix of shared keys!
- Finished,
- // There is more diffing work to do. Here is a count of how many children at
- // the beginning of `new` and `old` we already processed.
- MoreWorkToDo(usize),
- }
- struct ChildIterator<'a> {
- scopes: &'a ScopeArena,
- // Heuristcally we should never bleed into 5 completely nested fragments/components
- // Smallvec lets us stack allocate our little stack machine so the vast majority of cases are sane
- stack: smallvec::SmallVec<[(u16, &'a VNode<'a>); 5]>,
- }
- impl<'a> ChildIterator<'a> {
- fn new(starter: &'a VNode<'a>, scopes: &'a ScopeArena) -> Self {
- Self {
- scopes,
- stack: smallvec::smallvec![(0, starter)],
- }
- }
- }
- impl<'a> Iterator for ChildIterator<'a> {
- type Item = &'a VNode<'a>;
- fn next(&mut self) -> Option<&'a VNode<'a>> {
- let mut should_pop = false;
- let mut returned_node = None;
- let mut should_push = None;
- while returned_node.is_none() {
- if let Some((count, node)) = self.stack.last_mut() {
- match node {
- // We can only exit our looping when we get "real" nodes
- VNode::Element(_) | VNode::Text(_) => {
- // We've recursed INTO an element/text
- // We need to recurse *out* of it and move forward to the next
- should_pop = true;
- returned_node = Some(&**node);
- }
- // If we get a fragment we push the next child
- VNode::Fragment(frag) => {
- let _count = *count as usize;
- if _count >= frag.children.len() {
- should_pop = true;
- } else {
- should_push = Some(&frag.children[_count]);
- }
- }
- // Immediately abort suspended nodes - can't do anything with them yet
- // VNode::Suspended => should_pop = true,
- VNode::Suspended => todo!(),
- // For components, we load their root and push them onto the stack
- VNode::Component(sc) => {
- let scope = self.scopes.try_get(sc.ass_scope.borrow().unwrap()).unwrap();
- // Simply swap the current node on the stack with the root of the component
- *node = scope.root();
- }
- }
- } else {
- // If there's no more items on the stack, we're done!
- return None;
- }
- if should_pop {
- self.stack.pop();
- if let Some((id, _)) = self.stack.last_mut() {
- *id += 1;
- }
- should_pop = false;
- }
- if let Some(push) = should_push {
- self.stack.push((0, push));
- should_push = None;
- }
- }
- returned_node
- }
- }
- mod tests {
- use super::*;
- use crate as dioxus;
- use crate::innerlude::*;
- use crate::util::DebugDom;
- use dioxus_core_macro::*;
- #[test]
- fn test_child_iterator() {
- static App: FC<()> = |cx| {
- cx.render(rsx! {
- Fragment {
- div {}
- h1 {}
- h2 {}
- h3 {}
- Fragment {
- "internal node"
- div {
- "baller text shouldn't show up"
- }
- p {
- }
- Fragment {
- Fragment {
- "wow you really like framgents"
- Fragment {
- "why are you like this"
- Fragment {
- "just stop now please"
- Fragment {
- "this hurts"
- Fragment {
- "who needs this many fragments?????"
- Fragment {
- "just... fine..."
- Fragment {
- "no"
- }
- }
- }
- }
- }
- }
- }
- }
- }
- "my text node 1"
- "my text node 2"
- "my text node 3"
- "my text node 4"
- }
- })
- };
- let mut dom = VirtualDom::new(App);
- let mut renderer = DebugDom::new();
- dom.rebuild(&mut renderer).unwrap();
- let starter = dom.base_scope().root();
- let ite = ChildIterator::new(starter, &dom.components);
- for child in ite {
- match child {
- VNode::Element(el) => println!("Found: Element {}", el.tag_name),
- VNode::Text(t) => println!("Found: Text {:?}", t.text),
- // These would represent failing cases.
- VNode::Fragment(_) => panic!("Found: Fragment"),
- VNode::Suspended => panic!("Found: Suspended"),
- VNode::Component(_) => panic!("Found: Component"),
- }
- }
- }
- }
|