123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982 |
- use crate::{
- any_props::AnyProps,
- arena::ElementId,
- innerlude::{DirtyScope, VComponent, VPlaceholder, VText},
- mutations::Mutation,
- nodes::RenderReturn,
- nodes::{DynamicNode, VNode},
- scopes::ScopeId,
- virtual_dom::VirtualDom,
- Attribute, AttributeValue, TemplateNode,
- };
- use rustc_hash::{FxHashMap, FxHashSet};
- use DynamicNode::*;
- impl<'b> VirtualDom {
- pub(super) fn diff_scope(&mut self, scope: ScopeId) {
- let scope_state = &mut self.scopes[scope.0];
- self.scope_stack.push(scope);
- unsafe {
- // Load the old and new bump arenas
- let old = scope_state
- .previous_frame()
- .try_load_node()
- .expect("Call rebuild before diffing");
- let new = scope_state
- .current_frame()
- .try_load_node()
- .expect("Call rebuild before diffing");
- use RenderReturn::{Async, Sync};
- match (old, new) {
- (Sync(Some(l)), Sync(Some(r))) => self.diff_node(l, r),
- // Err cases
- (Sync(Some(l)), Sync(None)) => self.diff_ok_to_err(l),
- (Sync(None), Sync(Some(r))) => self.diff_err_to_ok(r),
- (Sync(None), Sync(None)) => { /* nothing */ }
- // Async
- (Sync(Some(_l)), Async(_)) => todo!(),
- (Sync(None), Async(_)) => todo!(),
- (Async(_), Sync(Some(_r))) => todo!(),
- (Async(_), Sync(None)) => { /* nothing */ }
- (Async(_), Async(_)) => { /* nothing */ }
- };
- }
- self.scope_stack.pop();
- }
- fn diff_ok_to_err(&mut self, _l: &'b VNode<'b>) {}
- fn diff_err_to_ok(&mut self, _l: &'b VNode<'b>) {}
- fn diff_node(&mut self, left_template: &'b VNode<'b>, right_template: &'b VNode<'b>) {
- // If the templates are the same, we don't need to do anything, nor do we want to
- if templates_are_the_same(left_template, right_template) {
- return;
- }
- // If the templates are different by name, we need to replace the entire template
- if templates_are_different(left_template, right_template) {
- return self.light_diff_templates(left_template, right_template);
- }
- // If the templates are the same, we can diff the attributes and children
- // Start with the attributes
- left_template
- .dynamic_attrs
- .iter()
- .zip(right_template.dynamic_attrs.iter())
- .for_each(|(left_attr, right_attr)| {
- // Move over the ID from the old to the new
- right_attr
- .mounted_element
- .set(left_attr.mounted_element.get());
- // We want to make sure anything listener that gets pulled is valid
- if let AttributeValue::Listener(_) = right_attr.value {
- self.update_template(left_attr.mounted_element.get(), right_template);
- }
- // If the attributes are different (or volatile), we need to update them
- if left_attr.value != right_attr.value || left_attr.volatile {
- self.update_attribute(right_attr, left_attr);
- }
- });
- // Now diff the dynamic nodes
- left_template
- .dynamic_nodes
- .iter()
- .zip(right_template.dynamic_nodes.iter())
- .enumerate()
- .for_each(|(idx, (left_node, right_node))| {
- self.diff_dynamic_node(left_node, right_node, right_template, idx);
- });
- // Make sure the roots get transferred over while we're here
- left_template
- .root_ids
- .iter()
- .zip(right_template.root_ids.iter())
- .for_each(|(left, right)| right.set(left.get()));
- }
- fn diff_dynamic_node(
- &mut self,
- left_node: &'b DynamicNode<'b>,
- right_node: &'b DynamicNode<'b>,
- node: &'b VNode<'b>,
- idx: usize,
- ) {
- match (left_node, right_node) {
- (Text(left), Text(right)) => self.diff_vtext(left, right, node),
- (Fragment(left), Fragment(right)) => self.diff_non_empty_fragment(left, right),
- (Placeholder(left), Placeholder(right)) => right.id.set(left.id.get()),
- (Component(left), Component(right)) => self.diff_vcomponent(left, right, node, idx),
- (Placeholder(left), Fragment(right)) => self.replace_placeholder(left, right),
- (Fragment(left), Placeholder(right)) => self.node_to_placeholder(left, right),
- _ => todo!("This is an usual custom case for dynamic nodes. We don't know how to handle it yet."),
- };
- }
- fn update_attribute(&mut self, right_attr: &Attribute, left_attr: &Attribute) {
- // todo: add more types of attribute values
- match right_attr.value {
- AttributeValue::Text(text) => {
- let name = unsafe { std::mem::transmute(left_attr.name) };
- let value = unsafe { std::mem::transmute(text) };
- self.mutations.push(Mutation::SetAttribute {
- id: left_attr.mounted_element.get(),
- ns: right_attr.namespace,
- name,
- value,
- });
- }
- // todo: more types of attribute values
- _ => todo!("other attribute types"),
- }
- }
- fn diff_vcomponent(
- &mut self,
- left: &'b VComponent<'b>,
- right: &'b VComponent<'b>,
- right_template: &'b VNode<'b>,
- idx: usize,
- ) {
- if std::ptr::eq(left, right) {
- return;
- }
- // Replace components that have different render fns
- if left.render_fn != right.render_fn {
- return self.replace_vcomponent(right_template, right, idx, left);
- }
- // Make sure the new vcomponent has the right scopeid associated to it
- let scope_id = left.scope.get().unwrap();
- right.scope.set(Some(scope_id));
- // copy out the box for both
- let old = self.scopes[scope_id.0].props.as_ref();
- let new: Box<dyn AnyProps> = right.props.take().unwrap();
- let new: Box<dyn AnyProps> = unsafe { std::mem::transmute(new) };
- // If the props are static, then we try to memoize by setting the new with the old
- // The target scopestate still has the reference to the old props, so there's no need to update anything
- // This also implicitly drops the new props since they're not used
- if left.static_props && unsafe { old.as_ref().unwrap().memoize(new.as_ref()) } {
- return;
- }
- // First, move over the props from the old to the new, dropping old props in the process
- self.scopes[scope_id.0].props = Some(new);
- // Now run the component and diff it
- self.run_scope(scope_id);
- self.diff_scope(scope_id);
- self.dirty_scopes.remove(&DirtyScope {
- height: self.scopes[scope_id.0].height,
- id: scope_id,
- });
- }
- fn replace_vcomponent(
- &mut self,
- right_template: &'b VNode<'b>,
- right: &'b VComponent<'b>,
- idx: usize,
- left: &'b VComponent<'b>,
- ) {
- let m = self.create_component_node(right_template, right, idx);
- self.remove_component_node(left, true);
- // We want to optimize the replace case to use one less mutation if possible
- // Since mutations are done in reverse, the last node removed will be the first in the stack
- // Instead of *just* removing it, we can use the replace mutation
- match self.mutations.edits.pop().unwrap() {
- Mutation::Remove { id } => self.mutations.push(Mutation::ReplaceWith { id, m }),
- at => panic!("Expected remove mutation from remove_node {:#?}", at),
- };
- }
- /// Lightly diff the two templates, checking only their roots.
- ///
- /// The goal here is to preserve any existing component state that might exist. This is to preserve some React-like
- /// behavior where the component state is preserved when the component is re-rendered.
- ///
- /// This is implemented by iterating each root, checking if the component is the same, if it is, then diff it.
- ///
- /// We then pass the new template through "create" which should be smart enough to skip roots.
- ///
- /// Currently, we only handle the case where the roots are the same component list. If there's any sort of deviation,
- /// IE more nodes, less nodes, different nodes, or expressions, then we just replace the whole thing.
- ///
- /// This is mostly implemented to help solve the issue where the same component is rendered under two different
- /// conditions:
- ///
- /// ```rust, ignore
- /// if enabled {
- /// rsx!{ Component { enabled_sign: "abc" } }
- /// } else {
- /// rsx!{ Component { enabled_sign: "xyz" } }
- /// }
- /// ```
- ///
- /// However, we should not that it's explicit in the docs that this is not a guarantee. If you need to preserve state,
- /// then you should be passing in separate props instead.
- ///
- /// ```rust, ignore
- /// let props = if enabled {
- /// ComponentProps { enabled_sign: "abc" }
- /// } else {
- /// ComponentProps { enabled_sign: "xyz" }
- /// };
- ///
- /// rsx! {
- /// Component { ..props }
- /// }
- /// ```
- fn light_diff_templates(&mut self, left: &'b VNode<'b>, right: &'b VNode<'b>) {
- match matching_components(left, right) {
- None => self.replace(left, [right]),
- Some(components) => components
- .into_iter()
- .enumerate()
- .for_each(|(idx, (l, r))| self.diff_vcomponent(l, r, right, idx)),
- }
- }
- /// Diff the two text nodes
- ///
- /// This just moves the ID of the old node over to the new node, and then sets the text of the new node if it's
- /// different.
- fn diff_vtext(&mut self, left: &'b VText<'b>, right: &'b VText<'b>, node: &'b VNode<'b>) {
- let id = left
- .id
- .get()
- .unwrap_or_else(|| self.next_element(node, &[0]));
- right.id.set(Some(id));
- if left.value != right.value {
- let value = unsafe { std::mem::transmute(right.value) };
- self.mutations.push(Mutation::SetText { id, value });
- }
- }
- fn diff_non_empty_fragment(&mut self, old: &'b [VNode<'b>], new: &'b [VNode<'b>]) {
- let new_is_keyed = new[0].key.is_some();
- let old_is_keyed = old[0].key.is_some();
- debug_assert!(
- new.iter().all(|n| n.key.is_some() == new_is_keyed),
- "all siblings must be keyed or all siblings must be non-keyed"
- );
- debug_assert!(
- old.iter().all(|o| o.key.is_some() == old_is_keyed),
- "all siblings must be keyed or all siblings must be non-keyed"
- );
- if new_is_keyed && old_is_keyed {
- self.diff_keyed_children(old, new);
- } else {
- self.diff_non_keyed_children(old, new);
- }
- }
- // Diff children that are not keyed.
- //
- // The parent must be on the top of the change list stack when entering this
- // function:
- //
- // [... parent]
- //
- // the change list stack is in the same state when this function returns.
- fn diff_non_keyed_children(&mut self, old: &'b [VNode<'b>], new: &'b [VNode<'b>]) {
- use std::cmp::Ordering;
- // Handled these cases in `diff_children` before calling this function.
- debug_assert!(!new.is_empty());
- debug_assert!(!old.is_empty());
- match old.len().cmp(&new.len()) {
- Ordering::Greater => self.remove_nodes(&old[new.len()..]),
- Ordering::Less => self.create_and_insert_after(&new[old.len()..], old.last().unwrap()),
- Ordering::Equal => {}
- }
- for (new, old) in new.iter().zip(old.iter()) {
- self.diff_node(old, new);
- }
- }
- // Diffing "keyed" children.
- //
- // With keyed children, we care about whether we delete, move, or create nodes
- // versus mutate existing nodes in place. Presumably there is some sort of CSS
- // transition animation that makes the virtual DOM diffing algorithm
- // observable. By specifying keys for nodes, we know which virtual DOM nodes
- // must reuse (or not reuse) the same physical DOM nodes.
- //
- // This is loosely based on Inferno's keyed patching implementation. However, we
- // have to modify the algorithm since we are compiling the diff down into change
- // list instructions that will be executed later, rather than applying the
- // changes to the DOM directly as we compare virtual DOMs.
- //
- // https://github.com/infernojs/inferno/blob/36fd96/packages/inferno/src/DOM/patching.ts#L530-L739
- //
- // The stack is empty upon entry.
- fn diff_keyed_children(&mut self, old: &'b [VNode<'b>], new: &'b [VNode<'b>]) {
- if cfg!(debug_assertions) {
- let mut keys = rustc_hash::FxHashSet::default();
- let mut assert_unique_keys = |children: &'b [VNode<'b>]| {
- keys.clear();
- for child in children {
- let key = child.key;
- debug_assert!(
- key.is_some(),
- "if any sibling is keyed, all siblings must be keyed"
- );
- keys.insert(key);
- }
- debug_assert_eq!(
- children.len(),
- keys.len(),
- "keyed siblings must each have a unique key"
- );
- };
- assert_unique_keys(old);
- assert_unique_keys(new);
- }
- // First up, we diff all the nodes with the same key at the beginning of the
- // children.
- //
- // `shared_prefix_count` is the count of how many nodes at the start of
- // `new` and `old` share the same keys.
- let (left_offset, right_offset) = match self.diff_keyed_ends(old, new) {
- Some(count) => count,
- None => return,
- };
- // Ok, we now hopefully have a smaller range of children in the middle
- // within which to re-order nodes with the same keys, remove old nodes with
- // now-unused keys, and create new nodes with fresh keys.
- let old_middle = &old[left_offset..(old.len() - right_offset)];
- let new_middle = &new[left_offset..(new.len() - right_offset)];
- debug_assert!(
- !((old_middle.len() == new_middle.len()) && old_middle.is_empty()),
- "keyed children must have the same number of children"
- );
- if new_middle.is_empty() {
- // remove the old elements
- self.remove_nodes(old_middle);
- } else if old_middle.is_empty() {
- // there were no old elements, so just create the new elements
- // we need to find the right "foothold" though - we shouldn't use the "append" at all
- if left_offset == 0 {
- // insert at the beginning of the old list
- let foothold = &old[old.len() - right_offset];
- self.create_and_insert_before(new_middle, foothold);
- } else if right_offset == 0 {
- // insert at the end the old list
- let foothold = old.last().unwrap();
- self.create_and_insert_after(new_middle, foothold);
- } else {
- // inserting in the middle
- let foothold = &old[left_offset - 1];
- self.create_and_insert_after(new_middle, foothold);
- }
- } else {
- self.diff_keyed_middle(old_middle, new_middle);
- }
- }
- /// Diff both ends of the children that share keys.
- ///
- /// Returns a left offset and right offset of that indicates a smaller section to pass onto the middle diffing.
- ///
- /// If there is no offset, then this function returns None and the diffing is complete.
- fn diff_keyed_ends(
- &mut self,
- old: &'b [VNode<'b>],
- new: &'b [VNode<'b>],
- ) -> Option<(usize, usize)> {
- let mut left_offset = 0;
- for (old, new) in old.iter().zip(new.iter()) {
- // abort early if we finally run into nodes with different keys
- if old.key != new.key {
- break;
- }
- self.diff_node(old, new);
- left_offset += 1;
- }
- // If that was all of the old children, then create and append the remaining
- // new children and we're finished.
- if left_offset == old.len() {
- self.create_and_insert_after(&new[left_offset..], old.last().unwrap());
- return None;
- }
- // And if that was all of the new children, then remove all of the remaining
- // old children and we're finished.
- if left_offset == new.len() {
- self.remove_nodes(&old[left_offset..]);
- return None;
- }
- // if the shared prefix is less than either length, then we need to walk backwards
- let mut right_offset = 0;
- for (old, new) in old.iter().rev().zip(new.iter().rev()) {
- // abort early if we finally run into nodes with different keys
- if old.key != new.key {
- break;
- }
- self.diff_node(old, new);
- right_offset += 1;
- }
- Some((left_offset, right_offset))
- }
- // The most-general, expensive code path for keyed children diffing.
- //
- // We find the longest subsequence within `old` of children that are relatively
- // ordered the same way in `new` (via finding a longest-increasing-subsequence
- // of the old child's index within `new`). The children that are elements of
- // this subsequence will remain in place, minimizing the number of DOM moves we
- // will have to do.
- //
- // Upon entry to this function, the change list stack must be empty.
- //
- // This function will load the appropriate nodes onto the stack and do diffing in place.
- //
- // Upon exit from this function, it will be restored to that same self.
- #[allow(clippy::too_many_lines)]
- fn diff_keyed_middle(&mut self, old: &'b [VNode<'b>], new: &'b [VNode<'b>]) {
- /*
- 1. Map the old keys into a numerical ordering based on indices.
- 2. Create a map of old key to its index
- 3. Map each new key to the old key, carrying over the old index.
- - IE if we have ABCD becomes BACD, our sequence would be 1,0,2,3
- - if we have ABCD to ABDE, our sequence would be 0,1,3,MAX because E doesn't exist
- now, we should have a list of integers that indicates where in the old list the new items map to.
- 4. Compute the LIS of this list
- - this indicates the longest list of new children that won't need to be moved.
- 5. Identify which nodes need to be removed
- 6. Identify which nodes will need to be diffed
- 7. Going along each item in the new list, create it and insert it before the next closest item in the LIS.
- - if the item already existed, just move it to the right place.
- 8. Finally, generate instructions to remove any old children.
- 9. Generate instructions to finally diff children that are the same between both
- */
- // 0. Debug sanity checks
- // Should have already diffed the shared-key prefixes and suffixes.
- debug_assert_ne!(new.first().map(|i| i.key), old.first().map(|i| i.key));
- debug_assert_ne!(new.last().map(|i| i.key), old.last().map(|i| i.key));
- // 1. Map the old keys into a numerical ordering based on indices.
- // 2. Create a map of old key to its index
- // IE if the keys were A B C, then we would have (A, 1) (B, 2) (C, 3).
- let old_key_to_old_index = old
- .iter()
- .enumerate()
- .map(|(i, o)| (o.key.unwrap(), i))
- .collect::<FxHashMap<_, _>>();
- let mut shared_keys = FxHashSet::default();
- // 3. Map each new key to the old key, carrying over the old index.
- let new_index_to_old_index = new
- .iter()
- .map(|node| {
- let key = node.key.unwrap();
- if let Some(&index) = old_key_to_old_index.get(&key) {
- shared_keys.insert(key);
- index
- } else {
- u32::MAX as usize
- }
- })
- .collect::<Vec<_>>();
- // If none of the old keys are reused by the new children, then we remove all the remaining old children and
- // create the new children afresh.
- if shared_keys.is_empty() {
- if old.get(0).is_some() {
- self.remove_nodes(&old[1..]);
- self.replace(&old[0], new);
- } else {
- // I think this is wrong - why are we appending?
- // only valid of the if there are no trailing elements
- // self.create_and_append_children(new);
- todo!("we should never be appending - just creating N");
- }
- return;
- }
- // remove any old children that are not shared
- // todo: make this an iterator
- for child in old {
- let key = child.key.unwrap();
- if !shared_keys.contains(&key) {
- self.remove_node(child, true);
- }
- }
- // 4. Compute the LIS of this list
- let mut lis_sequence = Vec::default();
- lis_sequence.reserve(new_index_to_old_index.len());
- let mut predecessors = vec![0; new_index_to_old_index.len()];
- let mut starts = vec![0; new_index_to_old_index.len()];
- longest_increasing_subsequence::lis_with(
- &new_index_to_old_index,
- &mut lis_sequence,
- |a, b| a < b,
- &mut predecessors,
- &mut starts,
- );
- // the lis comes out backwards, I think. can't quite tell.
- lis_sequence.sort_unstable();
- // if a new node gets u32 max and is at the end, then it might be part of our LIS (because u32 max is a valid LIS)
- if lis_sequence.last().map(|f| new_index_to_old_index[*f]) == Some(u32::MAX as usize) {
- lis_sequence.pop();
- }
- for idx in &lis_sequence {
- self.diff_node(&old[new_index_to_old_index[*idx]], &new[*idx]);
- }
- let mut nodes_created = 0;
- // add mount instruction for the first items not covered by the lis
- let last = *lis_sequence.last().unwrap();
- if last < (new.len() - 1) {
- for (idx, new_node) in new[(last + 1)..].iter().enumerate() {
- let new_idx = idx + last + 1;
- let old_index = new_index_to_old_index[new_idx];
- if old_index == u32::MAX as usize {
- nodes_created += self.create(new_node);
- } else {
- self.diff_node(&old[old_index], new_node);
- nodes_created += self.push_all_real_nodes(new_node);
- }
- }
- let id = self.find_last_element(&new[last]);
- self.mutations.push(Mutation::InsertAfter {
- id,
- m: nodes_created,
- });
- nodes_created = 0;
- }
- // for each spacing, generate a mount instruction
- let mut lis_iter = lis_sequence.iter().rev();
- let mut last = *lis_iter.next().unwrap();
- for next in lis_iter {
- if last - next > 1 {
- for (idx, new_node) in new[(next + 1)..last].iter().enumerate() {
- let new_idx = idx + next + 1;
- let old_index = new_index_to_old_index[new_idx];
- if old_index == u32::MAX as usize {
- nodes_created += self.create(new_node);
- } else {
- self.diff_node(&old[old_index], new_node);
- nodes_created += self.push_all_real_nodes(new_node);
- }
- }
- let id = self.find_first_element(&new[last]);
- self.mutations.push(Mutation::InsertBefore {
- id,
- m: nodes_created,
- });
- nodes_created = 0;
- }
- last = *next;
- }
- // add mount instruction for the last items not covered by the lis
- let first_lis = *lis_sequence.first().unwrap();
- if first_lis > 0 {
- for (idx, new_node) in new[..first_lis].iter().enumerate() {
- let old_index = new_index_to_old_index[idx];
- if old_index == u32::MAX as usize {
- nodes_created += self.create(new_node);
- } else {
- self.diff_node(&old[old_index], new_node);
- nodes_created += self.push_all_real_nodes(new_node);
- }
- }
- let id = self.find_first_element(&new[first_lis]);
- self.mutations.push(Mutation::InsertBefore {
- id,
- m: nodes_created,
- });
- }
- }
- /// Push all the real nodes on the stack
- fn push_all_real_nodes(&mut self, node: &'b VNode<'b>) -> usize {
- node.template
- .roots
- .iter()
- .enumerate()
- .map(|(idx, _)| {
- let node = match node.dynamic_root(idx) {
- Some(node) => node,
- None => {
- self.mutations.push(Mutation::PushRoot {
- id: node.root_ids[idx].get().unwrap(),
- });
- return 1;
- }
- };
- match node {
- Text(t) => {
- self.mutations.push(Mutation::PushRoot {
- id: t.id.get().unwrap(),
- });
- 1
- }
- Placeholder(t) => {
- self.mutations.push(Mutation::PushRoot {
- id: t.id.get().unwrap(),
- });
- 1
- }
- Fragment(nodes) => nodes
- .iter()
- .map(|node| self.push_all_real_nodes(node))
- .count(),
- Component(comp) => {
- let scope = comp.scope.get().unwrap();
- match unsafe { self.scopes[scope.0].root_node().extend_lifetime_ref() } {
- RenderReturn::Sync(Some(node)) => self.push_all_real_nodes(node),
- _ => todo!(),
- }
- }
- }
- })
- .count()
- }
- fn create_children(&mut self, nodes: impl IntoIterator<Item = &'b VNode<'b>>) -> usize {
- nodes
- .into_iter()
- .fold(0, |acc, child| acc + self.create(child))
- }
- fn create_and_insert_before(&mut self, new: &'b [VNode<'b>], before: &'b VNode<'b>) {
- let m = self.create_children(new);
- let id = self.find_first_element(before);
- self.mutations.push(Mutation::InsertBefore { id, m })
- }
- fn create_and_insert_after(&mut self, new: &'b [VNode<'b>], after: &'b VNode<'b>) {
- let m = self.create_children(new);
- let id = self.find_last_element(after);
- self.mutations.push(Mutation::InsertAfter { id, m })
- }
- /// Simply replace a placeholder with a list of nodes
- fn replace_placeholder(&mut self, l: &'b VPlaceholder, r: &'b [VNode<'b>]) {
- let m = self.create_children(r);
- let id = l.id.get().unwrap();
- self.mutations.push(Mutation::ReplaceWith { id, m });
- self.reclaim(id);
- }
- fn replace(&mut self, left: &'b VNode<'b>, right: impl IntoIterator<Item = &'b VNode<'b>>) {
- let m = self.create_children(right);
- let pre_edits = self.mutations.edits.len();
- self.remove_node(left, true);
- // We should always have a remove mutation
- // Eventually we don't want to generate placeholders, so this might not be true. But it's true today
- assert!(self.mutations.edits.len() > pre_edits);
- // We want to optimize the replace case to use one less mutation if possible
- // Since mutations are done in reverse, the last node removed will be the first in the stack
- // Instead of *just* removing it, we can use the replace mutation
- match self.mutations.edits.pop().unwrap() {
- Mutation::Remove { id } => self.mutations.push(Mutation::ReplaceWith { id, m }),
- _ => panic!("Expected remove mutation from remove_node"),
- };
- }
- fn node_to_placeholder(&mut self, l: &'b [VNode<'b>], r: &'b VPlaceholder) {
- // Create the placeholder first, ensuring we get a dedicated ID for the placeholder
- let placeholder = self.next_element(&l[0], &[]);
- r.id.set(Some(placeholder));
- self.mutations
- .push(Mutation::CreatePlaceholder { id: placeholder });
- self.remove_nodes(l);
- // We want to optimize the replace case to use one less mutation if possible
- // Since mutations are done in reverse, the last node removed will be the first in the stack
- // Instead of *just* removing it, we can use the replace mutation
- match self.mutations.edits.pop().unwrap() {
- Mutation::Remove { id } => self.mutations.push(Mutation::ReplaceWith { id, m: 1 }),
- _ => panic!("Expected remove mutation from remove_node"),
- };
- }
- /// Remove these nodes from the dom
- /// Wont generate mutations for the inner nodes
- fn remove_nodes(&mut self, nodes: &'b [VNode<'b>]) {
- nodes
- .iter()
- .rev()
- .for_each(|node| self.remove_node(node, true));
- }
- fn remove_node(&mut self, node: &'b VNode<'b>, gen_muts: bool) {
- // Clean up any attributes that have claimed a static node as dynamic for mount/unmounta
- // Will not generate mutations!
- self.reclaim_attributes(node);
- // Remove the nested dynamic nodes
- // We don't generate mutations for these, as they will be removed by the parent (in the next line)
- // But we still need to make sure to reclaim them from the arena and drop their hooks, etc
- self.remove_nested_dyn_nodes(node);
- // Clean up the roots, assuming we need to generate mutations for these
- // This is done last in order to preserve Node ID reclaim order (reclaim in reverse order of claim)
- self.reclaim_roots(node, gen_muts);
- }
- fn reclaim_roots(&mut self, node: &VNode, gen_muts: bool) {
- for (idx, _) in node.template.roots.iter().enumerate() {
- if let Some(dy) = node.dynamic_root(idx) {
- self.remove_dynamic_node(dy, gen_muts);
- } else {
- let id = node.root_ids[idx].get().unwrap();
- if gen_muts {
- self.mutations.push(Mutation::Remove { id });
- }
- self.reclaim(id);
- }
- }
- }
- fn reclaim_attributes(&mut self, node: &VNode) {
- let mut id = None;
- for (idx, attr) in node.dynamic_attrs.iter().enumerate() {
- // We'll clean up the root nodes either way, so don't worry
- if node.template.attr_paths[idx].len() == 1 {
- continue;
- }
- let next_id = attr.mounted_element.get();
- if id == Some(next_id) {
- continue;
- }
- id = Some(next_id);
- self.reclaim(next_id);
- }
- }
- fn remove_nested_dyn_nodes(&mut self, node: &VNode) {
- for (idx, dyn_node) in node.dynamic_nodes.iter().enumerate() {
- // Roots are cleaned up automatically above
- if node.template.node_paths[idx].len() == 1 {
- continue;
- }
- self.remove_dynamic_node(dyn_node, false);
- }
- }
- fn remove_dynamic_node(&mut self, node: &DynamicNode, gen_muts: bool) {
- match node {
- Component(comp) => self.remove_component_node(comp, gen_muts),
- Text(t) => self.remove_text_node(t, gen_muts),
- Placeholder(t) => self.remove_placeholder(t, gen_muts),
- Fragment(nodes) => nodes
- .iter()
- .for_each(|node| self.remove_node(node, gen_muts)),
- };
- }
- fn remove_placeholder(&mut self, t: &VPlaceholder, gen_muts: bool) {
- if let Some(id) = t.id.take() {
- if gen_muts {
- self.mutations.push(Mutation::Remove { id });
- }
- self.reclaim(id)
- }
- }
- fn remove_text_node(&mut self, t: &VText, gen_muts: bool) {
- if let Some(id) = t.id.take() {
- if gen_muts {
- self.mutations.push(Mutation::Remove { id });
- }
- self.reclaim(id)
- }
- }
- fn remove_component_node(&mut self, comp: &VComponent, gen_muts: bool) {
- let scope = comp.scope.take().unwrap();
- match unsafe { self.scopes[scope.0].root_node().extend_lifetime_ref() } {
- RenderReturn::Sync(Some(t)) => {
- println!("Removing component node sync {:?}", gen_muts);
- self.remove_node(t, gen_muts)
- }
- _ => todo!("cannot handle nonstandard nodes"),
- };
- let props = self.scopes[scope.0].props.take();
- self.dirty_scopes.remove(&DirtyScope {
- height: self.scopes[scope.0].height,
- id: scope,
- });
- *comp.props.borrow_mut() = unsafe { std::mem::transmute(props) };
- // make sure to wipe any of its props and listeners
- self.ensure_drop_safety(scope);
- self.scopes.remove(scope.0);
- }
- fn find_first_element(&self, node: &'b VNode<'b>) -> ElementId {
- match node.dynamic_root(0) {
- None => node.root_ids[0].get().unwrap(),
- Some(Text(t)) => t.id.get().unwrap(),
- Some(Fragment(t)) => self.find_first_element(&t[0]),
- Some(Placeholder(t)) => t.id.get().unwrap(),
- Some(Component(comp)) => {
- let scope = comp.scope.get().unwrap();
- match unsafe { self.scopes[scope.0].root_node().extend_lifetime_ref() } {
- RenderReturn::Sync(Some(t)) => self.find_first_element(t),
- _ => todo!("cannot handle nonstandard nodes"),
- }
- }
- }
- }
- fn find_last_element(&self, node: &'b VNode<'b>) -> ElementId {
- match node.dynamic_root(node.template.roots.len() - 1) {
- None => node.root_ids.last().unwrap().get().unwrap(),
- Some(Text(t)) => t.id.get().unwrap(),
- Some(Fragment(t)) => self.find_last_element(t.last().unwrap()),
- Some(Placeholder(t)) => t.id.get().unwrap(),
- Some(Component(comp)) => {
- let scope = comp.scope.get().unwrap();
- match unsafe { self.scopes[scope.0].root_node().extend_lifetime_ref() } {
- RenderReturn::Sync(Some(t)) => self.find_last_element(t),
- _ => todo!("cannot handle nonstandard nodes"),
- }
- }
- }
- }
- }
- /// Are the templates the same?
- ///
- /// We need to check for the obvious case, and the non-obvious case where the template as cloned
- ///
- /// We use the pointer of the dynamic_node list in this case
- fn templates_are_the_same<'b>(left_template: &'b VNode<'b>, right_template: &'b VNode<'b>) -> bool {
- std::ptr::eq(left_template, right_template)
- || std::ptr::eq(left_template.dynamic_nodes, right_template.dynamic_nodes)
- }
- fn templates_are_different(left_template: &VNode, right_template: &VNode) -> bool {
- !std::ptr::eq(left_template.template.name, right_template.template.name)
- && left_template.template.name != right_template.template.name
- }
- fn matching_components<'a>(
- left: &'a VNode<'a>,
- right: &'a VNode<'a>,
- ) -> Option<Vec<(&'a VComponent<'a>, &'a VComponent<'a>)>> {
- if left.template.roots.len() != right.template.roots.len() {
- return None;
- }
- // run through the components, ensuring they're the same
- left.template
- .roots
- .iter()
- .zip(right.template.roots.iter())
- .map(|(l, r)| {
- let (l, r) = match (l, r) {
- (TemplateNode::Dynamic { id: l }, TemplateNode::Dynamic { id: r }) => (l, r),
- _ => return None,
- };
- let (l, r) = match (&left.dynamic_nodes[*l], &right.dynamic_nodes[*r]) {
- (Component(l), Component(r)) => (l, r),
- _ => return None,
- };
- Some((l, r))
- })
- .collect()
- }
- /// We can apply various optimizations to dynamic nodes that are the single child of their parent.
- ///
- /// IE
- /// - for text - we can use SetTextContent
- /// - for clearning children we can use RemoveChildren
- /// - for appending children we can use AppendChildren
- #[allow(dead_code)]
- fn is_dyn_node_only_child(node: &VNode, idx: usize) -> bool {
- let path = node.template.node_paths[idx];
- // use a loop to index every static node's children until the path has run out
- // only break if the last path index is a dynamic node
- let mut static_node = &node.template.roots[path[0] as usize];
- for i in 1..path.len() - 1 {
- match static_node {
- TemplateNode::Element { children, .. } => static_node = &children[path[i] as usize],
- _ => return false,
- }
- }
- match static_node {
- TemplateNode::Element { children, .. } => children.len() == 1,
- _ => false,
- }
- }
|