123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735 |
- use std::any::Any;
- use crate::factory::RenderReturn;
- use crate::innerlude::{Mutations, VComponent, VFragment, VText};
- use crate::virtual_dom::VirtualDom;
- use crate::{Attribute, AttributeValue, TemplateNode};
- use crate::any_props::VProps;
- use DynamicNode::*;
- use crate::mutations::Mutation;
- use crate::nodes::{DynamicNode, Template, TemplateId};
- use crate::scopes::Scope;
- use crate::{
- any_props::AnyProps,
- arena::ElementId,
- bump_frame::BumpFrame,
- nodes::VNode,
- scopes::{ScopeId, ScopeState},
- };
- use fxhash::{FxHashMap, FxHashSet};
- use slab::Slab;
- #[derive(Debug, Clone, PartialEq, Eq, Hash)]
- pub struct DirtyScope {
- pub height: u32,
- pub id: ScopeId,
- }
- impl PartialOrd for DirtyScope {
- fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
- Some(self.height.cmp(&other.height))
- }
- }
- impl Ord for DirtyScope {
- fn cmp(&self, other: &Self) -> std::cmp::Ordering {
- self.height.cmp(&other.height)
- }
- }
- impl<'b> VirtualDom {
- pub fn diff_scope(&mut self, mutations: &mut Mutations<'b>, scope: ScopeId) {
- let scope_state = &mut self.scopes[scope.0];
- // Load the old and new bump arenas
- let cur_arena = scope_state.current_frame();
- let prev_arena = scope_state.previous_frame();
- // Make sure the nodes arent null (they've been set properly)
- // This is a rough check to make sure we're not entering any UB
- assert_ne!(
- cur_arena.node.get(),
- std::ptr::null_mut(),
- "Call rebuild before diffing"
- );
- assert_ne!(
- prev_arena.node.get(),
- std::ptr::null_mut(),
- "Call rebuild before diffing"
- );
- self.scope_stack.push(scope);
- unsafe {
- let cur_arena = cur_arena.load_node();
- let prev_arena = prev_arena.load_node();
- self.diff_maybe_node(mutations, prev_arena, cur_arena);
- }
- self.scope_stack.pop();
- }
- fn diff_maybe_node(
- &mut self,
- m: &mut Mutations<'b>,
- left: &'b RenderReturn<'b>,
- right: &'b RenderReturn<'b>,
- ) {
- use RenderReturn::{Async, Sync};
- match (left, right) {
- // diff
- (Sync(Some(l)), Sync(Some(r))) => self.diff_vnode(m, l, r),
- // remove old with placeholder
- (Sync(Some(l)), Sync(None)) | (Sync(Some(l)), Async(_)) => {
- //
- let id = self.next_element(l, &[]); // todo!
- m.push(Mutation::CreatePlaceholder { id });
- self.drop_template(m, l, true);
- }
- // remove placeholder with nodes
- (Sync(None), Sync(Some(_))) => {}
- (Async(_), Sync(Some(v))) => {}
- // nothing... just transfer the placeholders over
- (Async(_), Async(_))
- | (Sync(None), Sync(None))
- | (Sync(None), Async(_))
- | (Async(_), Sync(None)) => {}
- }
- }
- pub fn diff_vnode(
- &mut self,
- muts: &mut Mutations<'b>,
- left_template: &'b VNode<'b>,
- right_template: &'b VNode<'b>,
- ) {
- if left_template.template.id != right_template.template.id {
- return self.light_diff_templates(muts, left_template, right_template);
- }
- for (left_attr, right_attr) in left_template
- .dynamic_attrs
- .iter()
- .zip(right_template.dynamic_attrs.iter())
- {
- // Move over the ID from the old to the new
- right_attr
- .mounted_element
- .set(left_attr.mounted_element.get());
- if left_attr.value != right_attr.value {
- // todo: add more types of attribute values
- if let AttributeValue::Text(text) = right_attr.value {
- muts.push(Mutation::SetAttribute {
- id: left_attr.mounted_element.get(),
- name: left_attr.name,
- value: text,
- ns: right_attr.namespace,
- });
- }
- }
- }
- for (left_node, right_node) in left_template
- .dynamic_nodes
- .iter()
- .zip(right_template.dynamic_nodes.iter())
- {
- match (left_node, right_node) {
- (Component(left), Component(right)) => self.diff_vcomponent(muts, left, right),
- (Text(left), Text(right)) => self.diff_vtext(muts, left, right),
- (Fragment(left), Fragment(right)) => self.diff_vfragment(muts, left, right),
- (Placeholder(left), Placeholder(right)) => right.set(left.get()),
- _ => self.replace(muts, left_template, right_template, left_node, right_node),
- };
- }
- }
- fn replace(
- &mut self,
- muts: &mut Mutations<'b>,
- left_template: &'b VNode<'b>,
- right_template: &'b VNode<'b>,
- left: &'b DynamicNode<'b>,
- right: &'b DynamicNode<'b>,
- ) {
- }
- fn diff_vcomponent(
- &mut self,
- muts: &mut Mutations<'b>,
- left: &'b VComponent<'b>,
- right: &'b VComponent<'b>,
- ) {
- // Due to how templates work, we should never get two different components. The only way we could enter
- // this codepath is through "light_diff", but we check there that the pointers are the same
- assert_eq!(left.render_fn, right.render_fn);
- /*
- let left = rsx!{ Component {} }
- let right = rsx!{ Component {} }
- */
- // Make sure the new vcomponent has the right scopeid associated to it
- let scope_id = left.scope.get().unwrap();
- right.scope.set(Some(scope_id));
- // copy out the box for both
- let old = left.props.replace(None).unwrap();
- let new = right.props.replace(None).unwrap();
- // If the props are static, then we try to memoize by setting the new with the old
- // The target scopestate still has the reference to the old props, so there's no need to update anything
- // This also implicitly drops the new props since they're not used
- if left.static_props && unsafe { old.memoize(new.as_ref()) } {
- return right.props.set(Some(old));
- }
- // If the props are dynamic *or* the memoization failed, then we need to diff the props
- // First, move over the props from the old to the new, dropping old props in the process
- self.scopes[scope_id.0].props = unsafe { std::mem::transmute(new.as_ref()) };
- right.props.set(Some(new));
- // Now run the component and diff it
- self.run_scope(scope_id);
- self.diff_scope(muts, scope_id);
- }
- /// Lightly diff the two templates, checking only their roots.
- ///
- /// The goal here is to preserve any existing component state that might exist. This is to preserve some React-like
- /// behavior where the component state is preserved when the component is re-rendered.
- ///
- /// This is implemented by iterating each root, checking if the component is the same, if it is, then diff it.
- ///
- /// We then pass the new template through "create" which should be smart enough to skip roots.
- ///
- /// Currently, we only handle the case where the roots are the same component list. If there's any sort of deviation,
- /// IE more nodes, less nodes, different nodes, or expressions, then we just replace the whole thing.
- ///
- /// This is mostly implemented to help solve the issue where the same component is rendered under two different
- /// conditions:
- ///
- /// ```rust
- /// if enabled {
- /// rsx!{ Component { enabled_sign: "abc" } }
- /// } else {
- /// rsx!{ Component { enabled_sign: "xyz" } }
- /// }
- /// ```
- ///
- /// However, we should not that it's explicit in the docs that this is not a guarantee. If you need to preserve state,
- /// then you should be passing in separate props instead.
- ///
- /// ```
- ///
- /// let props = if enabled {
- /// ComponentProps { enabled_sign: "abc" }
- /// } else {
- /// ComponentProps { enabled_sign: "xyz" }
- /// };
- ///
- /// rsx! {
- /// Component { ..props }
- /// }
- /// ```
- fn light_diff_templates(
- &mut self,
- muts: &mut Mutations<'b>,
- left: &'b VNode<'b>,
- right: &'b VNode<'b>,
- ) {
- if let Some(components) = matching_components(left, right) {
- components
- .into_iter()
- .for_each(|(l, r)| self.diff_vcomponent(muts, l, r))
- }
- }
- /// Diff the two text nodes
- ///
- /// This just moves the ID of the old node over to the new node, and then sets the text of the new node if it's
- /// different.
- fn diff_vtext(&mut self, muts: &mut Mutations<'b>, left: &'b VText<'b>, right: &'b VText<'b>) {
- right.id.set(left.id.get());
- if left.value != right.value {
- muts.push(Mutation::SetText {
- id: left.id.get(),
- value: right.value,
- });
- }
- }
- fn diff_vfragment(
- &mut self,
- muts: &mut Mutations<'b>,
- left: &'b VFragment<'b>,
- right: &'b VFragment<'b>,
- ) {
- // match (left.nodes, right.nodes) {
- // ([], []) => rp.set(lp.get()),
- // ([], _) => {
- // //
- // todo!()
- // }
- // (_, []) => {
- // // if this fragment is the only child of its parent, then we can use the "RemoveAllChildren" mutation
- // todo!()
- // }
- // _ => {
- // let new_is_keyed = new[0].key.is_some();
- // let old_is_keyed = old[0].key.is_some();
- // debug_assert!(
- // new.iter().all(|n| n.key.is_some() == new_is_keyed),
- // "all siblings must be keyed or all siblings must be non-keyed"
- // );
- // debug_assert!(
- // old.iter().all(|o| o.key.is_some() == old_is_keyed),
- // "all siblings must be keyed or all siblings must be non-keyed"
- // );
- // if new_is_keyed && old_is_keyed {
- // self.diff_keyed_children(muts, old, new);
- // } else {
- // self.diff_non_keyed_children(muts, old, new);
- // }
- // }
- // }
- }
- // Diff children that are not keyed.
- //
- // The parent must be on the top of the change list stack when entering this
- // function:
- //
- // [... parent]
- //
- // the change list stack is in the same state when this function returns.
- fn diff_non_keyed_children(
- &mut self,
- muts: &mut Mutations<'b>,
- old: &'b [VNode<'b>],
- new: &'b [VNode<'b>],
- ) {
- use std::cmp::Ordering;
- // Handled these cases in `diff_children` before calling this function.
- debug_assert!(!new.is_empty());
- debug_assert!(!old.is_empty());
- match old.len().cmp(&new.len()) {
- Ordering::Greater => self.remove_nodes(muts, &old[new.len()..]),
- Ordering::Less => todo!(),
- // Ordering::Less => self.create_and_insert_after(&new[old.len()..], old.last().unwrap()),
- Ordering::Equal => {}
- }
- for (new, old) in new.iter().zip(old.iter()) {
- self.diff_vnode(muts, old, new);
- }
- }
- // Diffing "keyed" children.
- //
- // With keyed children, we care about whether we delete, move, or create nodes
- // versus mutate existing nodes in place. Presumably there is some sort of CSS
- // transition animation that makes the virtual DOM diffing algorithm
- // observable. By specifying keys for nodes, we know which virtual DOM nodes
- // must reuse (or not reuse) the same physical DOM nodes.
- //
- // This is loosely based on Inferno's keyed patching implementation. However, we
- // have to modify the algorithm since we are compiling the diff down into change
- // list instructions that will be executed later, rather than applying the
- // changes to the DOM directly as we compare virtual DOMs.
- //
- // https://github.com/infernojs/inferno/blob/36fd96/packages/inferno/src/DOM/patching.ts#L530-L739
- //
- // The stack is empty upon entry.
- fn diff_keyed_children(
- &mut self,
- muts: &mut Mutations<'b>,
- old: &'b [VNode<'b>],
- new: &'b [VNode<'b>],
- ) {
- // if cfg!(debug_assertions) {
- // let mut keys = fxhash::FxHashSet::default();
- // let mut assert_unique_keys = |children: &'b [VNode<'b>]| {
- // keys.clear();
- // for child in children {
- // let key = child.key;
- // debug_assert!(
- // key.is_some(),
- // "if any sibling is keyed, all siblings must be keyed"
- // );
- // keys.insert(key);
- // }
- // debug_assert_eq!(
- // children.len(),
- // keys.len(),
- // "keyed siblings must each have a unique key"
- // );
- // };
- // assert_unique_keys(old);
- // assert_unique_keys(new);
- // }
- // // First up, we diff all the nodes with the same key at the beginning of the
- // // children.
- // //
- // // `shared_prefix_count` is the count of how many nodes at the start of
- // // `new` and `old` share the same keys.
- // let (left_offset, right_offset) = match self.diff_keyed_ends(muts, old, new) {
- // Some(count) => count,
- // None => return,
- // };
- // // Ok, we now hopefully have a smaller range of children in the middle
- // // within which to re-order nodes with the same keys, remove old nodes with
- // // now-unused keys, and create new nodes with fresh keys.
- // let old_middle = &old[left_offset..(old.len() - right_offset)];
- // let new_middle = &new[left_offset..(new.len() - right_offset)];
- // debug_assert!(
- // !((old_middle.len() == new_middle.len()) && old_middle.is_empty()),
- // "keyed children must have the same number of children"
- // );
- // if new_middle.is_empty() {
- // // remove the old elements
- // self.remove_nodes(muts, old_middle);
- // } else if old_middle.is_empty() {
- // // there were no old elements, so just create the new elements
- // // we need to find the right "foothold" though - we shouldn't use the "append" at all
- // if left_offset == 0 {
- // // insert at the beginning of the old list
- // let foothold = &old[old.len() - right_offset];
- // self.create_and_insert_before(new_middle, foothold);
- // } else if right_offset == 0 {
- // // insert at the end the old list
- // let foothold = old.last().unwrap();
- // self.create_and_insert_after(new_middle, foothold);
- // } else {
- // // inserting in the middle
- // let foothold = &old[left_offset - 1];
- // self.create_and_insert_after(new_middle, foothold);
- // }
- // } else {
- // self.diff_keyed_middle(muts, old_middle, new_middle);
- // }
- }
- // /// Diff both ends of the children that share keys.
- // ///
- // /// Returns a left offset and right offset of that indicates a smaller section to pass onto the middle diffing.
- // ///
- // /// If there is no offset, then this function returns None and the diffing is complete.
- // fn diff_keyed_ends(
- // &mut self,
- // muts: &mut Renderer<'b>,
- // old: &'b [VNode<'b>],
- // new: &'b [VNode<'b>],
- // ) -> Option<(usize, usize)> {
- // let mut left_offset = 0;
- // for (old, new) in old.iter().zip(new.iter()) {
- // // abort early if we finally run into nodes with different keys
- // if old.key != new.key {
- // break;
- // }
- // self.diff_node(muts, old, new);
- // left_offset += 1;
- // }
- // // If that was all of the old children, then create and append the remaining
- // // new children and we're finished.
- // if left_offset == old.len() {
- // self.create_and_insert_after(&new[left_offset..], old.last().unwrap());
- // return None;
- // }
- // // And if that was all of the new children, then remove all of the remaining
- // // old children and we're finished.
- // if left_offset == new.len() {
- // self.remove_nodes(muts, &old[left_offset..]);
- // return None;
- // }
- // // if the shared prefix is less than either length, then we need to walk backwards
- // let mut right_offset = 0;
- // for (old, new) in old.iter().rev().zip(new.iter().rev()) {
- // // abort early if we finally run into nodes with different keys
- // if old.key != new.key {
- // break;
- // }
- // self.diff_node(muts, old, new);
- // right_offset += 1;
- // }
- // Some((left_offset, right_offset))
- // }
- // // The most-general, expensive code path for keyed children diffing.
- // //
- // // We find the longest subsequence within `old` of children that are relatively
- // // ordered the same way in `new` (via finding a longest-increasing-subsequence
- // // of the old child's index within `new`). The children that are elements of
- // // this subsequence will remain in place, minimizing the number of DOM moves we
- // // will have to do.
- // //
- // // Upon entry to this function, the change list stack must be empty.
- // //
- // // This function will load the appropriate nodes onto the stack and do diffing in place.
- // //
- // // Upon exit from this function, it will be restored to that same self.
- // #[allow(clippy::too_many_lines)]
- // fn diff_keyed_middle(
- // &mut self,
- // muts: &mut Renderer<'b>,
- // old: &'b [VNode<'b>],
- // new: &'b [VNode<'b>],
- // ) {
- // /*
- // 1. Map the old keys into a numerical ordering based on indices.
- // 2. Create a map of old key to its index
- // 3. Map each new key to the old key, carrying over the old index.
- // - IE if we have ABCD becomes BACD, our sequence would be 1,0,2,3
- // - if we have ABCD to ABDE, our sequence would be 0,1,3,MAX because E doesn't exist
- // now, we should have a list of integers that indicates where in the old list the new items map to.
- // 4. Compute the LIS of this list
- // - this indicates the longest list of new children that won't need to be moved.
- // 5. Identify which nodes need to be removed
- // 6. Identify which nodes will need to be diffed
- // 7. Going along each item in the new list, create it and insert it before the next closest item in the LIS.
- // - if the item already existed, just move it to the right place.
- // 8. Finally, generate instructions to remove any old children.
- // 9. Generate instructions to finally diff children that are the same between both
- // */
- // // 0. Debug sanity checks
- // // Should have already diffed the shared-key prefixes and suffixes.
- // debug_assert_ne!(new.first().map(|i| i.key), old.first().map(|i| i.key));
- // debug_assert_ne!(new.last().map(|i| i.key), old.last().map(|i| i.key));
- // // 1. Map the old keys into a numerical ordering based on indices.
- // // 2. Create a map of old key to its index
- // // IE if the keys were A B C, then we would have (A, 1) (B, 2) (C, 3).
- // let old_key_to_old_index = old
- // .iter()
- // .enumerate()
- // .map(|(i, o)| (o.key.unwrap(), i))
- // .collect::<FxHashMap<_, _>>();
- // let mut shared_keys = FxHashSet::default();
- // // 3. Map each new key to the old key, carrying over the old index.
- // let new_index_to_old_index = new
- // .iter()
- // .map(|node| {
- // let key = node.key.unwrap();
- // if let Some(&index) = old_key_to_old_index.get(&key) {
- // shared_keys.insert(key);
- // index
- // } else {
- // u32::MAX as usize
- // }
- // })
- // .collect::<Vec<_>>();
- // // If none of the old keys are reused by the new children, then we remove all the remaining old children and
- // // create the new children afresh.
- // if shared_keys.is_empty() {
- // if let Some(first_old) = old.get(0) {
- // self.remove_nodes(muts, &old[1..]);
- // let nodes_created = self.create_children(new);
- // self.replace_inner(first_old, nodes_created);
- // } else {
- // // I think this is wrong - why are we appending?
- // // only valid of the if there are no trailing elements
- // self.create_and_append_children(new);
- // }
- // return;
- // }
- // // remove any old children that are not shared
- // // todo: make this an iterator
- // for child in old {
- // let key = child.key.unwrap();
- // if !shared_keys.contains(&key) {
- // todo!("remove node");
- // // self.remove_nodes(muts, [child]);
- // }
- // }
- // // 4. Compute the LIS of this list
- // let mut lis_sequence = Vec::default();
- // lis_sequence.reserve(new_index_to_old_index.len());
- // let mut predecessors = vec![0; new_index_to_old_index.len()];
- // let mut starts = vec![0; new_index_to_old_index.len()];
- // longest_increasing_subsequence::lis_with(
- // &new_index_to_old_index,
- // &mut lis_sequence,
- // |a, b| a < b,
- // &mut predecessors,
- // &mut starts,
- // );
- // // the lis comes out backwards, I think. can't quite tell.
- // lis_sequence.sort_unstable();
- // // if a new node gets u32 max and is at the end, then it might be part of our LIS (because u32 max is a valid LIS)
- // if lis_sequence.last().map(|f| new_index_to_old_index[*f]) == Some(u32::MAX as usize) {
- // lis_sequence.pop();
- // }
- // for idx in &lis_sequence {
- // self.diff_node(muts, &old[new_index_to_old_index[*idx]], &new[*idx]);
- // }
- // let mut nodes_created = 0;
- // // add mount instruction for the first items not covered by the lis
- // let last = *lis_sequence.last().unwrap();
- // if last < (new.len() - 1) {
- // for (idx, new_node) in new[(last + 1)..].iter().enumerate() {
- // let new_idx = idx + last + 1;
- // let old_index = new_index_to_old_index[new_idx];
- // if old_index == u32::MAX as usize {
- // nodes_created += self.create(muts, new_node);
- // } else {
- // self.diff_node(muts, &old[old_index], new_node);
- // nodes_created += self.push_all_real_nodes(new_node);
- // }
- // }
- // self.mutations.insert_after(
- // self.find_last_element(&new[last]).unwrap(),
- // nodes_created as u32,
- // );
- // nodes_created = 0;
- // }
- // // for each spacing, generate a mount instruction
- // let mut lis_iter = lis_sequence.iter().rev();
- // let mut last = *lis_iter.next().unwrap();
- // for next in lis_iter {
- // if last - next > 1 {
- // for (idx, new_node) in new[(next + 1)..last].iter().enumerate() {
- // let new_idx = idx + next + 1;
- // let old_index = new_index_to_old_index[new_idx];
- // if old_index == u32::MAX as usize {
- // nodes_created += self.create(muts, new_node);
- // } else {
- // self.diff_node(muts, &old[old_index], new_node);
- // nodes_created += self.push_all_real_nodes(new_node);
- // }
- // }
- // self.mutations.insert_before(
- // self.find_first_element(&new[last]).unwrap(),
- // nodes_created as u32,
- // );
- // nodes_created = 0;
- // }
- // last = *next;
- // }
- // // add mount instruction for the last items not covered by the lis
- // let first_lis = *lis_sequence.first().unwrap();
- // if first_lis > 0 {
- // for (idx, new_node) in new[..first_lis].iter().enumerate() {
- // let old_index = new_index_to_old_index[idx];
- // if old_index == u32::MAX as usize {
- // nodes_created += self.create_node(new_node);
- // } else {
- // self.diff_node(muts, &old[old_index], new_node);
- // nodes_created += self.push_all_real_nodes(new_node);
- // }
- // }
- // self.mutations.insert_before(
- // self.find_first_element(&new[first_lis]).unwrap(),
- // nodes_created as u32,
- // );
- // }
- // }
- /// Remove these nodes from the dom
- /// Wont generate mutations for the inner nodes
- fn remove_nodes(&mut self, muts: &mut Mutations<'b>, nodes: &'b [VNode<'b>]) {
- //
- }
- }
- fn matching_components<'a>(
- left: &'a VNode<'a>,
- right: &'a VNode<'a>,
- ) -> Option<Vec<(&'a VComponent<'a>, &'a VComponent<'a>)>> {
- if left.template.roots.len() != right.template.roots.len() {
- return None;
- }
- // run through the components, ensuring they're the same
- left.template
- .roots
- .iter()
- .zip(right.template.roots.iter())
- .map(|(l, r)| {
- let (l, r) = match (l, r) {
- (TemplateNode::Dynamic(l), TemplateNode::Dynamic(r)) => (l, r),
- _ => return None,
- };
- let (l, r) = match (&left.dynamic_nodes[*l], &right.dynamic_nodes[*r]) {
- (Component(l), Component(r)) => (l, r),
- _ => return None,
- };
- (l.render_fn == r.render_fn).then(|| (l, r))
- })
- .collect()
- }
- /// We can apply various optimizations to dynamic nodes that are the single child of their parent.
- ///
- /// IE
- /// - for text - we can use SetTextContent
- /// - for clearning children we can use RemoveChildren
- /// - for appending children we can use AppendChildren
- fn is_dyn_node_only_child(node: &VNode, idx: usize) -> bool {
- let path = node.template.node_paths[idx];
- // use a loop to index every static node's children until the path has run out
- // only break if the last path index is a dynamic node
- let mut static_node = &node.template.roots[path[0] as usize];
- for i in 1..path.len() - 1 {
- match static_node {
- TemplateNode::Element { children, .. } => static_node = &children[path[i] as usize],
- _ => return false,
- }
- }
- match static_node {
- TemplateNode::Element { children, .. } => children.len() == 1,
- _ => false,
- }
- }
|