123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005 |
- //! # VirtualDom Implementation for Rust
- //!
- //! This module provides the primary mechanics to create a hook-based, concurrent VDOM for Rust.
- use crate::innerlude::*;
- use futures_channel::mpsc::{UnboundedReceiver, UnboundedSender};
- use futures_util::{Future, StreamExt};
- use fxhash::FxHashSet;
- use indexmap::IndexSet;
- use std::{any::Any, collections::VecDeque, iter::FromIterator, pin::Pin, sync::Arc, task::Poll};
- /// A virtual node s ystem that progresses user events and diffs UI trees.
- ///
- ///
- /// ## Guide
- ///
- /// Components are defined as simple functions that take [`Scope`] and return an [`Element`].
- ///
- /// ```rust, ignore
- /// #[derive(Props, PartialEq)]
- /// struct AppProps {
- /// title: String
- /// }
- ///
- /// fn App(cx: Scope<AppProps>) -> Element {
- /// cx.render(rsx!(
- /// div {"hello, {cx.props.title}"}
- /// ))
- /// }
- /// ```
- ///
- /// Components may be composed to make complex apps.
- ///
- /// ```rust, ignore
- /// fn App(cx: Scope<AppProps>) -> Element {
- /// cx.render(rsx!(
- /// NavBar { routes: ROUTES }
- /// Title { "{cx.props.title}" }
- /// Footer {}
- /// ))
- /// }
- /// ```
- ///
- /// To start an app, create a [`VirtualDom`] and call [`VirtualDom::rebuild`] to get the list of edits required to
- /// draw the UI.
- ///
- /// ```rust, ignore
- /// let mut vdom = VirtualDom::new(App);
- /// let edits = vdom.rebuild();
- /// ```
- ///
- /// To inject UserEvents into the VirtualDom, call [`VirtualDom::get_scheduler_channel`] to get access to the scheduler.
- ///
- /// ```rust, ignore
- /// let channel = vdom.get_scheduler_channel();
- /// channel.send_unbounded(SchedulerMsg::UserEvent(UserEvent {
- /// // ...
- /// }))
- /// ```
- ///
- /// While waiting for UserEvents to occur, call [`VirtualDom::wait_for_work`] to poll any futures inside the VirtualDom.
- ///
- /// ```rust, ignore
- /// vdom.wait_for_work().await;
- /// ```
- ///
- /// Once work is ready, call [`VirtualDom::work_with_deadline`] to compute the differences between the previous and
- /// current UI trees. This will return a [`Mutations`] object that contains Edits, Effects, and NodeRefs that need to be
- /// handled by the renderer.
- ///
- /// ```rust, ignore
- /// let mutations = vdom.work_with_deadline(|| false);
- /// for edit in mutations {
- /// apply(edit);
- /// }
- /// ```
- ///
- /// ## Building an event loop around Dioxus:
- ///
- /// Putting everything together, you can build an event loop around Dioxus by using the methods outlined above.
- ///
- /// ```rust, ignore
- /// fn App(cx: Scope<()>) -> Element {
- /// cx.render(rsx!{
- /// div { "Hello World" }
- /// })
- /// }
- ///
- /// async fn main() {
- /// let mut dom = VirtualDom::new(App);
- ///
- /// let mut inital_edits = dom.rebuild();
- /// apply_edits(inital_edits);
- ///
- /// loop {
- /// dom.wait_for_work().await;
- /// let frame_timeout = TimeoutFuture::new(Duration::from_millis(16));
- /// let deadline = || (&mut frame_timeout).now_or_never();
- /// let edits = dom.run_with_deadline(deadline).await;
- /// apply_edits(edits);
- /// }
- /// }
- /// ```
- pub struct VirtualDom {
- scopes: ScopeArena,
- pending_messages: VecDeque<SchedulerMsg>,
- dirty_scopes: IndexSet<ScopeId>,
- channel: (
- UnboundedSender<SchedulerMsg>,
- UnboundedReceiver<SchedulerMsg>,
- ),
- }
- // Methods to create the VirtualDom
- impl VirtualDom {
- /// Create a new VirtualDom with a component that does not have special props.
- ///
- /// # Description
- ///
- /// Later, the props can be updated by calling "update" with a new set of props, causing a set of re-renders.
- ///
- /// This is useful when a component tree can be driven by external state (IE SSR) but it would be too expensive
- /// to toss out the entire tree.
- ///
- ///
- /// # Example
- /// ```rust, ignore
- /// fn Example(cx: Scope<()>) -> Element {
- /// cx.render(rsx!( div { "hello world" } ))
- /// }
- ///
- /// let dom = VirtualDom::new(Example);
- /// ```
- ///
- /// Note: the VirtualDom is not progressed, you must either "run_with_deadline" or use "rebuild" to progress it.
- pub fn new(root: Component<()>) -> Self {
- Self::new_with_props(root, ())
- }
- /// Create a new VirtualDom with the given properties for the root component.
- ///
- /// # Description
- ///
- /// Later, the props can be updated by calling "update" with a new set of props, causing a set of re-renders.
- ///
- /// This is useful when a component tree can be driven by external state (IE SSR) but it would be too expensive
- /// to toss out the entire tree.
- ///
- ///
- /// # Example
- /// ```rust, ignore
- /// #[derive(PartialEq, Props)]
- /// struct SomeProps {
- /// name: &'static str
- /// }
- ///
- /// fn Example(cx: Scope<SomeProps>) -> Element {
- /// cx.render(rsx!{ div{ "hello {cx.props.name}" } })
- /// }
- ///
- /// let dom = VirtualDom::new(Example);
- /// ```
- ///
- /// Note: the VirtualDom is not progressed on creation. You must either "run_with_deadline" or use "rebuild" to progress it.
- ///
- /// ```rust, ignore
- /// let mut dom = VirtualDom::new_with_props(Example, SomeProps { name: "jane" });
- /// let mutations = dom.rebuild();
- /// ```
- pub fn new_with_props<P>(root: Component<P>, root_props: P) -> Self
- where
- P: 'static,
- {
- Self::new_with_props_and_scheduler(
- root,
- root_props,
- futures_channel::mpsc::unbounded::<SchedulerMsg>(),
- )
- }
- /// Launch the VirtualDom, but provide your own channel for receiving and sending messages into the scheduler
- ///
- /// This is useful when the VirtualDom must be driven from outside a thread and it doesn't make sense to wait for the
- /// VirtualDom to be created just to retrieve its channel receiver.
- ///
- /// ```rust
- /// let channel = futures_channel::mpsc::unbounded();
- /// let dom = VirtualDom::new_with_scheduler(Example, (), channel);
- /// ```
- pub fn new_with_props_and_scheduler<P: 'static>(
- root: Component<P>,
- root_props: P,
- channel: (
- UnboundedSender<SchedulerMsg>,
- UnboundedReceiver<SchedulerMsg>,
- ),
- ) -> Self {
- let scopes = ScopeArena::new(channel.0.clone());
- scopes.new_with_key(
- root as *const _,
- Box::new(VComponentProps {
- props: root_props,
- memo: |_a, _b| unreachable!("memo on root will neve be run"),
- render_fn: root,
- }),
- None,
- ElementId(0),
- 0,
- );
- Self {
- scopes,
- channel,
- dirty_scopes: IndexSet::from_iter([ScopeId(0)]),
- pending_messages: VecDeque::new(),
- }
- }
- /// Get the [`Scope`] for the root component.
- ///
- /// This is useful for traversing the tree from the root for heuristics or alternsative renderers that use Dioxus
- /// directly.
- ///
- /// This method is equivalent to calling `get_scope(ScopeId(0))`
- ///
- /// # Example
- ///
- /// ```rust
- /// let mut dom = VirtualDom::new(example);
- /// dom.rebuild();
- ///
- ///
- /// ```
- pub fn base_scope(&self) -> &ScopeState {
- self.get_scope(ScopeId(0)).unwrap()
- }
- /// Get the [`ScopeState`] for a component given its [`ScopeId`]
- ///
- /// # Example
- ///
- ///
- ///
- pub fn get_scope(&self, id: ScopeId) -> Option<&ScopeState> {
- self.scopes.get_scope(id)
- }
- /// Get an [`UnboundedSender`] handle to the channel used by the scheduler.
- ///
- /// # Example
- ///
- /// ```rust, ignore
- /// let dom = VirtualDom::new(App);
- /// let sender = dom.get_scheduler_channel();
- /// ```
- pub fn get_scheduler_channel(&self) -> UnboundedSender<SchedulerMsg> {
- self.channel.0.clone()
- }
- /// Add a new message to the scheduler queue directly.
- ///
- ///
- /// This method makes it possible to send messages to the scheduler from outside the VirtualDom without having to
- /// call `get_schedule_channel` and then `send`.
- ///
- /// # Example
- /// ```rust, ignore
- /// let dom = VirtualDom::new(App);
- /// dom.handle_message(SchedulerMsg::Immediate(ScopeId(0)));
- /// ```
- pub fn handle_message(&mut self, msg: SchedulerMsg) {
- if self.channel.0.unbounded_send(msg).is_ok() {
- self.process_all_messages();
- }
- }
- /// Check if the [`VirtualDom`] has any pending updates or work to be done.
- ///
- /// # Example
- ///
- /// ```rust, ignore
- /// let dom = VirtualDom::new(App);
- ///
- /// // the dom is "dirty" when it is started and must be rebuilt to get the first render
- /// assert!(dom.has_any_work());
- /// ```
- pub fn has_work(&self) -> bool {
- !(self.dirty_scopes.is_empty() && self.pending_messages.is_empty())
- }
- /// Wait for the scheduler to have any work.
- ///
- /// This method polls the internal future queue *and* the scheduler channel.
- /// To add work to the VirtualDom, insert a message via the scheduler channel.
- ///
- /// This lets us poll async tasks during idle periods without blocking the main thread.
- ///
- /// # Example
- ///
- /// ```rust, ignore
- /// let dom = VirtualDom::new(App);
- /// let sender = dom.get_scheduler_channel();
- /// ```
- pub async fn wait_for_work(&mut self) {
- loop {
- if !self.dirty_scopes.is_empty() && self.pending_messages.is_empty() {
- break;
- }
- if self.pending_messages.is_empty() {
- if self.scopes.tasks.has_tasks() {
- use futures_util::future::{select, Either};
- match select(PollTasks(&mut self.scopes), self.channel.1.next()).await {
- Either::Left((_, _)) => {}
- Either::Right((msg, _)) => self.pending_messages.push_front(msg.unwrap()),
- }
- } else {
- self.pending_messages
- .push_front(self.channel.1.next().await.unwrap());
- }
- }
- // Move all the messages into the queue
- self.process_all_messages();
- }
- }
- /// Manually kick the VirtualDom to process any
- pub fn process_all_messages(&mut self) {
- // clear out the scheduler queue
- while let Ok(Some(msg)) = self.channel.1.try_next() {
- self.pending_messages.push_front(msg);
- }
- // process all the messages pulled from the queue
- while let Some(msg) = self.pending_messages.pop_back() {
- self.process_message(msg);
- }
- }
- pub fn process_message(&mut self, msg: SchedulerMsg) {
- match msg {
- SchedulerMsg::NewTask(_id) => {
- // uh, not sure? I think end up re-polling it anyways
- }
- SchedulerMsg::Event(event) => {
- if let Some(element) = event.element {
- self.scopes.call_listener_with_bubbling(event, element);
- }
- }
- SchedulerMsg::Immediate(s) => {
- self.dirty_scopes.insert(s);
- }
- }
- }
- /// Run the virtualdom with a deadline.
- ///
- /// This method will perform any outstanding diffing work and try to return as many mutations as possible before the
- /// deadline is reached. This method accepts a closure that returns `true` if the deadline has been reached. To wrap
- /// your future into a deadline, consider the `now_or_never` method from `future_utils`.
- ///
- /// ```rust, ignore
- /// let mut vdom = VirtualDom::new(App);
- ///
- /// let timeout = TimeoutFuture::from_ms(16);
- /// let deadline = || (&mut timeout).now_or_never();
- ///
- /// let mutations = vdom.work_with_deadline(deadline);
- /// ```
- ///
- /// This method is useful when needing to schedule the virtualdom around other tasks on the main thread to prevent
- /// "jank". It will try to finish whatever work it has by the deadline to free up time for other work.
- ///
- /// If the work is not finished by the deadline, Dioxus will store it for later and return when work_with_deadline
- /// is called again. This means you can ensure some level of free time on the VirtualDom's thread during the work phase.
- ///
- /// For use in the web, it is expected that this method will be called to be executed during "idle times" and the
- /// mutations to be applied during the "paint times" IE "animation frames". With this strategy, it is possible to craft
- /// entirely jank-free applications that perform a ton of work.
- ///
- /// In general use, Dioxus is plenty fast enough to not need to worry about this.
- ///
- /// # Example
- ///
- /// ```rust, ignore
- /// fn App(cx: Scope<()>) -> Element {
- /// cx.render(rsx!( div {"hello"} ))
- /// }
- ///
- /// let mut dom = VirtualDom::new(App);
- ///
- /// loop {
- /// let mut timeout = TimeoutFuture::from_ms(16);
- /// let deadline = move || (&mut timeout).now_or_never();
- ///
- /// let mutations = dom.run_with_deadline(deadline).await;
- ///
- /// apply_mutations(mutations);
- /// }
- /// ```
- pub fn work_with_deadline(&mut self, mut deadline: impl FnMut() -> bool) -> Vec<Mutations> {
- let mut committed_mutations = vec![];
- while !self.dirty_scopes.is_empty() {
- let scopes = &self.scopes;
- let mut diff_state = DiffState::new(scopes);
- let mut ran_scopes = FxHashSet::default();
- // Sort the scopes by height. Theoretically, we'll de-duplicate scopes by height
- self.dirty_scopes
- .retain(|id| scopes.get_scope(*id).is_some());
- self.dirty_scopes.sort_by(|a, b| {
- let h1 = scopes.get_scope(*a).unwrap().height;
- let h2 = scopes.get_scope(*b).unwrap().height;
- h1.cmp(&h2).reverse()
- });
- if let Some(scopeid) = self.dirty_scopes.pop() {
- if !ran_scopes.contains(&scopeid) {
- ran_scopes.insert(scopeid);
- self.scopes.run_scope(scopeid);
- let (old, new) = (self.scopes.wip_head(scopeid), self.scopes.fin_head(scopeid));
- diff_state.stack.push(DiffInstruction::Diff { new, old });
- diff_state.stack.scope_stack.push(scopeid);
- let scope = scopes.get_scope(scopeid).unwrap();
- diff_state.stack.element_stack.push(scope.container);
- }
- }
- if diff_state.work(&mut deadline) {
- let DiffState { mutations, .. } = diff_state;
- for scope in &mutations.dirty_scopes {
- self.dirty_scopes.remove(scope);
- }
- committed_mutations.push(mutations);
- } else {
- // leave the work in an incomplete state
- //
- // todo: we should store the edits and re-apply them later
- // for now, we just dump the work completely (threadsafe)
- return committed_mutations;
- }
- }
- committed_mutations
- }
- /// Performs a *full* rebuild of the virtual dom, returning every edit required to generate the actual dom from scratch.
- ///
- /// The diff machine expects the RealDom's stack to be the root of the application.
- ///
- /// Tasks will not be polled with this method, nor will any events be processed from the event queue. Instead, the
- /// root component will be ran once and then diffed. All updates will flow out as mutations.
- ///
- /// All state stored in components will be completely wiped away.
- ///
- /// # Example
- /// ```rust, ignore
- /// static App: Component<()> = |cx, props| cx.render(rsx!{ "hello world" });
- /// let mut dom = VirtualDom::new();
- /// let edits = dom.rebuild();
- ///
- /// apply_edits(edits);
- /// ```
- pub fn rebuild(&mut self) -> Mutations {
- let scope_id = ScopeId(0);
- let mut diff_state = DiffState::new(&self.scopes);
- self.scopes.run_scope(scope_id);
- diff_state
- .stack
- .create_node(self.scopes.fin_head(scope_id), MountType::Append);
- diff_state.stack.element_stack.push(ElementId(0));
- diff_state.stack.scope_stack.push(scope_id);
- diff_state.work(|| false);
- diff_state.mutations
- }
- /// Compute a manual diff of the VirtualDom between states.
- ///
- /// This can be useful when state inside the DOM is remotely changed from the outside, but not propagated as an event.
- ///
- /// In this case, every component will be diffed, even if their props are memoized. This method is intended to be used
- /// to force an update of the DOM when the state of the app is changed outside of the app.
- ///
- /// To force a reflow of the entire VirtualDom, use `ScopeId(0)` as the scope_id.
- ///
- /// # Example
- /// ```rust, ignore
- /// #[derive(PartialEq, Props)]
- /// struct AppProps {
- /// value: Shared<&'static str>,
- /// }
- ///
- /// static App: Component<AppProps> = |cx, props|{
- /// let val = cx.value.borrow();
- /// cx.render(rsx! { div { "{val}" } })
- /// };
- ///
- /// let value = Rc::new(RefCell::new("Hello"));
- /// let mut dom = VirtualDom::new_with_props(App, AppProps { value: value.clone(), });
- ///
- /// let _ = dom.rebuild();
- ///
- /// *value.borrow_mut() = "goodbye";
- ///
- /// let edits = dom.diff();
- /// ```
- pub fn hard_diff(&mut self, scope_id: ScopeId) -> Mutations {
- let mut diff_machine = DiffState::new(&self.scopes);
- self.scopes.run_scope(scope_id);
- let (old, new) = (
- diff_machine.scopes.wip_head(scope_id),
- diff_machine.scopes.fin_head(scope_id),
- );
- diff_machine.force_diff = true;
- diff_machine.stack.push(DiffInstruction::Diff { old, new });
- diff_machine.stack.scope_stack.push(scope_id);
- let scope = diff_machine.scopes.get_scope(scope_id).unwrap();
- diff_machine.stack.element_stack.push(scope.container);
- diff_machine.work(|| false);
- diff_machine.mutations
- }
- /// Renders an `rsx` call into the Base Scope's allocator.
- ///
- /// Useful when needing to render nodes from outside the VirtualDom, such as in a test.
- ///
- /// ```rust
- /// fn Base(cx: Scope<()>) -> Element {
- /// rsx!(cx, div {})
- /// }
- ///
- /// let dom = VirtualDom::new(Base);
- /// let nodes = dom.render_nodes(rsx!("div"));
- /// ```
- pub fn render_vnodes<'a>(&'a self, lazy_nodes: LazyNodes<'a, '_>) -> &'a VNode<'a> {
- let scope = self.scopes.get_scope(ScopeId(0)).unwrap();
- let frame = scope.wip_frame();
- let factory = NodeFactory { bump: &frame.bump };
- let node = lazy_nodes.call(factory);
- frame.bump.alloc(node)
- }
- /// Renders an `rsx` call into the Base Scope's allocator.
- ///
- /// Useful when needing to render nodes from outside the VirtualDom, such as in a test.
- ///
- /// ```rust
- /// fn Base(cx: Scope<()>) -> Element {
- /// rsx!(cx, div {})
- /// }
- ///
- /// let dom = VirtualDom::new(Base);
- /// let nodes = dom.render_nodes(rsx!("div"));
- /// ```
- pub fn diff_vnodes<'a>(&'a self, old: &'a VNode<'a>, new: &'a VNode<'a>) -> Mutations<'a> {
- let mut machine = DiffState::new(&self.scopes);
- machine.stack.push(DiffInstruction::Diff { new, old });
- machine.stack.element_stack.push(ElementId(0));
- machine.stack.scope_stack.push(ScopeId(0));
- machine.work(|| false);
- machine.mutations
- }
- /// Renders an `rsx` call into the Base Scope's allocator.
- ///
- /// Useful when needing to render nodes from outside the VirtualDom, such as in a test.
- ///
- ///
- /// ```rust
- /// fn Base(cx: Scope<()>) -> Element {
- /// rsx!(cx, div {})
- /// }
- ///
- /// let dom = VirtualDom::new(Base);
- /// let nodes = dom.render_nodes(rsx!("div"));
- /// ```
- pub fn create_vnodes<'a>(&'a self, nodes: LazyNodes<'a, '_>) -> Mutations<'a> {
- let mut machine = DiffState::new(&self.scopes);
- machine.stack.element_stack.push(ElementId(0));
- machine
- .stack
- .create_node(self.render_vnodes(nodes), MountType::Append);
- machine.work(|| false);
- machine.mutations
- }
- /// Renders an `rsx` call into the Base Scopes's arena.
- ///
- /// Useful when needing to diff two rsx! calls from outside the VirtualDom, such as in a test.
- ///
- ///
- /// ```rust
- /// fn Base(cx: Scope<()>) -> Element {
- /// rsx!(cx, div {})
- /// }
- ///
- /// let dom = VirtualDom::new(Base);
- /// let nodes = dom.render_nodes(rsx!("div"));
- /// ```
- pub fn diff_lazynodes<'a>(
- &'a self,
- left: LazyNodes<'a, '_>,
- right: LazyNodes<'a, '_>,
- ) -> (Mutations<'a>, Mutations<'a>) {
- let (old, new) = (self.render_vnodes(left), self.render_vnodes(right));
- let mut create = DiffState::new(&self.scopes);
- create.stack.scope_stack.push(ScopeId(0));
- create.stack.element_stack.push(ElementId(0));
- create.stack.create_node(old, MountType::Append);
- create.work(|| false);
- let mut edit = DiffState::new(&self.scopes);
- edit.stack.scope_stack.push(ScopeId(0));
- edit.stack.element_stack.push(ElementId(0));
- edit.stack.push(DiffInstruction::Diff { old, new });
- edit.work(|| false);
- (create.mutations, edit.mutations)
- }
- }
- /*
- Scopes and ScopeArenas are never dropped internally.
- An app will always occupy as much memory as its biggest form.
- This means we need to handle all specifics of drop *here*. It's easier
- to reason about centralizing all the drop logic in one spot rather than scattered in each module.
- Broadly speaking, we want to use the remove_nodes method to clean up *everything*
- This will drop listeners, borrowed props, and hooks for all components.
- We need to do this in the correct order - nodes at the very bottom must be dropped first to release
- the borrow chain.
- Once the contents of the tree have been cleaned up, we can finally clean up the
- memory used by ScopeState itself.
- questions:
- should we build a vcomponent for the root?
- - probably - yes?
- - store the vcomponent in the root dom
- - 1: Use remove_nodes to use the ensure_drop_safety pathway to safely drop the tree
- - 2: Drop the ScopeState itself
- */
- impl Drop for VirtualDom {
- fn drop(&mut self) {
- // the best way to drop the dom is to replace the root scope with a dud
- // the diff infrastructure will then finish the rest
- let scope = self.scopes.get_scope(ScopeId(0)).unwrap();
- // todo: move the remove nodes method onto scopearena
- // this will clear *all* scopes *except* the root scope
- let mut machine = DiffState::new(&self.scopes);
- machine.remove_nodes([scope.root_node()], false);
- // Now, clean up the root scope
- // safety: there are no more references to the root scope
- let scope = unsafe { &mut *self.scopes.get_scope_raw(ScopeId(0)).unwrap() };
- scope.reset();
- // make sure there are no "live" components
- for (_, scopeptr) in self.scopes.scopes.get_mut().drain() {
- // safety: all scopes were made in the bump's allocator
- // They are never dropped until now. The only way to drop is through Box.
- let scope = unsafe { bumpalo::boxed::Box::from_raw(scopeptr) };
- drop(scope);
- }
- for scopeptr in self.scopes.free_scopes.get_mut().drain(..) {
- // safety: all scopes were made in the bump's allocator
- // They are never dropped until now. The only way to drop is through Box.
- let mut scope = unsafe { bumpalo::boxed::Box::from_raw(scopeptr) };
- scope.reset();
- drop(scope);
- }
- }
- }
- struct PollTasks<'a>(&'a mut ScopeArena);
- impl<'a> Future for PollTasks<'a> {
- type Output = ();
- fn poll(self: Pin<&mut Self>, cx: &mut std::task::Context<'_>) -> Poll<Self::Output> {
- let mut any_pending = false;
- let mut tasks = self.0.tasks.tasks.borrow_mut();
- let mut to_remove = vec![];
- // this would be better served by retain
- for (id, task) in tasks.iter_mut() {
- if task.as_mut().poll(cx).is_ready() {
- to_remove.push(*id);
- } else {
- any_pending = true;
- }
- }
- for id in to_remove {
- tasks.remove(&id);
- }
- // Resolve the future if any singular task is ready
- match any_pending {
- true => Poll::Pending,
- false => Poll::Ready(()),
- }
- }
- }
- #[derive(Debug)]
- pub enum SchedulerMsg {
- // events from the host
- Event(UserEvent),
- // setstate
- Immediate(ScopeId),
- // an async task pushed from an event handler (or just spawned)
- NewTask(ScopeId),
- }
- /// User Events are events that are shuttled from the renderer into the VirtualDom trhough the scheduler channel.
- ///
- /// These events will be passed to the appropriate Element given by `mounted_dom_id` and then bubbled up through the tree
- /// where each listener is checked and fired if the event name matches.
- ///
- /// It is the expectation that the event name matches the corresponding event listener, otherwise Dioxus will panic in
- /// attempting to downcast the event data.
- ///
- /// Because Event Data is sent across threads, it must be `Send + Sync`. We are hoping to lift the `Sync` restriction but
- /// `Send` will not be lifted. The entire `UserEvent` must also be `Send + Sync` due to its use in the scheduler channel.
- ///
- /// # Example
- /// ```rust
- /// fn App(cx: Scope<()>) -> Element {
- /// rsx!(cx, div {
- /// onclick: move |_| println!("Clicked!")
- /// })
- /// }
- ///
- /// let mut dom = VirtualDom::new(App);
- /// let mut scheduler = dom.get_scheduler_channel();
- /// scheduler.unbounded_send(SchedulerMsg::UiEvent(
- /// UserEvent {
- /// scope_id: None,
- /// priority: EventPriority::Medium,
- /// name: "click",
- /// element: Some(ElementId(0)),
- /// data: Arc::new(ClickEvent { .. })
- /// }
- /// )).unwrap();
- /// ```
- #[derive(Debug)]
- pub struct UserEvent {
- /// The originator of the event trigger if available
- pub scope_id: Option<ScopeId>,
- /// The priority of the event to be scheduled around ongoing work
- pub priority: EventPriority,
- /// The optional real node associated with the trigger
- pub element: Option<ElementId>,
- /// The event type IE "onclick" or "onmouseover"
- pub name: &'static str,
- /// The event data to be passed onto the event handler
- pub data: Arc<dyn Any + Send + Sync>,
- }
- /// Priority of Event Triggers.
- ///
- /// Internally, Dioxus will abort work that's taking too long if new, more important work arrives. Unlike React, Dioxus
- /// won't be afraid to pause work or flush changes to the RealDOM. This is called "cooperative scheduling". Some Renderers
- /// implement this form of scheduling internally, however Dioxus will perform its own scheduling as well.
- ///
- /// The ultimate goal of the scheduler is to manage latency of changes, prioritizing "flashier" changes over "subtler" changes.
- ///
- /// React has a 5-tier priority system. However, they break things into "Continuous" and "Discrete" priority. For now,
- /// we keep it simple, and just use a 3-tier priority system.
- ///
- /// - NoPriority = 0
- /// - LowPriority = 1
- /// - NormalPriority = 2
- /// - UserBlocking = 3
- /// - HighPriority = 4
- /// - ImmediatePriority = 5
- ///
- /// We still have a concept of discrete vs continuous though - discrete events won't be batched, but continuous events will.
- /// This means that multiple "scroll" events will be processed in a single frame, but multiple "click" events will be
- /// flushed before proceeding. Multiple discrete events is highly unlikely, though.
- #[derive(Debug, PartialEq, Eq, Clone, Copy, Hash, PartialOrd, Ord)]
- pub enum EventPriority {
- /// Work that must be completed during the EventHandler phase.
- ///
- /// Currently this is reserved for controlled inputs.
- Immediate = 3,
- /// "High Priority" work will not interrupt other high priority work, but will interrupt medium and low priority work.
- ///
- /// This is typically reserved for things like user interaction.
- ///
- /// React calls these "discrete" events, but with an extra category of "user-blocking" (Immediate).
- High = 2,
- /// "Medium priority" work is generated by page events not triggered by the user. These types of events are less important
- /// than "High Priority" events and will take precedence over low priority events.
- ///
- /// This is typically reserved for VirtualEvents that are not related to keyboard or mouse input.
- ///
- /// React calls these "continuous" events (e.g. mouse move, mouse wheel, touch move, etc).
- Medium = 1,
- /// "Low Priority" work will always be preempted unless the work is significantly delayed, in which case it will be
- /// advanced to the front of the work queue until completed.
- ///
- /// The primary user of Low Priority work is the asynchronous work system (Suspense).
- ///
- /// This is considered "idle" work or "background" work.
- Low = 0,
- }
- pub struct FragmentProps<'a>(Element<'a>);
- pub struct FragmentBuilder<'a, const BUILT: bool>(Element<'a>);
- impl<'a> FragmentBuilder<'a, false> {
- pub fn children(self, children: Element<'a>) -> FragmentBuilder<'a, true> {
- FragmentBuilder(children)
- }
- }
- impl<'a, const A: bool> FragmentBuilder<'a, A> {
- pub fn build(self) -> FragmentProps<'a> {
- FragmentProps(self.0)
- }
- }
- /// Access the children elements passed into the component
- ///
- /// This enables patterns where a component is passed children from its parent.
- ///
- /// ## Details
- ///
- /// Unlike React, Dioxus allows *only* lists of children to be passed from parent to child - not arbitrary functions
- /// or classes. If you want to generate nodes instead of accepting them as a list, consider declaring a closure
- /// on the props that takes Context.
- ///
- /// If a parent passes children into a component, the child will always re-render when the parent re-renders. In other
- /// words, a component cannot be automatically memoized if it borrows nodes from its parent, even if the component's
- /// props are valid for the static lifetime.
- ///
- /// ## Example
- ///
- /// ```rust, ignore
- /// fn App(cx: Scope<()>) -> Element {
- /// cx.render(rsx!{
- /// CustomCard {
- /// h1 {}2
- /// p {}
- /// }
- /// })
- /// }
- ///
- /// #[derive(PartialEq, Props)]
- /// struct CardProps {
- /// children: Element
- /// }
- ///
- /// fn CustomCard(cx: Scope<CardProps>) -> Element {
- /// cx.render(rsx!{
- /// div {
- /// h1 {"Title card"}
- /// {cx.props.children}
- /// }
- /// })
- /// }
- /// ```
- impl<'a> Properties for FragmentProps<'a> {
- type Builder = FragmentBuilder<'a, false>;
- const IS_STATIC: bool = false;
- fn builder() -> Self::Builder {
- FragmentBuilder(None)
- }
- unsafe fn memoize(&self, _other: &Self) -> bool {
- false
- }
- }
- /// Create inline fragments using Component syntax.
- ///
- /// ## Details
- ///
- /// Fragments capture a series of children without rendering extra nodes.
- ///
- /// Creating fragments explicitly with the Fragment component is particularly useful when rendering lists or tables and
- /// a key is needed to identify each item.
- ///
- /// ## Example
- ///
- /// ```rust, ignore
- /// rsx!{
- /// Fragment { key: "abc" }
- /// }
- /// ```
- ///
- /// ## Usage
- ///
- /// Fragments are incredibly useful when necessary, but *do* add cost in the diffing phase.
- /// Try to avoid highly nested fragments if you can. Unlike React, there is no protection against infinitely nested fragments.
- ///
- /// This function defines a dedicated `Fragment` component that can be used to create inline fragments in the RSX macro.
- ///
- /// You want to use this free-function when your fragment needs a key and simply returning multiple nodes from rsx! won't cut it.
- #[allow(non_upper_case_globals, non_snake_case)]
- pub fn Fragment<'a>(cx: Scope<'a, FragmentProps<'a>>) -> Element {
- let i = cx.props.0.as_ref().map(|f| f.decouple());
- cx.render(LazyNodes::new(|f| f.fragment_from_iter(i)))
- }
- /// Every "Props" used for a component must implement the `Properties` trait. This trait gives some hints to Dioxus
- /// on how to memoize the props and some additional optimizations that can be made. We strongly encourage using the
- /// derive macro to implement the `Properties` trait automatically as guarantee that your memoization strategy is safe.
- ///
- /// If your props are 'static, then Dioxus will require that they also be PartialEq for the derived memoize strategy. However,
- /// if your props borrow data, then the memoization strategy will simply default to "false" and the PartialEq will be ignored.
- /// This tends to be useful when props borrow something that simply cannot be compared (IE a reference to a closure);
- ///
- /// By default, the memoization strategy is very conservative, but can be tuned to be more aggressive manually. However,
- /// this is only safe if the props are 'static - otherwise you might borrow references after-free.
- ///
- /// We strongly suggest that any changes to memoization be done at the "PartialEq" level for 'static props. Additionally,
- /// we advise the use of smart pointers in cases where memoization is important.
- ///
- /// ## Example
- ///
- /// For props that are 'static:
- /// ```rust, ignore ignore
- /// #[derive(Props, PartialEq)]
- /// struct MyProps {
- /// data: String
- /// }
- /// ```
- ///
- /// For props that borrow:
- ///
- /// ```rust, ignore ignore
- /// #[derive(Props)]
- /// struct MyProps<'a >{
- /// data: &'a str
- /// }
- /// ```
- pub trait Properties: Sized {
- type Builder;
- const IS_STATIC: bool;
- fn builder() -> Self::Builder;
- /// Memoization can only happen if the props are valid for the 'static lifetime
- ///
- /// # Safety
- /// The user must know if their props are static, but if they make a mistake, UB happens
- /// Therefore it's unsafe to memoize.
- unsafe fn memoize(&self, other: &Self) -> bool;
- }
- impl Properties for () {
- type Builder = EmptyBuilder;
- const IS_STATIC: bool = true;
- fn builder() -> Self::Builder {
- EmptyBuilder {}
- }
- unsafe fn memoize(&self, _other: &Self) -> bool {
- true
- }
- }
- // We allow components to use the () generic parameter if they have no props. This impl enables the "build" method
- // that the macros use to anonymously complete prop construction.
- pub struct EmptyBuilder;
- impl EmptyBuilder {
- pub fn build(self) {}
- }
- /// This utility function launches the builder method so rsx! and html! macros can use the typed-builder pattern
- /// to initialize a component's props.
- pub fn fc_to_builder<'a, T: Properties + 'a>(_: fn(Scope<'a, T>) -> Element) -> T::Builder {
- T::builder()
- }
|