123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700 |
- //! # VirtualDOM Implementation for Rust
- //!
- //! This module provides the primary mechanics to create a hook-based, concurrent VDOM for Rust.
- use crate::innerlude::*;
- use futures_channel::mpsc::{UnboundedReceiver, UnboundedSender};
- use futures_util::{Future, StreamExt};
- use fxhash::FxHashSet;
- use indexmap::IndexSet;
- use std::pin::Pin;
- use std::rc::Rc;
- use std::sync::Arc;
- use std::task::Poll;
- use std::{any::Any, collections::VecDeque};
- /// A virtual node system that progresses user events and diffs UI trees.
- ///
- ///
- /// ## Guide
- ///
- /// Components are defined as simple functions that take [`Context`] and a [`Properties`] type and return an [`Element`].
- ///
- /// ```rust, ignore
- /// #[derive(Props, PartialEq)]
- /// struct AppProps {
- /// title: String
- /// }
- ///
- /// fn App(cx: Context, props: &AppProps) -> Element {
- /// cx.render(rsx!(
- /// div {"hello, {props.title}"}
- /// ))
- /// }
- /// ```
- ///
- /// Components may be composed to make complex apps.
- ///
- /// ```rust, ignore
- /// fn App(cx: Context, props: &AppProps) -> Element {
- /// cx.render(rsx!(
- /// NavBar { routes: ROUTES }
- /// Title { "{props.title}" }
- /// Footer {}
- /// ))
- /// }
- /// ```
- ///
- /// To start an app, create a [`VirtualDom`] and call [`VirtualDom::rebuild`] to get the list of edits required to
- /// draw the UI.
- ///
- /// ```rust, ignore
- /// let mut vdom = VirtualDom::new(App);
- /// let edits = vdom.rebuild();
- /// ```
- ///
- /// To inject UserEvents into the VirtualDom, call [`VirtualDom::get_scheduler_channel`] to get access to the scheduler.
- ///
- /// ```rust, ignore
- /// let channel = vdom.get_scheduler_channel();
- /// channel.send_unbounded(SchedulerMsg::UserEvent(UserEvent {
- /// // ...
- /// }))
- /// ```
- ///
- /// While waiting for UserEvents to occur, call [`VirtualDom::wait_for_work`] to poll any futures inside the VirtualDom.
- ///
- /// ```rust, ignore
- /// vdom.wait_for_work().await;
- /// ```
- ///
- /// Once work is ready, call [`VirtualDom::work_with_deadline`] to compute the differences between the previous and
- /// current UI trees. This will return a [`Mutations`] object that contains Edits, Effects, and NodeRefs that need to be
- /// handled by the renderer.
- ///
- /// ```rust, ignore
- /// let mutations = vdom.work_with_deadline(|| false);
- /// for edit in mutations {
- /// apply(edit);
- /// }
- /// ```
- ///
- /// ## Building an event loop around Dioxus:
- ///
- /// Putting everything together, you can build an event loop around Dioxus by using the methods outlined above.
- ///
- /// ```rust, ignore
- /// fn App(cx: Context, props: &()) -> Element {
- /// cx.render(rsx!{
- /// div { "Hello World" }
- /// })
- /// }
- ///
- /// async fn main() {
- /// let mut dom = VirtualDom::new(App);
- ///
- /// let mut inital_edits = dom.rebuild();
- /// apply_edits(inital_edits);
- ///
- /// loop {
- /// dom.wait_for_work().await;
- /// let frame_timeout = TimeoutFuture::new(Duration::from_millis(16));
- /// let deadline = || (&mut frame_timeout).now_or_never();
- /// let edits = dom.run_with_deadline(deadline).await;
- /// apply_edits(edits);
- /// }
- /// }
- /// ```
- pub struct VirtualDom {
- base_scope: ScopeId,
- _root_props: Box<dyn Any>,
- scopes: Box<ScopeArena>,
- receiver: UnboundedReceiver<SchedulerMsg>,
- sender: UnboundedSender<SchedulerMsg>,
- pending_futures: FxHashSet<ScopeId>,
- pending_messages: VecDeque<SchedulerMsg>,
- dirty_scopes: IndexSet<ScopeId>,
- }
- // Methods to create the VirtualDom
- impl VirtualDom {
- /// Create a new VirtualDOM with a component that does not have special props.
- ///
- /// # Description
- ///
- /// Later, the props can be updated by calling "update" with a new set of props, causing a set of re-renders.
- ///
- /// This is useful when a component tree can be driven by external state (IE SSR) but it would be too expensive
- /// to toss out the entire tree.
- ///
- ///
- /// # Example
- /// ```rust, ignore
- /// fn Example(cx: Context, props: &()) -> Element {
- /// cx.render(rsx!( div { "hello world" } ))
- /// }
- ///
- /// let dom = VirtualDom::new(Example);
- /// ```
- ///
- /// Note: the VirtualDOM is not progressed, you must either "run_with_deadline" or use "rebuild" to progress it.
- pub fn new(root: FC<()>) -> Self {
- Self::new_with_props(root, ())
- }
- /// Create a new VirtualDOM with the given properties for the root component.
- ///
- /// # Description
- ///
- /// Later, the props can be updated by calling "update" with a new set of props, causing a set of re-renders.
- ///
- /// This is useful when a component tree can be driven by external state (IE SSR) but it would be too expensive
- /// to toss out the entire tree.
- ///
- ///
- /// # Example
- /// ```rust, ignore
- /// #[derive(PartialEq, Props)]
- /// struct SomeProps {
- /// name: &'static str
- /// }
- ///
- /// fn Example(cx: Context, props: &SomeProps) -> Element {
- /// cx.render(rsx!{ div{ "hello {cx.name}" } })
- /// }
- ///
- /// let dom = VirtualDom::new(Example);
- /// ```
- ///
- /// Note: the VirtualDOM is not progressed on creation. You must either "run_with_deadline" or use "rebuild" to progress it.
- ///
- /// ```rust, ignore
- /// let mut dom = VirtualDom::new_with_props(Example, SomeProps { name: "jane" });
- /// let mutations = dom.rebuild();
- /// ```
- pub fn new_with_props<P: 'static>(root: FC<P>, root_props: P) -> Self {
- let (sender, receiver) = futures_channel::mpsc::unbounded::<SchedulerMsg>();
- Self::new_with_props_and_scheduler(root, root_props, sender, receiver)
- }
- /// Launch the VirtualDom, but provide your own channel for receiving and sending messages into the scheduler
- ///
- /// This is useful when the VirtualDom must be driven from outside a thread and it doesn't make sense to wait for the
- /// VirtualDom to be created just to retrieve its channel receiver.
- pub fn new_with_props_and_scheduler<P: 'static>(
- root: FC<P>,
- root_props: P,
- sender: UnboundedSender<SchedulerMsg>,
- receiver: UnboundedReceiver<SchedulerMsg>,
- ) -> Self {
- let scopes = ScopeArena::new(sender.clone());
- let mut caller = Box::new(move |scp: &Scope| -> Element { root(scp, &root_props) });
- let caller_ref: *mut dyn Fn(&Scope) -> Element = caller.as_mut() as *mut _;
- let base_scope = scopes.new_with_key(root as _, caller_ref, None, ElementId(0), 0, 0);
- let pending_messages = VecDeque::new();
- let mut dirty_scopes = IndexSet::new();
- dirty_scopes.insert(base_scope);
- Self {
- scopes: Box::new(scopes),
- base_scope,
- receiver,
- _root_props: caller,
- pending_messages,
- pending_futures: Default::default(),
- dirty_scopes,
- sender,
- }
- }
- /// Get the [`Scope`] for the root component.
- ///
- /// This is useful for traversing the tree from the root for heuristics or alternsative renderers that use Dioxus
- /// directly.
- ///
- /// # Example
- pub fn base_scope(&self) -> &Scope {
- self.get_scope(&self.base_scope).unwrap()
- }
- /// Get the [`Scope`] for a component given its [`ScopeId`]
- ///
- /// # Example
- ///
- ///
- ///
- pub fn get_scope<'a>(&'a self, id: &ScopeId) -> Option<&'a Scope> {
- self.scopes.get_scope(id)
- }
- /// Get an [`UnboundedSender`] handle to the channel used by the scheduler.
- ///
- /// # Example
- ///
- /// ```rust, ignore
- ///
- ///
- /// ```
- pub fn get_scheduler_channel(&self) -> futures_channel::mpsc::UnboundedSender<SchedulerMsg> {
- self.sender.clone()
- }
- /// Check if the [`VirtualDom`] has any pending updates or work to be done.
- ///
- /// # Example
- ///
- /// ```rust, ignore
- ///
- ///
- /// ```
- pub fn has_any_work(&self) -> bool {
- !(self.dirty_scopes.is_empty() && self.pending_messages.is_empty())
- }
- /// Waits for the scheduler to have work
- /// This lets us poll async tasks during idle periods without blocking the main thread.
- pub async fn wait_for_work(&mut self) {
- // todo: poll the events once even if there is work to do to prevent starvation
- // if there's no futures in the virtualdom, just wait for a scheduler message and put it into the queue to be processed
- if self.pending_futures.is_empty() {
- self.pending_messages
- .push_front(self.receiver.next().await.unwrap());
- } else {
- struct PollTasks<'a> {
- pending_futures: &'a FxHashSet<ScopeId>,
- scopes: &'a ScopeArena,
- }
- impl<'a> Future for PollTasks<'a> {
- type Output = ();
- fn poll(
- self: Pin<&mut Self>,
- cx: &mut std::task::Context<'_>,
- ) -> Poll<Self::Output> {
- let mut all_pending = true;
- // Poll every scope manually
- for fut in self.pending_futures.iter() {
- let scope = self
- .scopes
- .get_scope(fut)
- .expect("Scope should never be moved");
- let mut items = scope.items.borrow_mut();
- for task in items.tasks.iter_mut() {
- let task = task.as_mut();
- // todo: does this make sense?
- // I don't usually write futures by hand
- // I think the futures neeed to be pinned using bumpbox or something
- // right now, they're bump allocated so this shouldn't matter anyway - they're not going to move
- let unpinned = unsafe { Pin::new_unchecked(task) };
- if unpinned.poll(cx).is_ready() {
- all_pending = false
- }
- }
- }
- // Resolve the future if any singular task is ready
- match all_pending {
- true => Poll::Pending,
- false => Poll::Ready(()),
- }
- }
- }
- // Poll both the futures and the scheduler message queue simulataneously
- use futures_util::future::{select, Either};
- let scheduler_fut = self.receiver.next();
- let tasks_fut = PollTasks {
- pending_futures: &self.pending_futures,
- scopes: &self.scopes,
- };
- match select(tasks_fut, scheduler_fut).await {
- // Futures don't generate work
- Either::Left((_, _)) => {}
- // Save these messages in FIFO to be processed later
- Either::Right((msg, _)) => self.pending_messages.push_front(msg.unwrap()),
- }
- }
- }
- /// Run the virtualdom with a deadline.
- ///
- /// This method will progress async tasks until the deadline is reached. If tasks are completed before the deadline,
- /// and no tasks are pending, this method will return immediately. If tasks are still pending, then this method will
- /// exhaust the deadline working on them.
- ///
- /// This method is useful when needing to schedule the virtualdom around other tasks on the main thread to prevent
- /// "jank". It will try to finish whatever work it has by the deadline to free up time for other work.
- ///
- /// Due to platform differences in how time is handled, this method accepts a future that resolves when the deadline
- /// is exceeded. However, the deadline won't be met precisely, so you might want to build some wiggle room into the
- /// deadline closure manually.
- ///
- /// The deadline is polled before starting to diff components. This strikes a balance between the overhead of checking
- /// the deadline and just completing the work. However, if an individual component takes more than 16ms to render, then
- /// the screen will "jank" up. In debug, this will trigger an alert.
- ///
- /// If there are no in-flight fibers when this method is called, it will await any possible tasks, aborting early if
- /// the provided deadline future resolves.
- ///
- /// For use in the web, it is expected that this method will be called to be executed during "idle times" and the
- /// mutations to be applied during the "paint times" IE "animation frames". With this strategy, it is possible to craft
- /// entirely jank-free applications that perform a ton of work.
- ///
- /// # Example
- ///
- /// ```rust, ignore
- /// fn App(cx: Context, props: &()) -> Element {
- /// cx.render(rsx!( div {"hello"} ))
- /// }
- ///
- /// let mut dom = VirtualDom::new(App);
- ///
- /// loop {
- /// let mut timeout = TimeoutFuture::from_ms(16);
- /// let deadline = move || (&mut timeout).now_or_never();
- ///
- /// let mutations = dom.run_with_deadline(deadline).await;
- ///
- /// apply_mutations(mutations);
- /// }
- /// ```
- ///
- /// ## Mutations
- ///
- /// This method returns "mutations" - IE the necessary changes to get the RealDOM to match the VirtualDOM. It also
- /// includes a list of NodeRefs that need to be applied and effects that need to be triggered after the RealDOM has
- /// applied the edits.
- ///
- /// Mutations are the only link between the RealDOM and the VirtualDOM.
- ///
- pub fn work_with_deadline(&mut self, mut deadline: impl FnMut() -> bool) -> Vec<Mutations> {
- let mut committed_mutations = vec![];
- while self.has_any_work() {
- while let Ok(Some(msg)) = self.receiver.try_next() {
- self.pending_messages.push_front(msg);
- }
- while let Some(msg) = self.pending_messages.pop_back() {
- match msg {
- // TODO: Suspsense
- SchedulerMsg::Immediate(id) => {
- self.dirty_scopes.insert(id);
- }
- SchedulerMsg::UiEvent(event) => {
- if let Some(element) = event.mounted_dom_id {
- log::info!("Calling listener {:?}, {:?}", event.scope_id, element);
- if let Some(scope) = self.scopes.get_scope(&event.scope_id) {
- self.scopes.call_listener_with_bubbling(event, element);
- while let Ok(Some(dirty_scope)) = self.receiver.try_next() {
- self.pending_messages.push_front(dirty_scope);
- }
- }
- } else {
- log::debug!("User event without a targetted ElementId. Not currently supported.\nUnsure how to proceed. {:?}", event);
- }
- }
- }
- }
- let scopes = &self.scopes;
- let mut diff_state = DiffState::new(scopes);
- let mut ran_scopes = FxHashSet::default();
- // todo: the 2021 version of rust will let us not have to force the borrow
- // let scopes = &self.scopes;
- // Sort the scopes by height. Theoretically, we'll de-duplicate scopes by height
- self.dirty_scopes
- .retain(|id| scopes.get_scope(id).is_some());
- self.dirty_scopes.sort_by(|a, b| {
- let h1 = scopes.get_scope(a).unwrap().height;
- let h2 = scopes.get_scope(b).unwrap().height;
- h1.cmp(&h2).reverse()
- });
- if let Some(scopeid) = self.dirty_scopes.pop() {
- log::info!("handling dirty scope {:?}", scopeid);
- if !ran_scopes.contains(&scopeid) {
- ran_scopes.insert(scopeid);
- log::debug!("about to run scope {:?}", scopeid);
- if self.scopes.run_scope(&scopeid) {
- let (old, new) = (
- self.scopes.wip_head(&scopeid),
- self.scopes.fin_head(&scopeid),
- );
- diff_state.stack.push(DiffInstruction::Diff { new, old });
- diff_state.stack.scope_stack.push(scopeid);
- let scope = scopes.get_scope(&scopeid).unwrap();
- diff_state.stack.element_stack.push(scope.container);
- }
- }
- }
- let work_completed = diff_state.work(&mut deadline);
- if work_completed {
- let DiffState {
- mutations,
- seen_scopes,
- ..
- } = diff_state;
- for scope in seen_scopes {
- self.dirty_scopes.remove(&scope);
- }
- // // I think the stack should be empty at the end of diffing?
- // debug_assert_eq!(stack.scope_stack.len(), 1);
- committed_mutations.push(mutations);
- } else {
- // leave the work in an incomplete state
- log::debug!("don't have a mechanism to pause work (yet)");
- return committed_mutations;
- }
- }
- committed_mutations
- }
- /// Performs a *full* rebuild of the virtual dom, returning every edit required to generate the actual dom from scratch
- ///
- /// The diff machine expects the RealDom's stack to be the root of the application.
- ///
- /// Tasks will not be polled with this method, nor will any events be processed from the event queue. Instead, the
- /// root component will be ran once and then diffed. All updates will flow out as mutations.
- ///
- /// All state stored in components will be completely wiped away.
- ///
- /// # Example
- /// ```rust, ignore
- /// static App: FC<()> = |cx, props| cx.render(rsx!{ "hello world" });
- /// let mut dom = VirtualDom::new();
- /// let edits = dom.rebuild();
- ///
- /// apply_edits(edits);
- /// ```
- pub fn rebuild(&mut self) -> Mutations {
- let mut diff_state = DiffState::new(&self.scopes);
- let scope_id = self.base_scope;
- if self.scopes.run_scope(&scope_id) {
- diff_state
- .stack
- .create_node(self.scopes.fin_head(&scope_id), MountType::Append);
- diff_state.stack.element_stack.push(ElementId(0));
- diff_state.stack.scope_stack.push(scope_id);
- diff_state.work(|| false);
- }
- diff_state.mutations
- }
- /// Compute a manual diff of the VirtualDOM between states.
- ///
- /// This can be useful when state inside the DOM is remotely changed from the outside, but not propagated as an event.
- ///
- /// In this case, every component will be diffed, even if their props are memoized. This method is intended to be used
- /// to force an update of the DOM when the state of the app is changed outside of the app.
- ///
- ///
- /// # Example
- /// ```rust, ignore
- /// #[derive(PartialEq, Props)]
- /// struct AppProps {
- /// value: Shared<&'static str>,
- /// }
- ///
- /// static App: FC<AppProps> = |cx, props|{
- /// let val = cx.value.borrow();
- /// cx.render(rsx! { div { "{val}" } })
- /// };
- ///
- /// let value = Rc::new(RefCell::new("Hello"));
- /// let mut dom = VirtualDom::new_with_props(
- /// App,
- /// AppProps {
- /// value: value.clone(),
- /// },
- /// );
- ///
- /// let _ = dom.rebuild();
- ///
- /// *value.borrow_mut() = "goodbye";
- ///
- /// let edits = dom.diff();
- /// ```
- pub fn hard_diff<'a>(&'a mut self, scope_id: &ScopeId) -> Option<Mutations<'a>> {
- let mut diff_machine = DiffState::new(&self.scopes);
- if self.scopes.run_scope(scope_id) {
- diff_machine.force_diff = true;
- diff_machine.diff_scope(scope_id);
- }
- Some(diff_machine.mutations)
- }
- /// Renders an `rsx` call into the Base Scope's allocator.
- ///
- /// Useful when needing to render nodes from outside the VirtualDom, such as in a test.
- pub fn render_vnodes<'a>(&'a self, lazy_nodes: Option<LazyNodes<'a, '_>>) -> &'a VNode<'a> {
- let scope = self.scopes.get_scope(&self.base_scope).unwrap();
- let frame = scope.wip_frame();
- let factory = NodeFactory { bump: &frame.bump };
- let node = lazy_nodes.unwrap().call(factory);
- frame.bump.alloc(node)
- }
- /// Renders an `rsx` call into the Base Scope's allocator.
- ///
- /// Useful when needing to render nodes from outside the VirtualDom, such as in a test.
- pub fn diff_vnodes<'a>(&'a self, old: &'a VNode<'a>, new: &'a VNode<'a>) -> Mutations<'a> {
- let mut machine = DiffState::new(&self.scopes);
- machine.stack.push(DiffInstruction::Diff { new, old });
- machine.stack.element_stack.push(ElementId(0));
- machine.stack.scope_stack.push(self.base_scope);
- machine.work(|| false);
- machine.mutations
- }
- /// Renders an `rsx` call into the Base Scope's allocator.
- ///
- /// Useful when needing to render nodes from outside the VirtualDom, such as in a test.
- pub fn create_vnodes<'a>(&'a self, left: Option<LazyNodes<'a, '_>>) -> Mutations<'a> {
- let nodes = self.render_vnodes(left);
- let mut machine = DiffState::new(&self.scopes);
- machine.stack.element_stack.push(ElementId(0));
- machine.stack.create_node(nodes, MountType::Append);
- machine.work(|| false);
- machine.mutations
- }
- /// Renders an `rsx` call into the Base Scope's allocator.
- ///
- /// Useful when needing to render nodes from outside the VirtualDom, such as in a test.
- pub fn diff_lazynodes<'a>(
- &'a self,
- left: Option<LazyNodes<'a, '_>>,
- right: Option<LazyNodes<'a, '_>>,
- ) -> (Mutations<'a>, Mutations<'a>) {
- let (old, new) = (self.render_vnodes(left), self.render_vnodes(right));
- let mut create = DiffState::new(&self.scopes);
- create.stack.scope_stack.push(self.base_scope);
- create.stack.element_stack.push(ElementId(0));
- create.stack.create_node(old, MountType::Append);
- create.work(|| false);
- let mut edit = DiffState::new(&self.scopes);
- edit.stack.scope_stack.push(self.base_scope);
- edit.stack.element_stack.push(ElementId(0));
- edit.stack.push(DiffInstruction::Diff { old, new });
- edit.work(&mut || false);
- (create.mutations, edit.mutations)
- }
- }
- pub enum SchedulerMsg {
- // events from the host
- UiEvent(UserEvent),
- // setstate
- Immediate(ScopeId),
- }
- #[derive(Debug)]
- pub struct UserEvent {
- /// The originator of the event trigger
- pub scope_id: ScopeId,
- pub priority: EventPriority,
- /// The optional real node associated with the trigger
- pub mounted_dom_id: Option<ElementId>,
- /// The event type IE "onclick" or "onmouseover"
- ///
- /// The name that the renderer will use to mount the listener.
- pub name: &'static str,
- /// Event Data
- pub event: Arc<dyn Any + Send + Sync>,
- }
- /// Priority of Event Triggers.
- ///
- /// Internally, Dioxus will abort work that's taking too long if new, more important work arrives. Unlike React, Dioxus
- /// won't be afraid to pause work or flush changes to the RealDOM. This is called "cooperative scheduling". Some Renderers
- /// implement this form of scheduling internally, however Dioxus will perform its own scheduling as well.
- ///
- /// The ultimate goal of the scheduler is to manage latency of changes, prioritizing "flashier" changes over "subtler" changes.
- ///
- /// React has a 5-tier priority system. However, they break things into "Continuous" and "Discrete" priority. For now,
- /// we keep it simple, and just use a 3-tier priority system.
- ///
- /// - NoPriority = 0
- /// - LowPriority = 1
- /// - NormalPriority = 2
- /// - UserBlocking = 3
- /// - HighPriority = 4
- /// - ImmediatePriority = 5
- ///
- /// We still have a concept of discrete vs continuous though - discrete events won't be batched, but continuous events will.
- /// This means that multiple "scroll" events will be processed in a single frame, but multiple "click" events will be
- /// flushed before proceeding. Multiple discrete events is highly unlikely, though.
- #[derive(Debug, PartialEq, Eq, Clone, Copy, Hash, PartialOrd, Ord)]
- pub enum EventPriority {
- /// Work that must be completed during the EventHandler phase.
- ///
- /// Currently this is reserved for controlled inputs.
- Immediate = 3,
- /// "High Priority" work will not interrupt other high priority work, but will interrupt medium and low priority work.
- ///
- /// This is typically reserved for things like user interaction.
- ///
- /// React calls these "discrete" events, but with an extra category of "user-blocking" (Immediate).
- High = 2,
- /// "Medium priority" work is generated by page events not triggered by the user. These types of events are less important
- /// than "High Priority" events and will take precedence over low priority events.
- ///
- /// This is typically reserved for VirtualEvents that are not related to keyboard or mouse input.
- ///
- /// React calls these "continuous" events (e.g. mouse move, mouse wheel, touch move, etc).
- Medium = 1,
- /// "Low Priority" work will always be preempted unless the work is significantly delayed, in which case it will be
- /// advanced to the front of the work queue until completed.
- ///
- /// The primary user of Low Priority work is the asynchronous work system (Suspense).
- ///
- /// This is considered "idle" work or "background" work.
- Low = 0,
- }
|