node_hash_set.h 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493
  1. // Copyright 2018 The Abseil Authors.
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // https://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. //
  15. // -----------------------------------------------------------------------------
  16. // File: node_hash_set.h
  17. // -----------------------------------------------------------------------------
  18. //
  19. // An `absl::node_hash_set<T>` is an unordered associative container designed to
  20. // be a more efficient replacement for `std::unordered_set`. Like
  21. // `unordered_set`, search, insertion, and deletion of set elements can be done
  22. // as an `O(1)` operation. However, `node_hash_set` (and other unordered
  23. // associative containers known as the collection of Abseil "Swiss tables")
  24. // contain other optimizations that result in both memory and computation
  25. // advantages.
  26. //
  27. // In most cases, your default choice for a hash table should be a map of type
  28. // `flat_hash_map` or a set of type `flat_hash_set`. However, if you need
  29. // pointer stability, a `node_hash_set` should be your preferred choice. As
  30. // well, if you are migrating your code from using `std::unordered_set`, a
  31. // `node_hash_set` should be an easy migration. Consider migrating to
  32. // `node_hash_set` and perhaps converting to a more efficient `flat_hash_set`
  33. // upon further review.
  34. #ifndef ABSL_CONTAINER_NODE_HASH_SET_H_
  35. #define ABSL_CONTAINER_NODE_HASH_SET_H_
  36. #include <type_traits>
  37. #include "absl/algorithm/container.h"
  38. #include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export
  39. #include "absl/container/internal/node_hash_policy.h"
  40. #include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export
  41. #include "absl/memory/memory.h"
  42. namespace absl {
  43. ABSL_NAMESPACE_BEGIN
  44. namespace container_internal {
  45. template <typename T>
  46. struct NodeHashSetPolicy;
  47. } // namespace container_internal
  48. // -----------------------------------------------------------------------------
  49. // absl::node_hash_set
  50. // -----------------------------------------------------------------------------
  51. //
  52. // An `absl::node_hash_set<T>` is an unordered associative container which
  53. // has been optimized for both speed and memory footprint in most common use
  54. // cases. Its interface is similar to that of `std::unordered_set<T>` with the
  55. // following notable differences:
  56. //
  57. // * Supports heterogeneous lookup, through `find()`, `operator[]()` and
  58. // `insert()`, provided that the set is provided a compatible heterogeneous
  59. // hashing function and equality operator.
  60. // * Contains a `capacity()` member function indicating the number of element
  61. // slots (open, deleted, and empty) within the hash set.
  62. // * Returns `void` from the `erase(iterator)` overload.
  63. //
  64. // By default, `node_hash_set` uses the `absl::Hash` hashing framework.
  65. // All fundamental and Abseil types that support the `absl::Hash` framework have
  66. // a compatible equality operator for comparing insertions into `node_hash_set`.
  67. // If your type is not yet supported by the `absl::Hash` framework, see
  68. // absl/hash/hash.h for information on extending Abseil hashing to user-defined
  69. // types.
  70. //
  71. // Example:
  72. //
  73. // // Create a node hash set of three strings
  74. // absl::node_hash_set<std::string> ducks =
  75. // {"huey", "dewey", "louie"};
  76. //
  77. // // Insert a new element into the node hash set
  78. // ducks.insert("donald");
  79. //
  80. // // Force a rehash of the node hash set
  81. // ducks.rehash(0);
  82. //
  83. // // See if "dewey" is present
  84. // if (ducks.contains("dewey")) {
  85. // std::cout << "We found dewey!" << std::endl;
  86. // }
  87. template <class T, class Hash = absl::container_internal::hash_default_hash<T>,
  88. class Eq = absl::container_internal::hash_default_eq<T>,
  89. class Alloc = std::allocator<T>>
  90. class node_hash_set
  91. : public absl::container_internal::raw_hash_set<
  92. absl::container_internal::NodeHashSetPolicy<T>, Hash, Eq, Alloc> {
  93. using Base = typename node_hash_set::raw_hash_set;
  94. public:
  95. // Constructors and Assignment Operators
  96. //
  97. // A node_hash_set supports the same overload set as `std::unordered_set`
  98. // for construction and assignment:
  99. //
  100. // * Default constructor
  101. //
  102. // // No allocation for the table's elements is made.
  103. // absl::node_hash_set<std::string> set1;
  104. //
  105. // * Initializer List constructor
  106. //
  107. // absl::node_hash_set<std::string> set2 =
  108. // {{"huey"}, {"dewey"}, {"louie"}};
  109. //
  110. // * Copy constructor
  111. //
  112. // absl::node_hash_set<std::string> set3(set2);
  113. //
  114. // * Copy assignment operator
  115. //
  116. // // Hash functor and Comparator are copied as well
  117. // absl::node_hash_set<std::string> set4;
  118. // set4 = set3;
  119. //
  120. // * Move constructor
  121. //
  122. // // Move is guaranteed efficient
  123. // absl::node_hash_set<std::string> set5(std::move(set4));
  124. //
  125. // * Move assignment operator
  126. //
  127. // // May be efficient if allocators are compatible
  128. // absl::node_hash_set<std::string> set6;
  129. // set6 = std::move(set5);
  130. //
  131. // * Range constructor
  132. //
  133. // std::vector<std::string> v = {"a", "b"};
  134. // absl::node_hash_set<std::string> set7(v.begin(), v.end());
  135. node_hash_set() {}
  136. using Base::Base;
  137. // node_hash_set::begin()
  138. //
  139. // Returns an iterator to the beginning of the `node_hash_set`.
  140. using Base::begin;
  141. // node_hash_set::cbegin()
  142. //
  143. // Returns a const iterator to the beginning of the `node_hash_set`.
  144. using Base::cbegin;
  145. // node_hash_set::cend()
  146. //
  147. // Returns a const iterator to the end of the `node_hash_set`.
  148. using Base::cend;
  149. // node_hash_set::end()
  150. //
  151. // Returns an iterator to the end of the `node_hash_set`.
  152. using Base::end;
  153. // node_hash_set::capacity()
  154. //
  155. // Returns the number of element slots (assigned, deleted, and empty)
  156. // available within the `node_hash_set`.
  157. //
  158. // NOTE: this member function is particular to `absl::node_hash_set` and is
  159. // not provided in the `std::unordered_set` API.
  160. using Base::capacity;
  161. // node_hash_set::empty()
  162. //
  163. // Returns whether or not the `node_hash_set` is empty.
  164. using Base::empty;
  165. // node_hash_set::max_size()
  166. //
  167. // Returns the largest theoretical possible number of elements within a
  168. // `node_hash_set` under current memory constraints. This value can be thought
  169. // of the largest value of `std::distance(begin(), end())` for a
  170. // `node_hash_set<T>`.
  171. using Base::max_size;
  172. // node_hash_set::size()
  173. //
  174. // Returns the number of elements currently within the `node_hash_set`.
  175. using Base::size;
  176. // node_hash_set::clear()
  177. //
  178. // Removes all elements from the `node_hash_set`. Invalidates any references,
  179. // pointers, or iterators referring to contained elements.
  180. //
  181. // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
  182. // the underlying buffer call `erase(begin(), end())`.
  183. using Base::clear;
  184. // node_hash_set::erase()
  185. //
  186. // Erases elements within the `node_hash_set`. Erasing does not trigger a
  187. // rehash. Overloads are listed below.
  188. //
  189. // void erase(const_iterator pos):
  190. //
  191. // Erases the element at `position` of the `node_hash_set`, returning
  192. // `void`.
  193. //
  194. // NOTE: this return behavior is different than that of STL containers in
  195. // general and `std::unordered_set` in particular.
  196. //
  197. // iterator erase(const_iterator first, const_iterator last):
  198. //
  199. // Erases the elements in the open interval [`first`, `last`), returning an
  200. // iterator pointing to `last`.
  201. //
  202. // size_type erase(const key_type& key):
  203. //
  204. // Erases the element with the matching key, if it exists, returning the
  205. // number of elements erased (0 or 1).
  206. using Base::erase;
  207. // node_hash_set::insert()
  208. //
  209. // Inserts an element of the specified value into the `node_hash_set`,
  210. // returning an iterator pointing to the newly inserted element, provided that
  211. // an element with the given key does not already exist. If rehashing occurs
  212. // due to the insertion, all iterators are invalidated. Overloads are listed
  213. // below.
  214. //
  215. // std::pair<iterator,bool> insert(const T& value):
  216. //
  217. // Inserts a value into the `node_hash_set`. Returns a pair consisting of an
  218. // iterator to the inserted element (or to the element that prevented the
  219. // insertion) and a bool denoting whether the insertion took place.
  220. //
  221. // std::pair<iterator,bool> insert(T&& value):
  222. //
  223. // Inserts a moveable value into the `node_hash_set`. Returns a pair
  224. // consisting of an iterator to the inserted element (or to the element that
  225. // prevented the insertion) and a bool denoting whether the insertion took
  226. // place.
  227. //
  228. // iterator insert(const_iterator hint, const T& value):
  229. // iterator insert(const_iterator hint, T&& value):
  230. //
  231. // Inserts a value, using the position of `hint` as a non-binding suggestion
  232. // for where to begin the insertion search. Returns an iterator to the
  233. // inserted element, or to the existing element that prevented the
  234. // insertion.
  235. //
  236. // void insert(InputIterator first, InputIterator last):
  237. //
  238. // Inserts a range of values [`first`, `last`).
  239. //
  240. // NOTE: Although the STL does not specify which element may be inserted if
  241. // multiple keys compare equivalently, for `node_hash_set` we guarantee the
  242. // first match is inserted.
  243. //
  244. // void insert(std::initializer_list<T> ilist):
  245. //
  246. // Inserts the elements within the initializer list `ilist`.
  247. //
  248. // NOTE: Although the STL does not specify which element may be inserted if
  249. // multiple keys compare equivalently within the initializer list, for
  250. // `node_hash_set` we guarantee the first match is inserted.
  251. using Base::insert;
  252. // node_hash_set::emplace()
  253. //
  254. // Inserts an element of the specified value by constructing it in-place
  255. // within the `node_hash_set`, provided that no element with the given key
  256. // already exists.
  257. //
  258. // The element may be constructed even if there already is an element with the
  259. // key in the container, in which case the newly constructed element will be
  260. // destroyed immediately.
  261. //
  262. // If rehashing occurs due to the insertion, all iterators are invalidated.
  263. using Base::emplace;
  264. // node_hash_set::emplace_hint()
  265. //
  266. // Inserts an element of the specified value by constructing it in-place
  267. // within the `node_hash_set`, using the position of `hint` as a non-binding
  268. // suggestion for where to begin the insertion search, and only inserts
  269. // provided that no element with the given key already exists.
  270. //
  271. // The element may be constructed even if there already is an element with the
  272. // key in the container, in which case the newly constructed element will be
  273. // destroyed immediately.
  274. //
  275. // If rehashing occurs due to the insertion, all iterators are invalidated.
  276. using Base::emplace_hint;
  277. // node_hash_set::extract()
  278. //
  279. // Extracts the indicated element, erasing it in the process, and returns it
  280. // as a C++17-compatible node handle. Overloads are listed below.
  281. //
  282. // node_type extract(const_iterator position):
  283. //
  284. // Extracts the element at the indicated position and returns a node handle
  285. // owning that extracted data.
  286. //
  287. // node_type extract(const key_type& x):
  288. //
  289. // Extracts the element with the key matching the passed key value and
  290. // returns a node handle owning that extracted data. If the `node_hash_set`
  291. // does not contain an element with a matching key, this function returns an
  292. // empty node handle.
  293. using Base::extract;
  294. // node_hash_set::merge()
  295. //
  296. // Extracts elements from a given `source` node hash set into this
  297. // `node_hash_set`. If the destination `node_hash_set` already contains an
  298. // element with an equivalent key, that element is not extracted.
  299. using Base::merge;
  300. // node_hash_set::swap(node_hash_set& other)
  301. //
  302. // Exchanges the contents of this `node_hash_set` with those of the `other`
  303. // node hash set, avoiding invocation of any move, copy, or swap operations on
  304. // individual elements.
  305. //
  306. // All iterators and references on the `node_hash_set` remain valid, excepting
  307. // for the past-the-end iterator, which is invalidated.
  308. //
  309. // `swap()` requires that the node hash set's hashing and key equivalence
  310. // functions be Swappable, and are exchaged using unqualified calls to
  311. // non-member `swap()`. If the set's allocator has
  312. // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
  313. // set to `true`, the allocators are also exchanged using an unqualified call
  314. // to non-member `swap()`; otherwise, the allocators are not swapped.
  315. using Base::swap;
  316. // node_hash_set::rehash(count)
  317. //
  318. // Rehashes the `node_hash_set`, setting the number of slots to be at least
  319. // the passed value. If the new number of slots increases the load factor more
  320. // than the current maximum load factor
  321. // (`count` < `size()` / `max_load_factor()`), then the new number of slots
  322. // will be at least `size()` / `max_load_factor()`.
  323. //
  324. // To force a rehash, pass rehash(0).
  325. //
  326. // NOTE: unlike behavior in `std::unordered_set`, references are also
  327. // invalidated upon a `rehash()`.
  328. using Base::rehash;
  329. // node_hash_set::reserve(count)
  330. //
  331. // Sets the number of slots in the `node_hash_set` to the number needed to
  332. // accommodate at least `count` total elements without exceeding the current
  333. // maximum load factor, and may rehash the container if needed.
  334. using Base::reserve;
  335. // node_hash_set::contains()
  336. //
  337. // Determines whether an element comparing equal to the given `key` exists
  338. // within the `node_hash_set`, returning `true` if so or `false` otherwise.
  339. using Base::contains;
  340. // node_hash_set::count(const Key& key) const
  341. //
  342. // Returns the number of elements comparing equal to the given `key` within
  343. // the `node_hash_set`. note that this function will return either `1` or `0`
  344. // since duplicate elements are not allowed within a `node_hash_set`.
  345. using Base::count;
  346. // node_hash_set::equal_range()
  347. //
  348. // Returns a closed range [first, last], defined by a `std::pair` of two
  349. // iterators, containing all elements with the passed key in the
  350. // `node_hash_set`.
  351. using Base::equal_range;
  352. // node_hash_set::find()
  353. //
  354. // Finds an element with the passed `key` within the `node_hash_set`.
  355. using Base::find;
  356. // node_hash_set::bucket_count()
  357. //
  358. // Returns the number of "buckets" within the `node_hash_set`. Note that
  359. // because a node hash set contains all elements within its internal storage,
  360. // this value simply equals the current capacity of the `node_hash_set`.
  361. using Base::bucket_count;
  362. // node_hash_set::load_factor()
  363. //
  364. // Returns the current load factor of the `node_hash_set` (the average number
  365. // of slots occupied with a value within the hash set).
  366. using Base::load_factor;
  367. // node_hash_set::max_load_factor()
  368. //
  369. // Manages the maximum load factor of the `node_hash_set`. Overloads are
  370. // listed below.
  371. //
  372. // float node_hash_set::max_load_factor()
  373. //
  374. // Returns the current maximum load factor of the `node_hash_set`.
  375. //
  376. // void node_hash_set::max_load_factor(float ml)
  377. //
  378. // Sets the maximum load factor of the `node_hash_set` to the passed value.
  379. //
  380. // NOTE: This overload is provided only for API compatibility with the STL;
  381. // `node_hash_set` will ignore any set load factor and manage its rehashing
  382. // internally as an implementation detail.
  383. using Base::max_load_factor;
  384. // node_hash_set::get_allocator()
  385. //
  386. // Returns the allocator function associated with this `node_hash_set`.
  387. using Base::get_allocator;
  388. // node_hash_set::hash_function()
  389. //
  390. // Returns the hashing function used to hash the keys within this
  391. // `node_hash_set`.
  392. using Base::hash_function;
  393. // node_hash_set::key_eq()
  394. //
  395. // Returns the function used for comparing keys equality.
  396. using Base::key_eq;
  397. };
  398. // erase_if(node_hash_set<>, Pred)
  399. //
  400. // Erases all elements that satisfy the predicate `pred` from the container `c`.
  401. template <typename T, typename H, typename E, typename A, typename Predicate>
  402. void erase_if(node_hash_set<T, H, E, A>& c, Predicate pred) {
  403. container_internal::EraseIf(pred, &c);
  404. }
  405. namespace container_internal {
  406. template <class T>
  407. struct NodeHashSetPolicy
  408. : absl::container_internal::node_hash_policy<T&, NodeHashSetPolicy<T>> {
  409. using key_type = T;
  410. using init_type = T;
  411. using constant_iterators = std::true_type;
  412. template <class Allocator, class... Args>
  413. static T* new_element(Allocator* alloc, Args&&... args) {
  414. using ValueAlloc =
  415. typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
  416. ValueAlloc value_alloc(*alloc);
  417. T* res = absl::allocator_traits<ValueAlloc>::allocate(value_alloc, 1);
  418. absl::allocator_traits<ValueAlloc>::construct(value_alloc, res,
  419. std::forward<Args>(args)...);
  420. return res;
  421. }
  422. template <class Allocator>
  423. static void delete_element(Allocator* alloc, T* elem) {
  424. using ValueAlloc =
  425. typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
  426. ValueAlloc value_alloc(*alloc);
  427. absl::allocator_traits<ValueAlloc>::destroy(value_alloc, elem);
  428. absl::allocator_traits<ValueAlloc>::deallocate(value_alloc, elem, 1);
  429. }
  430. template <class F, class... Args>
  431. static decltype(absl::container_internal::DecomposeValue(
  432. std::declval<F>(), std::declval<Args>()...))
  433. apply(F&& f, Args&&... args) {
  434. return absl::container_internal::DecomposeValue(
  435. std::forward<F>(f), std::forward<Args>(args)...);
  436. }
  437. static size_t element_space_used(const T*) { return sizeof(T); }
  438. };
  439. } // namespace container_internal
  440. namespace container_algorithm_internal {
  441. // Specialization of trait in absl/algorithm/container.h
  442. template <class Key, class Hash, class KeyEqual, class Allocator>
  443. struct IsUnorderedContainer<absl::node_hash_set<Key, Hash, KeyEqual, Allocator>>
  444. : std::true_type {};
  445. } // namespace container_algorithm_internal
  446. ABSL_NAMESPACE_END
  447. } // namespace absl
  448. #endif // ABSL_CONTAINER_NODE_HASH_SET_H_