123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383 |
- // Copyright 2017 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // Benchmarks for absl random distributions as well as a selection of the
- // C++ standard library random distributions.
- #include <algorithm>
- #include <cstddef>
- #include <cstdint>
- #include <initializer_list>
- #include <iterator>
- #include <limits>
- #include <random>
- #include <type_traits>
- #include <vector>
- #include "absl/base/macros.h"
- #include "absl/meta/type_traits.h"
- #include "absl/random/bernoulli_distribution.h"
- #include "absl/random/beta_distribution.h"
- #include "absl/random/exponential_distribution.h"
- #include "absl/random/gaussian_distribution.h"
- #include "absl/random/internal/fast_uniform_bits.h"
- #include "absl/random/internal/randen_engine.h"
- #include "absl/random/log_uniform_int_distribution.h"
- #include "absl/random/poisson_distribution.h"
- #include "absl/random/random.h"
- #include "absl/random/uniform_int_distribution.h"
- #include "absl/random/uniform_real_distribution.h"
- #include "absl/random/zipf_distribution.h"
- #include "benchmark/benchmark.h"
- namespace {
- // Seed data to avoid reading random_device() for benchmarks.
- uint32_t kSeedData[] = {
- 0x1B510052, 0x9A532915, 0xD60F573F, 0xBC9BC6E4, 0x2B60A476, 0x81E67400,
- 0x08BA6FB5, 0x571BE91F, 0xF296EC6B, 0x2A0DD915, 0xB6636521, 0xE7B9F9B6,
- 0xFF34052E, 0xC5855664, 0x53B02D5D, 0xA99F8FA1, 0x08BA4799, 0x6E85076A,
- 0x4B7A70E9, 0xB5B32944, 0xDB75092E, 0xC4192623, 0xAD6EA6B0, 0x49A7DF7D,
- 0x9CEE60B8, 0x8FEDB266, 0xECAA8C71, 0x699A18FF, 0x5664526C, 0xC2B19EE1,
- 0x193602A5, 0x75094C29, 0xA0591340, 0xE4183A3E, 0x3F54989A, 0x5B429D65,
- 0x6B8FE4D6, 0x99F73FD6, 0xA1D29C07, 0xEFE830F5, 0x4D2D38E6, 0xF0255DC1,
- 0x4CDD2086, 0x8470EB26, 0x6382E9C6, 0x021ECC5E, 0x09686B3F, 0x3EBAEFC9,
- 0x3C971814, 0x6B6A70A1, 0x687F3584, 0x52A0E286, 0x13198A2E, 0x03707344,
- };
- // PrecompiledSeedSeq provides kSeedData to a conforming
- // random engine to speed initialization in the benchmarks.
- class PrecompiledSeedSeq {
- public:
- using result_type = uint32_t;
- PrecompiledSeedSeq() {}
- template <typename Iterator>
- PrecompiledSeedSeq(Iterator begin, Iterator end) {}
- template <typename T>
- PrecompiledSeedSeq(std::initializer_list<T> il) {}
- template <typename OutIterator>
- void generate(OutIterator begin, OutIterator end) {
- static size_t idx = 0;
- for (; begin != end; begin++) {
- *begin = kSeedData[idx++];
- if (idx >= ABSL_ARRAYSIZE(kSeedData)) {
- idx = 0;
- }
- }
- }
- size_t size() const { return ABSL_ARRAYSIZE(kSeedData); }
- template <typename OutIterator>
- void param(OutIterator out) const {
- std::copy(std::begin(kSeedData), std::end(kSeedData), out);
- }
- };
- // use_default_initialization<T> indicates whether the random engine
- // T must be default initialized, or whether we may initialize it using
- // a seed sequence. This is used because some engines do not accept seed
- // sequence-based initialization.
- template <typename E>
- using use_default_initialization = std::false_type;
- // make_engine<T, SSeq> returns a random_engine which is initialized,
- // either via the default constructor, when use_default_initialization<T>
- // is true, or via the indicated seed sequence, SSeq.
- template <typename Engine, typename SSeq = PrecompiledSeedSeq>
- typename absl::enable_if_t<!use_default_initialization<Engine>::value, Engine>
- make_engine() {
- // Initialize the random engine using the seed sequence SSeq, which
- // is constructed from the precompiled seed data.
- SSeq seq(std::begin(kSeedData), std::end(kSeedData));
- return Engine(seq);
- }
- template <typename Engine, typename SSeq = PrecompiledSeedSeq>
- typename absl::enable_if_t<use_default_initialization<Engine>::value, Engine>
- make_engine() {
- // Initialize the random engine using the default constructor.
- return Engine();
- }
- template <typename Engine, typename SSeq>
- void BM_Construct(benchmark::State& state) {
- for (auto _ : state) {
- auto rng = make_engine<Engine, SSeq>();
- benchmark::DoNotOptimize(rng());
- }
- }
- template <typename Engine>
- void BM_Direct(benchmark::State& state) {
- using value_type = typename Engine::result_type;
- // Direct use of the URBG.
- auto rng = make_engine<Engine>();
- for (auto _ : state) {
- benchmark::DoNotOptimize(rng());
- }
- state.SetBytesProcessed(sizeof(value_type) * state.iterations());
- }
- template <typename Engine>
- void BM_Generate(benchmark::State& state) {
- // std::generate makes a copy of the RNG; thus this tests the
- // copy-constructor efficiency.
- using value_type = typename Engine::result_type;
- std::vector<value_type> v(64);
- auto rng = make_engine<Engine>();
- while (state.KeepRunningBatch(64)) {
- std::generate(std::begin(v), std::end(v), rng);
- }
- }
- template <typename Engine, size_t elems>
- void BM_Shuffle(benchmark::State& state) {
- // Direct use of the Engine.
- std::vector<uint32_t> v(elems);
- while (state.KeepRunningBatch(elems)) {
- auto rng = make_engine<Engine>();
- std::shuffle(std::begin(v), std::end(v), rng);
- }
- }
- template <typename Engine, size_t elems>
- void BM_ShuffleReuse(benchmark::State& state) {
- // Direct use of the Engine.
- std::vector<uint32_t> v(elems);
- auto rng = make_engine<Engine>();
- while (state.KeepRunningBatch(elems)) {
- std::shuffle(std::begin(v), std::end(v), rng);
- }
- }
- template <typename Engine, typename Dist, typename... Args>
- void BM_Dist(benchmark::State& state, Args&&... args) {
- using value_type = typename Dist::result_type;
- auto rng = make_engine<Engine>();
- Dist dis{std::forward<Args>(args)...};
- // Compare the following loop performance:
- for (auto _ : state) {
- benchmark::DoNotOptimize(dis(rng));
- }
- state.SetBytesProcessed(sizeof(value_type) * state.iterations());
- }
- template <typename Engine, typename Dist>
- void BM_Large(benchmark::State& state) {
- using value_type = typename Dist::result_type;
- volatile value_type kMin = 0;
- volatile value_type kMax = std::numeric_limits<value_type>::max() / 2 + 1;
- BM_Dist<Engine, Dist>(state, kMin, kMax);
- }
- template <typename Engine, typename Dist>
- void BM_Small(benchmark::State& state) {
- using value_type = typename Dist::result_type;
- volatile value_type kMin = 0;
- volatile value_type kMax = std::numeric_limits<value_type>::max() / 64 + 1;
- BM_Dist<Engine, Dist>(state, kMin, kMax);
- }
- template <typename Engine, typename Dist, int A>
- void BM_Bernoulli(benchmark::State& state) {
- volatile double a = static_cast<double>(A) / 1000000;
- BM_Dist<Engine, Dist>(state, a);
- }
- template <typename Engine, typename Dist, int A, int B>
- void BM_Beta(benchmark::State& state) {
- using value_type = typename Dist::result_type;
- volatile value_type a = static_cast<value_type>(A) / 100;
- volatile value_type b = static_cast<value_type>(B) / 100;
- BM_Dist<Engine, Dist>(state, a, b);
- }
- template <typename Engine, typename Dist, int A>
- void BM_Gamma(benchmark::State& state) {
- using value_type = typename Dist::result_type;
- volatile value_type a = static_cast<value_type>(A) / 100;
- BM_Dist<Engine, Dist>(state, a);
- }
- template <typename Engine, typename Dist, int A = 100>
- void BM_Poisson(benchmark::State& state) {
- volatile double a = static_cast<double>(A) / 100;
- BM_Dist<Engine, Dist>(state, a);
- }
- template <typename Engine, typename Dist, int Q = 2, int V = 1>
- void BM_Zipf(benchmark::State& state) {
- using value_type = typename Dist::result_type;
- volatile double q = Q;
- volatile double v = V;
- BM_Dist<Engine, Dist>(state, std::numeric_limits<value_type>::max(), q, v);
- }
- template <typename Engine, typename Dist>
- void BM_Thread(benchmark::State& state) {
- using value_type = typename Dist::result_type;
- auto rng = make_engine<Engine>();
- Dist dis{};
- for (auto _ : state) {
- benchmark::DoNotOptimize(dis(rng));
- }
- state.SetBytesProcessed(sizeof(value_type) * state.iterations());
- }
- // NOTES:
- //
- // std::geometric_distribution is similar to the zipf distributions.
- // The algorithm for the geometric_distribution is, basically,
- // floor(log(1-X) / log(1-p))
- // Normal benchmark suite
- #define BM_BASIC(Engine) \
- BENCHMARK_TEMPLATE(BM_Construct, Engine, PrecompiledSeedSeq); \
- BENCHMARK_TEMPLATE(BM_Construct, Engine, std::seed_seq); \
- BENCHMARK_TEMPLATE(BM_Direct, Engine); \
- BENCHMARK_TEMPLATE(BM_Shuffle, Engine, 10); \
- BENCHMARK_TEMPLATE(BM_Shuffle, Engine, 100); \
- BENCHMARK_TEMPLATE(BM_Shuffle, Engine, 1000); \
- BENCHMARK_TEMPLATE(BM_ShuffleReuse, Engine, 100); \
- BENCHMARK_TEMPLATE(BM_ShuffleReuse, Engine, 1000); \
- BENCHMARK_TEMPLATE(BM_Dist, Engine, \
- absl::random_internal::FastUniformBits<uint32_t>); \
- BENCHMARK_TEMPLATE(BM_Dist, Engine, \
- absl::random_internal::FastUniformBits<uint64_t>); \
- BENCHMARK_TEMPLATE(BM_Dist, Engine, std::uniform_int_distribution<int32_t>); \
- BENCHMARK_TEMPLATE(BM_Dist, Engine, std::uniform_int_distribution<int64_t>); \
- BENCHMARK_TEMPLATE(BM_Dist, Engine, \
- absl::uniform_int_distribution<int32_t>); \
- BENCHMARK_TEMPLATE(BM_Dist, Engine, \
- absl::uniform_int_distribution<int64_t>); \
- BENCHMARK_TEMPLATE(BM_Large, Engine, \
- std::uniform_int_distribution<int32_t>); \
- BENCHMARK_TEMPLATE(BM_Large, Engine, \
- std::uniform_int_distribution<int64_t>); \
- BENCHMARK_TEMPLATE(BM_Large, Engine, \
- absl::uniform_int_distribution<int32_t>); \
- BENCHMARK_TEMPLATE(BM_Large, Engine, \
- absl::uniform_int_distribution<int64_t>); \
- BENCHMARK_TEMPLATE(BM_Dist, Engine, std::uniform_real_distribution<float>); \
- BENCHMARK_TEMPLATE(BM_Dist, Engine, std::uniform_real_distribution<double>); \
- BENCHMARK_TEMPLATE(BM_Dist, Engine, absl::uniform_real_distribution<float>); \
- BENCHMARK_TEMPLATE(BM_Dist, Engine, absl::uniform_real_distribution<double>)
- #define BM_COPY(Engine) BENCHMARK_TEMPLATE(BM_Generate, Engine)
- #define BM_THREAD(Engine) \
- BENCHMARK_TEMPLATE(BM_Thread, Engine, \
- absl::uniform_int_distribution<int64_t>) \
- ->ThreadPerCpu(); \
- BENCHMARK_TEMPLATE(BM_Thread, Engine, \
- absl::uniform_real_distribution<double>) \
- ->ThreadPerCpu(); \
- BENCHMARK_TEMPLATE(BM_Shuffle, Engine, 100)->ThreadPerCpu(); \
- BENCHMARK_TEMPLATE(BM_Shuffle, Engine, 1000)->ThreadPerCpu(); \
- BENCHMARK_TEMPLATE(BM_ShuffleReuse, Engine, 100)->ThreadPerCpu(); \
- BENCHMARK_TEMPLATE(BM_ShuffleReuse, Engine, 1000)->ThreadPerCpu();
- #define BM_EXTENDED(Engine) \
- /* -------------- Extended Uniform -----------------------*/ \
- BENCHMARK_TEMPLATE(BM_Small, Engine, \
- std::uniform_int_distribution<int32_t>); \
- BENCHMARK_TEMPLATE(BM_Small, Engine, \
- std::uniform_int_distribution<int64_t>); \
- BENCHMARK_TEMPLATE(BM_Small, Engine, \
- absl::uniform_int_distribution<int32_t>); \
- BENCHMARK_TEMPLATE(BM_Small, Engine, \
- absl::uniform_int_distribution<int64_t>); \
- BENCHMARK_TEMPLATE(BM_Small, Engine, std::uniform_real_distribution<float>); \
- BENCHMARK_TEMPLATE(BM_Small, Engine, \
- std::uniform_real_distribution<double>); \
- BENCHMARK_TEMPLATE(BM_Small, Engine, \
- absl::uniform_real_distribution<float>); \
- BENCHMARK_TEMPLATE(BM_Small, Engine, \
- absl::uniform_real_distribution<double>); \
- /* -------------- Other -----------------------*/ \
- BENCHMARK_TEMPLATE(BM_Dist, Engine, std::normal_distribution<double>); \
- BENCHMARK_TEMPLATE(BM_Dist, Engine, absl::gaussian_distribution<double>); \
- BENCHMARK_TEMPLATE(BM_Dist, Engine, std::exponential_distribution<double>); \
- BENCHMARK_TEMPLATE(BM_Dist, Engine, absl::exponential_distribution<double>); \
- BENCHMARK_TEMPLATE(BM_Poisson, Engine, std::poisson_distribution<int64_t>, \
- 100); \
- BENCHMARK_TEMPLATE(BM_Poisson, Engine, absl::poisson_distribution<int64_t>, \
- 100); \
- BENCHMARK_TEMPLATE(BM_Poisson, Engine, std::poisson_distribution<int64_t>, \
- 10 * 100); \
- BENCHMARK_TEMPLATE(BM_Poisson, Engine, absl::poisson_distribution<int64_t>, \
- 10 * 100); \
- BENCHMARK_TEMPLATE(BM_Poisson, Engine, std::poisson_distribution<int64_t>, \
- 13 * 100); \
- BENCHMARK_TEMPLATE(BM_Poisson, Engine, absl::poisson_distribution<int64_t>, \
- 13 * 100); \
- BENCHMARK_TEMPLATE(BM_Dist, Engine, \
- absl::log_uniform_int_distribution<int32_t>); \
- BENCHMARK_TEMPLATE(BM_Dist, Engine, \
- absl::log_uniform_int_distribution<int64_t>); \
- BENCHMARK_TEMPLATE(BM_Dist, Engine, std::geometric_distribution<int64_t>); \
- BENCHMARK_TEMPLATE(BM_Zipf, Engine, absl::zipf_distribution<uint64_t>); \
- BENCHMARK_TEMPLATE(BM_Zipf, Engine, absl::zipf_distribution<uint64_t>, 2, \
- 3); \
- BENCHMARK_TEMPLATE(BM_Bernoulli, Engine, std::bernoulli_distribution, \
- 257305); \
- BENCHMARK_TEMPLATE(BM_Bernoulli, Engine, absl::bernoulli_distribution, \
- 257305); \
- BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<double>, 65, \
- 41); \
- BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<double>, 99, \
- 330); \
- BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<double>, 150, \
- 150); \
- BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<double>, 410, \
- 580); \
- BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<float>, 65, 41); \
- BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<float>, 99, \
- 330); \
- BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<float>, 150, \
- 150); \
- BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<float>, 410, \
- 580); \
- BENCHMARK_TEMPLATE(BM_Gamma, Engine, std::gamma_distribution<float>, 199); \
- BENCHMARK_TEMPLATE(BM_Gamma, Engine, std::gamma_distribution<double>, 199);
- // ABSL Recommended interfaces.
- BM_BASIC(absl::InsecureBitGen); // === pcg64_2018_engine
- BM_BASIC(absl::BitGen); // === randen_engine<uint64_t>.
- BM_THREAD(absl::BitGen);
- BM_EXTENDED(absl::BitGen);
- // Instantiate benchmarks for multiple engines.
- using randen_engine_64 = absl::random_internal::randen_engine<uint64_t>;
- using randen_engine_32 = absl::random_internal::randen_engine<uint32_t>;
- // Comparison interfaces.
- BM_BASIC(std::mt19937_64);
- BM_COPY(std::mt19937_64);
- BM_EXTENDED(std::mt19937_64);
- BM_BASIC(randen_engine_64);
- BM_COPY(randen_engine_64);
- BM_EXTENDED(randen_engine_64);
- BM_BASIC(std::mt19937);
- BM_COPY(std::mt19937);
- BM_BASIC(randen_engine_32);
- BM_COPY(randen_engine_32);
- } // namespace
|