123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563 |
- // Copyright 2017 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "absl/random/gaussian_distribution.h"
- #include <algorithm>
- #include <cmath>
- #include <cstddef>
- #include <ios>
- #include <iterator>
- #include <random>
- #include <string>
- #include <type_traits>
- #include <vector>
- #include "gmock/gmock.h"
- #include "gtest/gtest.h"
- #include "absl/base/internal/raw_logging.h"
- #include "absl/base/macros.h"
- #include "absl/numeric/internal/representation.h"
- #include "absl/random/internal/chi_square.h"
- #include "absl/random/internal/distribution_test_util.h"
- #include "absl/random/internal/sequence_urbg.h"
- #include "absl/random/random.h"
- #include "absl/strings/str_cat.h"
- #include "absl/strings/str_format.h"
- #include "absl/strings/str_replace.h"
- #include "absl/strings/strip.h"
- namespace {
- using absl::random_internal::kChiSquared;
- template <typename RealType>
- class GaussianDistributionInterfaceTest : public ::testing::Test {};
- // double-double arithmetic is not supported well by either GCC or Clang; see
- // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99048,
- // https://bugs.llvm.org/show_bug.cgi?id=49131, and
- // https://bugs.llvm.org/show_bug.cgi?id=49132. Don't bother running these tests
- // with double doubles until compiler support is better.
- using RealTypes =
- std::conditional<absl::numeric_internal::IsDoubleDouble(),
- ::testing::Types<float, double>,
- ::testing::Types<float, double, long double>>::type;
- TYPED_TEST_CASE(GaussianDistributionInterfaceTest, RealTypes);
- TYPED_TEST(GaussianDistributionInterfaceTest, SerializeTest) {
- using param_type =
- typename absl::gaussian_distribution<TypeParam>::param_type;
- const TypeParam kParams[] = {
- // Cases around 1.
- 1, //
- std::nextafter(TypeParam(1), TypeParam(0)), // 1 - epsilon
- std::nextafter(TypeParam(1), TypeParam(2)), // 1 + epsilon
- // Arbitrary values.
- TypeParam(1e-8), TypeParam(1e-4), TypeParam(2), TypeParam(1e4),
- TypeParam(1e8), TypeParam(1e20), TypeParam(2.5),
- // Boundary cases.
- std::numeric_limits<TypeParam>::infinity(),
- std::numeric_limits<TypeParam>::max(),
- std::numeric_limits<TypeParam>::epsilon(),
- std::nextafter(std::numeric_limits<TypeParam>::min(),
- TypeParam(1)), // min + epsilon
- std::numeric_limits<TypeParam>::min(), // smallest normal
- // There are some errors dealing with denorms on apple platforms.
- std::numeric_limits<TypeParam>::denorm_min(), // smallest denorm
- std::numeric_limits<TypeParam>::min() / 2,
- std::nextafter(std::numeric_limits<TypeParam>::min(),
- TypeParam(0)), // denorm_max
- };
- constexpr int kCount = 1000;
- absl::InsecureBitGen gen;
- // Use a loop to generate the combinations of {+/-x, +/-y}, and assign x, y to
- // all values in kParams,
- for (const auto mod : {0, 1, 2, 3}) {
- for (const auto x : kParams) {
- if (!std::isfinite(x)) continue;
- for (const auto y : kParams) {
- const TypeParam mean = (mod & 0x1) ? -x : x;
- const TypeParam stddev = (mod & 0x2) ? -y : y;
- const param_type param(mean, stddev);
- absl::gaussian_distribution<TypeParam> before(mean, stddev);
- EXPECT_EQ(before.mean(), param.mean());
- EXPECT_EQ(before.stddev(), param.stddev());
- {
- absl::gaussian_distribution<TypeParam> via_param(param);
- EXPECT_EQ(via_param, before);
- EXPECT_EQ(via_param.param(), before.param());
- }
- // Smoke test.
- auto sample_min = before.max();
- auto sample_max = before.min();
- for (int i = 0; i < kCount; i++) {
- auto sample = before(gen);
- if (sample > sample_max) sample_max = sample;
- if (sample < sample_min) sample_min = sample;
- EXPECT_GE(sample, before.min()) << before;
- EXPECT_LE(sample, before.max()) << before;
- }
- if (!std::is_same<TypeParam, long double>::value) {
- ABSL_INTERNAL_LOG(
- INFO, absl::StrFormat("Range{%f, %f}: %f, %f", mean, stddev,
- sample_min, sample_max));
- }
- std::stringstream ss;
- ss << before;
- if (!std::isfinite(mean) || !std::isfinite(stddev)) {
- // Streams do not parse inf/nan.
- continue;
- }
- // Validate stream serialization.
- absl::gaussian_distribution<TypeParam> after(-0.53f, 2.3456f);
- EXPECT_NE(before.mean(), after.mean());
- EXPECT_NE(before.stddev(), after.stddev());
- EXPECT_NE(before.param(), after.param());
- EXPECT_NE(before, after);
- ss >> after;
- EXPECT_EQ(before.mean(), after.mean());
- EXPECT_EQ(before.stddev(), after.stddev()) //
- << ss.str() << " " //
- << (ss.good() ? "good " : "") //
- << (ss.bad() ? "bad " : "") //
- << (ss.eof() ? "eof " : "") //
- << (ss.fail() ? "fail " : "");
- }
- }
- }
- }
- // http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
- class GaussianModel {
- public:
- GaussianModel(double mean, double stddev) : mean_(mean), stddev_(stddev) {}
- double mean() const { return mean_; }
- double variance() const { return stddev() * stddev(); }
- double stddev() const { return stddev_; }
- double skew() const { return 0; }
- double kurtosis() const { return 3.0; }
- // The inverse CDF, or PercentPoint function.
- double InverseCDF(double p) {
- ABSL_ASSERT(p >= 0.0);
- ABSL_ASSERT(p < 1.0);
- return mean() + stddev() * -absl::random_internal::InverseNormalSurvival(p);
- }
- private:
- const double mean_;
- const double stddev_;
- };
- struct Param {
- double mean;
- double stddev;
- double p_fail; // Z-Test probability of failure.
- int trials; // Z-Test trials.
- };
- // GaussianDistributionTests implements a z-test for the gaussian
- // distribution.
- class GaussianDistributionTests : public testing::TestWithParam<Param>,
- public GaussianModel {
- public:
- GaussianDistributionTests()
- : GaussianModel(GetParam().mean, GetParam().stddev) {}
- // SingleZTest provides a basic z-squared test of the mean vs. expected
- // mean for data generated by the poisson distribution.
- template <typename D>
- bool SingleZTest(const double p, const size_t samples);
- // SingleChiSquaredTest provides a basic chi-squared test of the normal
- // distribution.
- template <typename D>
- double SingleChiSquaredTest();
- // We use a fixed bit generator for distribution accuracy tests. This allows
- // these tests to be deterministic, while still testing the qualify of the
- // implementation.
- absl::random_internal::pcg64_2018_engine rng_{0x2B7E151628AED2A6};
- };
- template <typename D>
- bool GaussianDistributionTests::SingleZTest(const double p,
- const size_t samples) {
- D dis(mean(), stddev());
- std::vector<double> data;
- data.reserve(samples);
- for (size_t i = 0; i < samples; i++) {
- const double x = dis(rng_);
- data.push_back(x);
- }
- const double max_err = absl::random_internal::MaxErrorTolerance(p);
- const auto m = absl::random_internal::ComputeDistributionMoments(data);
- const double z = absl::random_internal::ZScore(mean(), m);
- const bool pass = absl::random_internal::Near("z", z, 0.0, max_err);
- // NOTE: Informational statistical test:
- //
- // Compute the Jarque-Bera test statistic given the excess skewness
- // and kurtosis. The statistic is drawn from a chi-square(2) distribution.
- // https://en.wikipedia.org/wiki/Jarque%E2%80%93Bera_test
- //
- // The null-hypothesis (normal distribution) is rejected when
- // (p = 0.05 => jb > 5.99)
- // (p = 0.01 => jb > 9.21)
- // NOTE: JB has a large type-I error rate, so it will reject the
- // null-hypothesis even when it is true more often than the z-test.
- //
- const double jb =
- static_cast<double>(m.n) / 6.0 *
- (std::pow(m.skewness, 2.0) + std::pow(m.kurtosis - 3.0, 2.0) / 4.0);
- if (!pass || jb > 9.21) {
- ABSL_INTERNAL_LOG(
- INFO, absl::StrFormat("p=%f max_err=%f\n"
- " mean=%f vs. %f\n"
- " stddev=%f vs. %f\n"
- " skewness=%f vs. %f\n"
- " kurtosis=%f vs. %f\n"
- " z=%f vs. 0\n"
- " jb=%f vs. 9.21",
- p, max_err, m.mean, mean(), std::sqrt(m.variance),
- stddev(), m.skewness, skew(), m.kurtosis,
- kurtosis(), z, jb));
- }
- return pass;
- }
- template <typename D>
- double GaussianDistributionTests::SingleChiSquaredTest() {
- const size_t kSamples = 10000;
- const int kBuckets = 50;
- // The InverseCDF is the percent point function of the
- // distribution, and can be used to assign buckets
- // roughly uniformly.
- std::vector<double> cutoffs;
- const double kInc = 1.0 / static_cast<double>(kBuckets);
- for (double p = kInc; p < 1.0; p += kInc) {
- cutoffs.push_back(InverseCDF(p));
- }
- if (cutoffs.back() != std::numeric_limits<double>::infinity()) {
- cutoffs.push_back(std::numeric_limits<double>::infinity());
- }
- D dis(mean(), stddev());
- std::vector<int32_t> counts(cutoffs.size(), 0);
- for (int j = 0; j < kSamples; j++) {
- const double x = dis(rng_);
- auto it = std::upper_bound(cutoffs.begin(), cutoffs.end(), x);
- counts[std::distance(cutoffs.begin(), it)]++;
- }
- // Null-hypothesis is that the distribution is a gaussian distribution
- // with the provided mean and stddev (not estimated from the data).
- const int dof = static_cast<int>(counts.size()) - 1;
- // Our threshold for logging is 1-in-50.
- const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98);
- const double expected =
- static_cast<double>(kSamples) / static_cast<double>(counts.size());
- double chi_square = absl::random_internal::ChiSquareWithExpected(
- std::begin(counts), std::end(counts), expected);
- double p = absl::random_internal::ChiSquarePValue(chi_square, dof);
- // Log if the chi_square value is above the threshold.
- if (chi_square > threshold) {
- for (int i = 0; i < cutoffs.size(); i++) {
- ABSL_INTERNAL_LOG(
- INFO, absl::StrFormat("%d : (%f) = %d", i, cutoffs[i], counts[i]));
- }
- ABSL_INTERNAL_LOG(
- INFO, absl::StrCat("mean=", mean(), " stddev=", stddev(), "\n", //
- " expected ", expected, "\n", //
- kChiSquared, " ", chi_square, " (", p, ")\n", //
- kChiSquared, " @ 0.98 = ", threshold));
- }
- return p;
- }
- TEST_P(GaussianDistributionTests, ZTest) {
- // TODO(absl-team): Run these tests against std::normal_distribution<double>
- // to validate outcomes are similar.
- const size_t kSamples = 10000;
- const auto& param = GetParam();
- const int expected_failures =
- std::max(1, static_cast<int>(std::ceil(param.trials * param.p_fail)));
- const double p = absl::random_internal::RequiredSuccessProbability(
- param.p_fail, param.trials);
- int failures = 0;
- for (int i = 0; i < param.trials; i++) {
- failures +=
- SingleZTest<absl::gaussian_distribution<double>>(p, kSamples) ? 0 : 1;
- }
- EXPECT_LE(failures, expected_failures);
- }
- TEST_P(GaussianDistributionTests, ChiSquaredTest) {
- const int kTrials = 20;
- int failures = 0;
- for (int i = 0; i < kTrials; i++) {
- double p_value =
- SingleChiSquaredTest<absl::gaussian_distribution<double>>();
- if (p_value < 0.0025) { // 1/400
- failures++;
- }
- }
- // There is a 0.05% chance of producing at least one failure, so raise the
- // failure threshold high enough to allow for a flake rate of less than one in
- // 10,000.
- EXPECT_LE(failures, 4);
- }
- std::vector<Param> GenParams() {
- return {
- // Mean around 0.
- Param{0.0, 1.0, 0.01, 100},
- Param{0.0, 1e2, 0.01, 100},
- Param{0.0, 1e4, 0.01, 100},
- Param{0.0, 1e8, 0.01, 100},
- Param{0.0, 1e16, 0.01, 100},
- Param{0.0, 1e-3, 0.01, 100},
- Param{0.0, 1e-5, 0.01, 100},
- Param{0.0, 1e-9, 0.01, 100},
- Param{0.0, 1e-17, 0.01, 100},
- // Mean around 1.
- Param{1.0, 1.0, 0.01, 100},
- Param{1.0, 1e2, 0.01, 100},
- Param{1.0, 1e-2, 0.01, 100},
- // Mean around 100 / -100
- Param{1e2, 1.0, 0.01, 100},
- Param{-1e2, 1.0, 0.01, 100},
- Param{1e2, 1e6, 0.01, 100},
- Param{-1e2, 1e6, 0.01, 100},
- // More extreme
- Param{1e4, 1e4, 0.01, 100},
- Param{1e8, 1e4, 0.01, 100},
- Param{1e12, 1e4, 0.01, 100},
- };
- }
- std::string ParamName(const ::testing::TestParamInfo<Param>& info) {
- const auto& p = info.param;
- std::string name = absl::StrCat("mean_", absl::SixDigits(p.mean), "__stddev_",
- absl::SixDigits(p.stddev));
- return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}});
- }
- INSTANTIATE_TEST_SUITE_P(All, GaussianDistributionTests,
- ::testing::ValuesIn(GenParams()), ParamName);
- // NOTE: absl::gaussian_distribution is not guaranteed to be stable.
- TEST(GaussianDistributionTest, StabilityTest) {
- // absl::gaussian_distribution stability relies on the underlying zignor
- // data, absl::random_interna::RandU64ToDouble, std::exp, std::log, and
- // std::abs.
- absl::random_internal::sequence_urbg urbg(
- {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
- 0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
- 0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
- 0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
- std::vector<int> output(11);
- {
- absl::gaussian_distribution<double> dist;
- std::generate(std::begin(output), std::end(output),
- [&] { return static_cast<int>(10000000.0 * dist(urbg)); });
- EXPECT_EQ(13, urbg.invocations());
- EXPECT_THAT(output, //
- testing::ElementsAre(1494, 25518841, 9991550, 1351856,
- -20373238, 3456682, 333530, -6804981,
- -15279580, -16459654, 1494));
- }
- urbg.reset();
- {
- absl::gaussian_distribution<float> dist;
- std::generate(std::begin(output), std::end(output),
- [&] { return static_cast<int>(1000000.0f * dist(urbg)); });
- EXPECT_EQ(13, urbg.invocations());
- EXPECT_THAT(
- output, //
- testing::ElementsAre(149, 2551884, 999155, 135185, -2037323, 345668,
- 33353, -680498, -1527958, -1645965, 149));
- }
- }
- // This is an implementation-specific test. If any part of the implementation
- // changes, then it is likely that this test will change as well.
- // Also, if dependencies of the distribution change, such as RandU64ToDouble,
- // then this is also likely to change.
- TEST(GaussianDistributionTest, AlgorithmBounds) {
- absl::gaussian_distribution<double> dist;
- // In ~95% of cases, a single value is used to generate the output.
- // for all inputs where |x| < 0.750461021389 this should be the case.
- //
- // The exact constraints are based on the ziggurat tables, and any
- // changes to the ziggurat tables may require adjusting these bounds.
- //
- // for i in range(0, len(X)-1):
- // print i, X[i+1]/X[i], (X[i+1]/X[i] > 0.984375)
- //
- // 0.125 <= |values| <= 0.75
- const uint64_t kValues[] = {
- 0x1000000000000100ull, 0x2000000000000100ull, 0x3000000000000100ull,
- 0x4000000000000100ull, 0x5000000000000100ull, 0x6000000000000100ull,
- // negative values
- 0x9000000000000100ull, 0xa000000000000100ull, 0xb000000000000100ull,
- 0xc000000000000100ull, 0xd000000000000100ull, 0xe000000000000100ull};
- // 0.875 <= |values| <= 0.984375
- const uint64_t kExtraValues[] = {
- 0x7000000000000100ull, 0x7800000000000100ull, //
- 0x7c00000000000100ull, 0x7e00000000000100ull, //
- // negative values
- 0xf000000000000100ull, 0xf800000000000100ull, //
- 0xfc00000000000100ull, 0xfe00000000000100ull};
- auto make_box = [](uint64_t v, uint64_t box) {
- return (v & 0xffffffffffffff80ull) | box;
- };
- // The box is the lower 7 bits of the value. When the box == 0, then
- // the algorithm uses an escape hatch to select the result for large
- // outputs.
- for (uint64_t box = 0; box < 0x7f; box++) {
- for (const uint64_t v : kValues) {
- // Extra values are added to the sequence to attempt to avoid
- // infinite loops from rejection sampling on bugs/errors.
- absl::random_internal::sequence_urbg urbg(
- {make_box(v, box), 0x0003eb76f6f7f755ull, 0x5FCEA50FDB2F953Bull});
- auto a = dist(urbg);
- EXPECT_EQ(1, urbg.invocations()) << box << " " << std::hex << v;
- if (v & 0x8000000000000000ull) {
- EXPECT_LT(a, 0.0) << box << " " << std::hex << v;
- } else {
- EXPECT_GT(a, 0.0) << box << " " << std::hex << v;
- }
- }
- if (box > 10 && box < 100) {
- // The center boxes use the fast algorithm for more
- // than 98.4375% of values.
- for (const uint64_t v : kExtraValues) {
- absl::random_internal::sequence_urbg urbg(
- {make_box(v, box), 0x0003eb76f6f7f755ull, 0x5FCEA50FDB2F953Bull});
- auto a = dist(urbg);
- EXPECT_EQ(1, urbg.invocations()) << box << " " << std::hex << v;
- if (v & 0x8000000000000000ull) {
- EXPECT_LT(a, 0.0) << box << " " << std::hex << v;
- } else {
- EXPECT_GT(a, 0.0) << box << " " << std::hex << v;
- }
- }
- }
- }
- // When the box == 0, the fallback algorithm uses a ratio of uniforms,
- // which consumes 2 additional values from the urbg.
- // Fallback also requires that the initial value be > 0.9271586026096681.
- auto make_fallback = [](uint64_t v) { return (v & 0xffffffffffffff80ull); };
- double tail[2];
- {
- // 0.9375
- absl::random_internal::sequence_urbg urbg(
- {make_fallback(0x7800000000000000ull), 0x13CCA830EB61BD96ull,
- 0x00000076f6f7f755ull});
- tail[0] = dist(urbg);
- EXPECT_EQ(3, urbg.invocations());
- EXPECT_GT(tail[0], 0);
- }
- {
- // -0.9375
- absl::random_internal::sequence_urbg urbg(
- {make_fallback(0xf800000000000000ull), 0x13CCA830EB61BD96ull,
- 0x00000076f6f7f755ull});
- tail[1] = dist(urbg);
- EXPECT_EQ(3, urbg.invocations());
- EXPECT_LT(tail[1], 0);
- }
- EXPECT_EQ(tail[0], -tail[1]);
- EXPECT_EQ(418610, static_cast<int64_t>(tail[0] * 100000.0));
- // When the box != 0, the fallback algorithm computes a wedge function.
- // Depending on the box, the threshold for varies as high as
- // 0.991522480228.
- {
- // 0.9921875, 0.875
- absl::random_internal::sequence_urbg urbg(
- {make_box(0x7f00000000000000ull, 120), 0xe000000000000001ull,
- 0x13CCA830EB61BD96ull});
- tail[0] = dist(urbg);
- EXPECT_EQ(2, urbg.invocations());
- EXPECT_GT(tail[0], 0);
- }
- {
- // -0.9921875, 0.875
- absl::random_internal::sequence_urbg urbg(
- {make_box(0xff00000000000000ull, 120), 0xe000000000000001ull,
- 0x13CCA830EB61BD96ull});
- tail[1] = dist(urbg);
- EXPECT_EQ(2, urbg.invocations());
- EXPECT_LT(tail[1], 0);
- }
- EXPECT_EQ(tail[0], -tail[1]);
- EXPECT_EQ(61948, static_cast<int64_t>(tail[0] * 100000.0));
- // Fallback rejected, try again.
- {
- // -0.9921875, 0.0625
- absl::random_internal::sequence_urbg urbg(
- {make_box(0xff00000000000000ull, 120), 0x1000000000000001,
- make_box(0x1000000000000100ull, 50), 0x13CCA830EB61BD96ull});
- dist(urbg);
- EXPECT_EQ(3, urbg.invocations());
- }
- }
- } // namespace
|