123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193 |
- // Copyright 2017 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "absl/random/internal/distribution_test_util.h"
- #include "gtest/gtest.h"
- namespace {
- TEST(TestUtil, InverseErf) {
- const struct {
- const double z;
- const double value;
- } kErfInvTable[] = {
- {0.0000001, 8.86227e-8},
- {0.00001, 8.86227e-6},
- {0.5, 0.4769362762044},
- {0.6, 0.5951160814499},
- {0.99999, 3.1234132743},
- {0.9999999, 3.7665625816},
- {0.999999944, 3.8403850690566985}, // = log((1-x) * (1+x)) =~ 16.004
- {0.999999999, 4.3200053849134452},
- };
- for (const auto& data : kErfInvTable) {
- auto value = absl::random_internal::erfinv(data.z);
- // Log using the Wolfram-alpha function name & parameters.
- EXPECT_NEAR(value, data.value, 1e-8)
- << " InverseErf[" << data.z << "] (expected=" << data.value << ") -> "
- << value;
- }
- }
- const struct {
- const double p;
- const double q;
- const double x;
- const double alpha;
- } kBetaTable[] = {
- {0.5, 0.5, 0.01, 0.06376856085851985},
- {0.5, 0.5, 0.1, 0.2048327646991335},
- {0.5, 0.5, 1, 1},
- {1, 0.5, 0, 0},
- {1, 0.5, 0.01, 0.005012562893380045},
- {1, 0.5, 0.1, 0.0513167019494862},
- {1, 0.5, 0.5, 0.2928932188134525},
- {1, 1, 0.5, 0.5},
- {2, 2, 0.1, 0.028},
- {2, 2, 0.2, 0.104},
- {2, 2, 0.3, 0.216},
- {2, 2, 0.4, 0.352},
- {2, 2, 0.5, 0.5},
- {2, 2, 0.6, 0.648},
- {2, 2, 0.7, 0.784},
- {2, 2, 0.8, 0.896},
- {2, 2, 0.9, 0.972},
- {5.5, 5, 0.5, 0.4361908850559777},
- {10, 0.5, 0.9, 0.1516409096346979},
- {10, 5, 0.5, 0.08978271484375},
- {10, 5, 1, 1},
- {10, 10, 0.5, 0.5},
- {20, 5, 0.8, 0.4598773297575791},
- {20, 10, 0.6, 0.2146816102371739},
- {20, 10, 0.8, 0.9507364826957875},
- {20, 20, 0.5, 0.5},
- {20, 20, 0.6, 0.8979413687105918},
- {30, 10, 0.7, 0.2241297491808366},
- {30, 10, 0.8, 0.7586405487192086},
- {40, 20, 0.7, 0.7001783247477069},
- {1, 0.5, 0.1, 0.0513167019494862},
- {1, 0.5, 0.2, 0.1055728090000841},
- {1, 0.5, 0.3, 0.1633399734659245},
- {1, 0.5, 0.4, 0.2254033307585166},
- {1, 2, 0.2, 0.36},
- {1, 3, 0.2, 0.488},
- {1, 4, 0.2, 0.5904},
- {1, 5, 0.2, 0.67232},
- {2, 2, 0.3, 0.216},
- {3, 2, 0.3, 0.0837},
- {4, 2, 0.3, 0.03078},
- {5, 2, 0.3, 0.010935},
- // These values test small & large points along the range of the Beta
- // function.
- //
- // When selecting test points, remember that if BetaIncomplete(x, p, q)
- // returns the same value to within the limits of precision over a large
- // domain of the input, x, then BetaIncompleteInv(alpha, p, q) may return an
- // essentially arbitrary value where BetaIncomplete(x, p, q) =~ alpha.
- // BetaRegularized[x, 0.00001, 0.00001],
- // For x in {~0.001 ... ~0.999}, => ~0.5
- {1e-5, 1e-5, 1e-5, 0.4999424388184638311},
- {1e-5, 1e-5, (1.0 - 1e-8), 0.5000920948389232964},
- // BetaRegularized[x, 0.00001, 10000].
- // For x in {~epsilon ... 1.0}, => ~1
- {1e-5, 1e5, 1e-6, 0.9999817708130066936},
- {1e-5, 1e5, (1.0 - 1e-7), 1.0},
- // BetaRegularized[x, 10000, 0.00001].
- // For x in {0 .. 1-epsilon}, => ~0
- {1e5, 1e-5, 1e-6, 0},
- {1e5, 1e-5, (1.0 - 1e-6), 1.8229186993306369e-5},
- };
- TEST(BetaTest, BetaIncomplete) {
- for (const auto& data : kBetaTable) {
- auto value = absl::random_internal::BetaIncomplete(data.x, data.p, data.q);
- // Log using the Wolfram-alpha function name & parameters.
- EXPECT_NEAR(value, data.alpha, 1e-12)
- << " BetaRegularized[" << data.x << ", " << data.p << ", " << data.q
- << "] (expected=" << data.alpha << ") -> " << value;
- }
- }
- TEST(BetaTest, BetaIncompleteInv) {
- for (const auto& data : kBetaTable) {
- auto value =
- absl::random_internal::BetaIncompleteInv(data.p, data.q, data.alpha);
- // Log using the Wolfram-alpha function name & parameters.
- EXPECT_NEAR(value, data.x, 1e-6)
- << " InverseBetaRegularized[" << data.alpha << ", " << data.p << ", "
- << data.q << "] (expected=" << data.x << ") -> " << value;
- }
- }
- TEST(MaxErrorTolerance, MaxErrorTolerance) {
- std::vector<std::pair<double, double>> cases = {
- {0.0000001, 8.86227e-8 * 1.41421356237},
- {0.00001, 8.86227e-6 * 1.41421356237},
- {0.5, 0.4769362762044 * 1.41421356237},
- {0.6, 0.5951160814499 * 1.41421356237},
- {0.99999, 3.1234132743 * 1.41421356237},
- {0.9999999, 3.7665625816 * 1.41421356237},
- {0.999999944, 3.8403850690566985 * 1.41421356237},
- {0.999999999, 4.3200053849134452 * 1.41421356237}};
- for (auto entry : cases) {
- EXPECT_NEAR(absl::random_internal::MaxErrorTolerance(entry.first),
- entry.second, 1e-8);
- }
- }
- TEST(ZScore, WithSameMean) {
- absl::random_internal::DistributionMoments m;
- m.n = 100;
- m.mean = 5;
- m.variance = 1;
- EXPECT_NEAR(absl::random_internal::ZScore(5, m), 0, 1e-12);
- m.n = 1;
- m.mean = 0;
- m.variance = 1;
- EXPECT_NEAR(absl::random_internal::ZScore(0, m), 0, 1e-12);
- m.n = 10000;
- m.mean = -5;
- m.variance = 100;
- EXPECT_NEAR(absl::random_internal::ZScore(-5, m), 0, 1e-12);
- }
- TEST(ZScore, DifferentMean) {
- absl::random_internal::DistributionMoments m;
- m.n = 100;
- m.mean = 5;
- m.variance = 1;
- EXPECT_NEAR(absl::random_internal::ZScore(4, m), 10, 1e-12);
- m.n = 1;
- m.mean = 0;
- m.variance = 1;
- EXPECT_NEAR(absl::random_internal::ZScore(-1, m), 1, 1e-12);
- m.n = 10000;
- m.mean = -5;
- m.variance = 100;
- EXPECT_NEAR(absl::random_internal::ZScore(-4, m), -10, 1e-12);
- }
- } // namespace
|