123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804 |
- // Copyright 2017 Google Inc. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "absl/random/internal/nanobenchmark.h"
- #include <sys/types.h>
- #include <algorithm> // sort
- #include <atomic>
- #include <cstddef>
- #include <cstdint>
- #include <cstdlib>
- #include <cstring> // memcpy
- #include <limits>
- #include <string>
- #include <utility>
- #include <vector>
- #include "absl/base/attributes.h"
- #include "absl/base/internal/raw_logging.h"
- #include "absl/random/internal/platform.h"
- #include "absl/random/internal/randen_engine.h"
- // OS
- #if defined(_WIN32) || defined(_WIN64)
- #define ABSL_OS_WIN
- #include <windows.h> // NOLINT
- #elif defined(__ANDROID__)
- #define ABSL_OS_ANDROID
- #elif defined(__linux__)
- #define ABSL_OS_LINUX
- #include <sched.h> // NOLINT
- #include <sys/syscall.h> // NOLINT
- #endif
- #if defined(ABSL_ARCH_X86_64) && !defined(ABSL_OS_WIN)
- #include <cpuid.h> // NOLINT
- #endif
- // __ppc_get_timebase_freq
- #if defined(ABSL_ARCH_PPC)
- #include <sys/platform/ppc.h> // NOLINT
- #endif
- // clock_gettime
- #if defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64)
- #include <time.h> // NOLINT
- #endif
- // ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE prevents inlining of the method.
- #if ABSL_HAVE_ATTRIBUTE(noinline) || (defined(__GNUC__) && !defined(__clang__))
- #define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE __attribute__((noinline))
- #elif defined(_MSC_VER)
- #define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE __declspec(noinline)
- #else
- #define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE
- #endif
- namespace absl {
- ABSL_NAMESPACE_BEGIN
- namespace random_internal_nanobenchmark {
- namespace {
- // For code folding.
- namespace platform {
- #if defined(ABSL_ARCH_X86_64)
- // TODO(janwas): Merge with the one in randen_hwaes.cc?
- void Cpuid(const uint32_t level, const uint32_t count,
- uint32_t* ABSL_RANDOM_INTERNAL_RESTRICT abcd) {
- #if defined(ABSL_OS_WIN)
- int regs[4];
- __cpuidex(regs, level, count);
- for (int i = 0; i < 4; ++i) {
- abcd[i] = regs[i];
- }
- #else
- uint32_t a, b, c, d;
- __cpuid_count(level, count, a, b, c, d);
- abcd[0] = a;
- abcd[1] = b;
- abcd[2] = c;
- abcd[3] = d;
- #endif
- }
- std::string BrandString() {
- char brand_string[49];
- uint32_t abcd[4];
- // Check if brand string is supported (it is on all reasonable Intel/AMD)
- Cpuid(0x80000000U, 0, abcd);
- if (abcd[0] < 0x80000004U) {
- return std::string();
- }
- for (int i = 0; i < 3; ++i) {
- Cpuid(0x80000002U + i, 0, abcd);
- memcpy(brand_string + i * 16, &abcd, sizeof(abcd));
- }
- brand_string[48] = 0;
- return brand_string;
- }
- // Returns the frequency quoted inside the brand string. This does not
- // account for throttling nor Turbo Boost.
- double NominalClockRate() {
- const std::string& brand_string = BrandString();
- // Brand strings include the maximum configured frequency. These prefixes are
- // defined by Intel CPUID documentation.
- const char* prefixes[3] = {"MHz", "GHz", "THz"};
- const double multipliers[3] = {1E6, 1E9, 1E12};
- for (size_t i = 0; i < 3; ++i) {
- const size_t pos_prefix = brand_string.find(prefixes[i]);
- if (pos_prefix != std::string::npos) {
- const size_t pos_space = brand_string.rfind(' ', pos_prefix - 1);
- if (pos_space != std::string::npos) {
- const std::string digits =
- brand_string.substr(pos_space + 1, pos_prefix - pos_space - 1);
- return std::stod(digits) * multipliers[i];
- }
- }
- }
- return 0.0;
- }
- #endif // ABSL_ARCH_X86_64
- } // namespace platform
- // Prevents the compiler from eliding the computations that led to "output".
- template <class T>
- inline void PreventElision(T&& output) {
- #ifndef ABSL_OS_WIN
- // Works by indicating to the compiler that "output" is being read and
- // modified. The +r constraint avoids unnecessary writes to memory, but only
- // works for built-in types (typically FuncOutput).
- asm volatile("" : "+r"(output) : : "memory");
- #else
- // MSVC does not support inline assembly anymore (and never supported GCC's
- // RTL constraints). Self-assignment with #pragma optimize("off") might be
- // expected to prevent elision, but it does not with MSVC 2015. Type-punning
- // with volatile pointers generates inefficient code on MSVC 2017.
- static std::atomic<T> dummy(T{});
- dummy.store(output, std::memory_order_relaxed);
- #endif
- }
- namespace timer {
- // Start/Stop return absolute timestamps and must be placed immediately before
- // and after the region to measure. We provide separate Start/Stop functions
- // because they use different fences.
- //
- // Background: RDTSC is not 'serializing'; earlier instructions may complete
- // after it, and/or later instructions may complete before it. 'Fences' ensure
- // regions' elapsed times are independent of such reordering. The only
- // documented unprivileged serializing instruction is CPUID, which acts as a
- // full fence (no reordering across it in either direction). Unfortunately
- // the latency of CPUID varies wildly (perhaps made worse by not initializing
- // its EAX input). Because it cannot reliably be deducted from the region's
- // elapsed time, it must not be included in the region to measure (i.e.
- // between the two RDTSC).
- //
- // The newer RDTSCP is sometimes described as serializing, but it actually
- // only serves as a half-fence with release semantics. Although all
- // instructions in the region will complete before the final timestamp is
- // captured, subsequent instructions may leak into the region and increase the
- // elapsed time. Inserting another fence after the final RDTSCP would prevent
- // such reordering without affecting the measured region.
- //
- // Fortunately, such a fence exists. The LFENCE instruction is only documented
- // to delay later loads until earlier loads are visible. However, Intel's
- // reference manual says it acts as a full fence (waiting until all earlier
- // instructions have completed, and delaying later instructions until it
- // completes). AMD assigns the same behavior to MFENCE.
- //
- // We need a fence before the initial RDTSC to prevent earlier instructions
- // from leaking into the region, and arguably another after RDTSC to avoid
- // region instructions from completing before the timestamp is recorded.
- // When surrounded by fences, the additional RDTSCP half-fence provides no
- // benefit, so the initial timestamp can be recorded via RDTSC, which has
- // lower overhead than RDTSCP because it does not read TSC_AUX. In summary,
- // we define Start = LFENCE/RDTSC/LFENCE; Stop = RDTSCP/LFENCE.
- //
- // Using Start+Start leads to higher variance and overhead than Stop+Stop.
- // However, Stop+Stop includes an LFENCE in the region measurements, which
- // adds a delay dependent on earlier loads. The combination of Start+Stop
- // is faster than Start+Start and more consistent than Stop+Stop because
- // the first LFENCE already delayed subsequent loads before the measured
- // region. This combination seems not to have been considered in prior work:
- // http://akaros.cs.berkeley.edu/lxr/akaros/kern/arch/x86/rdtsc_test.c
- //
- // Note: performance counters can measure 'exact' instructions-retired or
- // (unhalted) cycle counts. The RDPMC instruction is not serializing and also
- // requires fences. Unfortunately, it is not accessible on all OSes and we
- // prefer to avoid kernel-mode drivers. Performance counters are also affected
- // by several under/over-count errata, so we use the TSC instead.
- // Returns a 64-bit timestamp in unit of 'ticks'; to convert to seconds,
- // divide by InvariantTicksPerSecond.
- inline uint64_t Start64() {
- uint64_t t;
- #if defined(ABSL_ARCH_PPC)
- asm volatile("mfspr %0, %1" : "=r"(t) : "i"(268));
- #elif defined(ABSL_ARCH_X86_64)
- #if defined(ABSL_OS_WIN)
- _ReadWriteBarrier();
- _mm_lfence();
- _ReadWriteBarrier();
- t = __rdtsc();
- _ReadWriteBarrier();
- _mm_lfence();
- _ReadWriteBarrier();
- #else
- asm volatile(
- "lfence\n\t"
- "rdtsc\n\t"
- "shl $32, %%rdx\n\t"
- "or %%rdx, %0\n\t"
- "lfence"
- : "=a"(t)
- :
- // "memory" avoids reordering. rdx = TSC >> 32.
- // "cc" = flags modified by SHL.
- : "rdx", "memory", "cc");
- #endif
- #else
- // Fall back to OS - unsure how to reliably query cntvct_el0 frequency.
- timespec ts;
- clock_gettime(CLOCK_REALTIME, &ts);
- t = ts.tv_sec * 1000000000LL + ts.tv_nsec;
- #endif
- return t;
- }
- inline uint64_t Stop64() {
- uint64_t t;
- #if defined(ABSL_ARCH_X86_64)
- #if defined(ABSL_OS_WIN)
- _ReadWriteBarrier();
- unsigned aux;
- t = __rdtscp(&aux);
- _ReadWriteBarrier();
- _mm_lfence();
- _ReadWriteBarrier();
- #else
- // Use inline asm because __rdtscp generates code to store TSC_AUX (ecx).
- asm volatile(
- "rdtscp\n\t"
- "shl $32, %%rdx\n\t"
- "or %%rdx, %0\n\t"
- "lfence"
- : "=a"(t)
- :
- // "memory" avoids reordering. rcx = TSC_AUX. rdx = TSC >> 32.
- // "cc" = flags modified by SHL.
- : "rcx", "rdx", "memory", "cc");
- #endif
- #else
- t = Start64();
- #endif
- return t;
- }
- // Returns a 32-bit timestamp with about 4 cycles less overhead than
- // Start64. Only suitable for measuring very short regions because the
- // timestamp overflows about once a second.
- inline uint32_t Start32() {
- uint32_t t;
- #if defined(ABSL_ARCH_X86_64)
- #if defined(ABSL_OS_WIN)
- _ReadWriteBarrier();
- _mm_lfence();
- _ReadWriteBarrier();
- t = static_cast<uint32_t>(__rdtsc());
- _ReadWriteBarrier();
- _mm_lfence();
- _ReadWriteBarrier();
- #else
- asm volatile(
- "lfence\n\t"
- "rdtsc\n\t"
- "lfence"
- : "=a"(t)
- :
- // "memory" avoids reordering. rdx = TSC >> 32.
- : "rdx", "memory");
- #endif
- #else
- t = static_cast<uint32_t>(Start64());
- #endif
- return t;
- }
- inline uint32_t Stop32() {
- uint32_t t;
- #if defined(ABSL_ARCH_X86_64)
- #if defined(ABSL_OS_WIN)
- _ReadWriteBarrier();
- unsigned aux;
- t = static_cast<uint32_t>(__rdtscp(&aux));
- _ReadWriteBarrier();
- _mm_lfence();
- _ReadWriteBarrier();
- #else
- // Use inline asm because __rdtscp generates code to store TSC_AUX (ecx).
- asm volatile(
- "rdtscp\n\t"
- "lfence"
- : "=a"(t)
- :
- // "memory" avoids reordering. rcx = TSC_AUX. rdx = TSC >> 32.
- : "rcx", "rdx", "memory");
- #endif
- #else
- t = static_cast<uint32_t>(Stop64());
- #endif
- return t;
- }
- } // namespace timer
- namespace robust_statistics {
- // Sorts integral values in ascending order (e.g. for Mode). About 3x faster
- // than std::sort for input distributions with very few unique values.
- template <class T>
- void CountingSort(T* values, size_t num_values) {
- // Unique values and their frequency (similar to flat_map).
- using Unique = std::pair<T, int>;
- std::vector<Unique> unique;
- for (size_t i = 0; i < num_values; ++i) {
- const T value = values[i];
- const auto pos =
- std::find_if(unique.begin(), unique.end(),
- [value](const Unique u) { return u.first == value; });
- if (pos == unique.end()) {
- unique.push_back(std::make_pair(value, 1));
- } else {
- ++pos->second;
- }
- }
- // Sort in ascending order of value (pair.first).
- std::sort(unique.begin(), unique.end());
- // Write that many copies of each unique value to the array.
- T* ABSL_RANDOM_INTERNAL_RESTRICT p = values;
- for (const auto& value_count : unique) {
- std::fill(p, p + value_count.second, value_count.first);
- p += value_count.second;
- }
- ABSL_RAW_CHECK(p == values + num_values, "Did not produce enough output");
- }
- // @return i in [idx_begin, idx_begin + half_count) that minimizes
- // sorted[i + half_count] - sorted[i].
- template <typename T>
- size_t MinRange(const T* const ABSL_RANDOM_INTERNAL_RESTRICT sorted,
- const size_t idx_begin, const size_t half_count) {
- T min_range = (std::numeric_limits<T>::max)();
- size_t min_idx = 0;
- for (size_t idx = idx_begin; idx < idx_begin + half_count; ++idx) {
- ABSL_RAW_CHECK(sorted[idx] <= sorted[idx + half_count], "Not sorted");
- const T range = sorted[idx + half_count] - sorted[idx];
- if (range < min_range) {
- min_range = range;
- min_idx = idx;
- }
- }
- return min_idx;
- }
- // Returns an estimate of the mode by calling MinRange on successively
- // halved intervals. "sorted" must be in ascending order. This is the
- // Half Sample Mode estimator proposed by Bickel in "On a fast, robust
- // estimator of the mode", with complexity O(N log N). The mode is less
- // affected by outliers in highly-skewed distributions than the median.
- // The averaging operation below assumes "T" is an unsigned integer type.
- template <typename T>
- T ModeOfSorted(const T* const ABSL_RANDOM_INTERNAL_RESTRICT sorted,
- const size_t num_values) {
- size_t idx_begin = 0;
- size_t half_count = num_values / 2;
- while (half_count > 1) {
- idx_begin = MinRange(sorted, idx_begin, half_count);
- half_count >>= 1;
- }
- const T x = sorted[idx_begin + 0];
- if (half_count == 0) {
- return x;
- }
- ABSL_RAW_CHECK(half_count == 1, "Should stop at half_count=1");
- const T average = (x + sorted[idx_begin + 1] + 1) / 2;
- return average;
- }
- // Returns the mode. Side effect: sorts "values".
- template <typename T>
- T Mode(T* values, const size_t num_values) {
- CountingSort(values, num_values);
- return ModeOfSorted(values, num_values);
- }
- template <typename T, size_t N>
- T Mode(T (&values)[N]) {
- return Mode(&values[0], N);
- }
- // Returns the median value. Side effect: sorts "values".
- template <typename T>
- T Median(T* values, const size_t num_values) {
- ABSL_RAW_CHECK(num_values != 0, "Empty input");
- std::sort(values, values + num_values);
- const size_t half = num_values / 2;
- // Odd count: return middle
- if (num_values % 2) {
- return values[half];
- }
- // Even count: return average of middle two.
- return (values[half] + values[half - 1] + 1) / 2;
- }
- // Returns a robust measure of variability.
- template <typename T>
- T MedianAbsoluteDeviation(const T* values, const size_t num_values,
- const T median) {
- ABSL_RAW_CHECK(num_values != 0, "Empty input");
- std::vector<T> abs_deviations;
- abs_deviations.reserve(num_values);
- for (size_t i = 0; i < num_values; ++i) {
- const int64_t abs = std::abs(int64_t(values[i]) - int64_t(median));
- abs_deviations.push_back(static_cast<T>(abs));
- }
- return Median(abs_deviations.data(), num_values);
- }
- } // namespace robust_statistics
- // Ticks := platform-specific timer values (CPU cycles on x86). Must be
- // unsigned to guarantee wraparound on overflow. 32 bit timers are faster to
- // read than 64 bit.
- using Ticks = uint32_t;
- // Returns timer overhead / minimum measurable difference.
- Ticks TimerResolution() {
- // Nested loop avoids exceeding stack/L1 capacity.
- Ticks repetitions[Params::kTimerSamples];
- for (size_t rep = 0; rep < Params::kTimerSamples; ++rep) {
- Ticks samples[Params::kTimerSamples];
- for (size_t i = 0; i < Params::kTimerSamples; ++i) {
- const Ticks t0 = timer::Start32();
- const Ticks t1 = timer::Stop32();
- samples[i] = t1 - t0;
- }
- repetitions[rep] = robust_statistics::Mode(samples);
- }
- return robust_statistics::Mode(repetitions);
- }
- static const Ticks timer_resolution = TimerResolution();
- // Estimates the expected value of "lambda" values with a variable number of
- // samples until the variability "rel_mad" is less than "max_rel_mad".
- template <class Lambda>
- Ticks SampleUntilStable(const double max_rel_mad, double* rel_mad,
- const Params& p, const Lambda& lambda) {
- auto measure_duration = [&lambda]() -> Ticks {
- const Ticks t0 = timer::Start32();
- lambda();
- const Ticks t1 = timer::Stop32();
- return t1 - t0;
- };
- // Choose initial samples_per_eval based on a single estimated duration.
- Ticks est = measure_duration();
- static const double ticks_per_second = InvariantTicksPerSecond();
- const size_t ticks_per_eval = ticks_per_second * p.seconds_per_eval;
- size_t samples_per_eval = ticks_per_eval / est;
- samples_per_eval = (std::max)(samples_per_eval, p.min_samples_per_eval);
- std::vector<Ticks> samples;
- samples.reserve(1 + samples_per_eval);
- samples.push_back(est);
- // Percentage is too strict for tiny differences, so also allow a small
- // absolute "median absolute deviation".
- const Ticks max_abs_mad = (timer_resolution + 99) / 100;
- *rel_mad = 0.0; // ensure initialized
- for (size_t eval = 0; eval < p.max_evals; ++eval, samples_per_eval *= 2) {
- samples.reserve(samples.size() + samples_per_eval);
- for (size_t i = 0; i < samples_per_eval; ++i) {
- const Ticks r = measure_duration();
- samples.push_back(r);
- }
- if (samples.size() >= p.min_mode_samples) {
- est = robust_statistics::Mode(samples.data(), samples.size());
- } else {
- // For "few" (depends also on the variance) samples, Median is safer.
- est = robust_statistics::Median(samples.data(), samples.size());
- }
- ABSL_RAW_CHECK(est != 0, "Estimator returned zero duration");
- // Median absolute deviation (mad) is a robust measure of 'variability'.
- const Ticks abs_mad = robust_statistics::MedianAbsoluteDeviation(
- samples.data(), samples.size(), est);
- *rel_mad = static_cast<double>(static_cast<int>(abs_mad)) / est;
- if (*rel_mad <= max_rel_mad || abs_mad <= max_abs_mad) {
- if (p.verbose) {
- ABSL_RAW_LOG(INFO,
- "%6zu samples => %5u (abs_mad=%4u, rel_mad=%4.2f%%)\n",
- samples.size(), est, abs_mad, *rel_mad * 100.0);
- }
- return est;
- }
- }
- if (p.verbose) {
- ABSL_RAW_LOG(WARNING,
- "rel_mad=%4.2f%% still exceeds %4.2f%% after %6zu samples.\n",
- *rel_mad * 100.0, max_rel_mad * 100.0, samples.size());
- }
- return est;
- }
- using InputVec = std::vector<FuncInput>;
- // Returns vector of unique input values.
- InputVec UniqueInputs(const FuncInput* inputs, const size_t num_inputs) {
- InputVec unique(inputs, inputs + num_inputs);
- std::sort(unique.begin(), unique.end());
- unique.erase(std::unique(unique.begin(), unique.end()), unique.end());
- return unique;
- }
- // Returns how often we need to call func for sufficient precision, or zero
- // on failure (e.g. the elapsed time is too long for a 32-bit tick count).
- size_t NumSkip(const Func func, const void* arg, const InputVec& unique,
- const Params& p) {
- // Min elapsed ticks for any input.
- Ticks min_duration = ~0u;
- for (const FuncInput input : unique) {
- // Make sure a 32-bit timer is sufficient.
- const uint64_t t0 = timer::Start64();
- PreventElision(func(arg, input));
- const uint64_t t1 = timer::Stop64();
- const uint64_t elapsed = t1 - t0;
- if (elapsed >= (1ULL << 30)) {
- ABSL_RAW_LOG(WARNING,
- "Measurement failed: need 64-bit timer for input=%zu\n",
- static_cast<size_t>(input));
- return 0;
- }
- double rel_mad;
- const Ticks total = SampleUntilStable(
- p.target_rel_mad, &rel_mad, p,
- [func, arg, input]() { PreventElision(func(arg, input)); });
- min_duration = (std::min)(min_duration, total - timer_resolution);
- }
- // Number of repetitions required to reach the target resolution.
- const size_t max_skip = p.precision_divisor;
- // Number of repetitions given the estimated duration.
- const size_t num_skip =
- min_duration == 0 ? 0 : (max_skip + min_duration - 1) / min_duration;
- if (p.verbose) {
- ABSL_RAW_LOG(INFO, "res=%u max_skip=%zu min_dur=%u num_skip=%zu\n",
- timer_resolution, max_skip, min_duration, num_skip);
- }
- return num_skip;
- }
- // Replicates inputs until we can omit "num_skip" occurrences of an input.
- InputVec ReplicateInputs(const FuncInput* inputs, const size_t num_inputs,
- const size_t num_unique, const size_t num_skip,
- const Params& p) {
- InputVec full;
- if (num_unique == 1) {
- full.assign(p.subset_ratio * num_skip, inputs[0]);
- return full;
- }
- full.reserve(p.subset_ratio * num_skip * num_inputs);
- for (size_t i = 0; i < p.subset_ratio * num_skip; ++i) {
- full.insert(full.end(), inputs, inputs + num_inputs);
- }
- absl::random_internal::randen_engine<uint32_t> rng;
- std::shuffle(full.begin(), full.end(), rng);
- return full;
- }
- // Copies the "full" to "subset" in the same order, but with "num_skip"
- // randomly selected occurrences of "input_to_skip" removed.
- void FillSubset(const InputVec& full, const FuncInput input_to_skip,
- const size_t num_skip, InputVec* subset) {
- const size_t count = std::count(full.begin(), full.end(), input_to_skip);
- // Generate num_skip random indices: which occurrence to skip.
- std::vector<uint32_t> omit;
- // Replacement for std::iota, not yet available in MSVC builds.
- omit.reserve(count);
- for (size_t i = 0; i < count; ++i) {
- omit.push_back(i);
- }
- // omit[] is the same on every call, but that's OK because they identify the
- // Nth instance of input_to_skip, so the position within full[] differs.
- absl::random_internal::randen_engine<uint32_t> rng;
- std::shuffle(omit.begin(), omit.end(), rng);
- omit.resize(num_skip);
- std::sort(omit.begin(), omit.end());
- uint32_t occurrence = ~0u; // 0 after preincrement
- size_t idx_omit = 0; // cursor within omit[]
- size_t idx_subset = 0; // cursor within *subset
- for (const FuncInput next : full) {
- if (next == input_to_skip) {
- ++occurrence;
- // Haven't removed enough already
- if (idx_omit < num_skip) {
- // This one is up for removal
- if (occurrence == omit[idx_omit]) {
- ++idx_omit;
- continue;
- }
- }
- }
- if (idx_subset < subset->size()) {
- (*subset)[idx_subset++] = next;
- }
- }
- ABSL_RAW_CHECK(idx_subset == subset->size(), "idx_subset not at end");
- ABSL_RAW_CHECK(idx_omit == omit.size(), "idx_omit not at end");
- ABSL_RAW_CHECK(occurrence == count - 1, "occurrence not at end");
- }
- // Returns total ticks elapsed for all inputs.
- Ticks TotalDuration(const Func func, const void* arg, const InputVec* inputs,
- const Params& p, double* max_rel_mad) {
- double rel_mad;
- const Ticks duration =
- SampleUntilStable(p.target_rel_mad, &rel_mad, p, [func, arg, inputs]() {
- for (const FuncInput input : *inputs) {
- PreventElision(func(arg, input));
- }
- });
- *max_rel_mad = (std::max)(*max_rel_mad, rel_mad);
- return duration;
- }
- // (Nearly) empty Func for measuring timer overhead/resolution.
- ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE FuncOutput
- EmptyFunc(const void* arg, const FuncInput input) {
- return input;
- }
- // Returns overhead of accessing inputs[] and calling a function; this will
- // be deducted from future TotalDuration return values.
- Ticks Overhead(const void* arg, const InputVec* inputs, const Params& p) {
- double rel_mad;
- // Zero tolerance because repeatability is crucial and EmptyFunc is fast.
- return SampleUntilStable(0.0, &rel_mad, p, [arg, inputs]() {
- for (const FuncInput input : *inputs) {
- PreventElision(EmptyFunc(arg, input));
- }
- });
- }
- } // namespace
- void PinThreadToCPU(int cpu) {
- // We might migrate to another CPU before pinning below, but at least cpu
- // will be one of the CPUs on which this thread ran.
- #if defined(ABSL_OS_WIN)
- if (cpu < 0) {
- cpu = static_cast<int>(GetCurrentProcessorNumber());
- ABSL_RAW_CHECK(cpu >= 0, "PinThreadToCPU detect failed");
- if (cpu >= 64) {
- // NOTE: On wine, at least, GetCurrentProcessorNumber() sometimes returns
- // a value > 64, which is out of range. When this happens, log a message
- // and don't set a cpu affinity.
- ABSL_RAW_LOG(ERROR, "Invalid CPU number: %d", cpu);
- return;
- }
- } else if (cpu >= 64) {
- // User specified an explicit CPU affinity > the valid range.
- ABSL_RAW_LOG(FATAL, "Invalid CPU number: %d", cpu);
- }
- const DWORD_PTR prev = SetThreadAffinityMask(GetCurrentThread(), 1ULL << cpu);
- ABSL_RAW_CHECK(prev != 0, "SetAffinity failed");
- #elif defined(ABSL_OS_LINUX) && !defined(ABSL_OS_ANDROID)
- if (cpu < 0) {
- cpu = sched_getcpu();
- ABSL_RAW_CHECK(cpu >= 0, "PinThreadToCPU detect failed");
- }
- const pid_t pid = 0; // current thread
- cpu_set_t set;
- CPU_ZERO(&set);
- CPU_SET(cpu, &set);
- const int err = sched_setaffinity(pid, sizeof(set), &set);
- ABSL_RAW_CHECK(err == 0, "SetAffinity failed");
- #endif
- }
- // Returns tick rate. Invariant means the tick counter frequency is independent
- // of CPU throttling or sleep. May be expensive, caller should cache the result.
- double InvariantTicksPerSecond() {
- #if defined(ABSL_ARCH_PPC)
- return __ppc_get_timebase_freq();
- #elif defined(ABSL_ARCH_X86_64)
- // We assume the TSC is invariant; it is on all recent Intel/AMD CPUs.
- return platform::NominalClockRate();
- #else
- // Fall back to clock_gettime nanoseconds.
- return 1E9;
- #endif
- }
- size_t MeasureImpl(const Func func, const void* arg, const size_t num_skip,
- const InputVec& unique, const InputVec& full,
- const Params& p, Result* results) {
- const float mul = 1.0f / static_cast<int>(num_skip);
- InputVec subset(full.size() - num_skip);
- const Ticks overhead = Overhead(arg, &full, p);
- const Ticks overhead_skip = Overhead(arg, &subset, p);
- if (overhead < overhead_skip) {
- ABSL_RAW_LOG(WARNING, "Measurement failed: overhead %u < %u\n", overhead,
- overhead_skip);
- return 0;
- }
- if (p.verbose) {
- ABSL_RAW_LOG(INFO, "#inputs=%5zu,%5zu overhead=%5u,%5u\n", full.size(),
- subset.size(), overhead, overhead_skip);
- }
- double max_rel_mad = 0.0;
- const Ticks total = TotalDuration(func, arg, &full, p, &max_rel_mad);
- for (size_t i = 0; i < unique.size(); ++i) {
- FillSubset(full, unique[i], num_skip, &subset);
- const Ticks total_skip = TotalDuration(func, arg, &subset, p, &max_rel_mad);
- if (total < total_skip) {
- ABSL_RAW_LOG(WARNING, "Measurement failed: total %u < %u\n", total,
- total_skip);
- return 0;
- }
- const Ticks duration = (total - overhead) - (total_skip - overhead_skip);
- results[i].input = unique[i];
- results[i].ticks = duration * mul;
- results[i].variability = max_rel_mad;
- }
- return unique.size();
- }
- size_t Measure(const Func func, const void* arg, const FuncInput* inputs,
- const size_t num_inputs, Result* results, const Params& p) {
- ABSL_RAW_CHECK(num_inputs != 0, "No inputs");
- const InputVec unique = UniqueInputs(inputs, num_inputs);
- const size_t num_skip = NumSkip(func, arg, unique, p); // never 0
- if (num_skip == 0) return 0; // NumSkip already printed error message
- const InputVec full =
- ReplicateInputs(inputs, num_inputs, unique.size(), num_skip, p);
- // MeasureImpl may fail up to p.max_measure_retries times.
- for (size_t i = 0; i < p.max_measure_retries; i++) {
- auto result = MeasureImpl(func, arg, num_skip, unique, full, p, results);
- if (result != 0) {
- return result;
- }
- }
- // All retries failed. (Unusual)
- return 0;
- }
- } // namespace random_internal_nanobenchmark
- ABSL_NAMESPACE_END
- } // namespace absl
|