123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573 |
- // Copyright 2017 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "absl/random/poisson_distribution.h"
- #include <algorithm>
- #include <cstddef>
- #include <cstdint>
- #include <iterator>
- #include <random>
- #include <sstream>
- #include <string>
- #include <vector>
- #include "gmock/gmock.h"
- #include "gtest/gtest.h"
- #include "absl/base/internal/raw_logging.h"
- #include "absl/base/macros.h"
- #include "absl/container/flat_hash_map.h"
- #include "absl/random/internal/chi_square.h"
- #include "absl/random/internal/distribution_test_util.h"
- #include "absl/random/internal/pcg_engine.h"
- #include "absl/random/internal/sequence_urbg.h"
- #include "absl/random/random.h"
- #include "absl/strings/str_cat.h"
- #include "absl/strings/str_format.h"
- #include "absl/strings/str_replace.h"
- #include "absl/strings/strip.h"
- // Notes about generating poisson variates:
- //
- // It is unlikely that any implementation of std::poisson_distribution
- // will be stable over time and across library implementations. For instance
- // the three different poisson variate generators listed below all differ:
- //
- // https://github.com/ampl/gsl/tree/master/randist/poisson.c
- // * GSL uses a gamma + binomial + knuth method to compute poisson variates.
- //
- // https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/random.tcc
- // * GCC uses the Devroye rejection algorithm, based on
- // Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
- // New York, 1986, Ch. X, Sects. 3.3 & 3.4 (+ Errata!), ~p.511
- // http://www.nrbook.com/devroye/
- //
- // https://github.com/llvm-mirror/libcxx/blob/master/include/random
- // * CLANG uses a different rejection method, which appears to include a
- // normal-distribution approximation and an exponential distribution to
- // compute the threshold, including a similar factorial approximation to this
- // one, but it is unclear where the algorithm comes from, exactly.
- //
- namespace {
- using absl::random_internal::kChiSquared;
- // The PoissonDistributionInterfaceTest provides a basic test that
- // absl::poisson_distribution conforms to the interface and serialization
- // requirements imposed by [rand.req.dist] for the common integer types.
- template <typename IntType>
- class PoissonDistributionInterfaceTest : public ::testing::Test {};
- using IntTypes = ::testing::Types<int, int8_t, int16_t, int32_t, int64_t,
- uint8_t, uint16_t, uint32_t, uint64_t>;
- TYPED_TEST_CASE(PoissonDistributionInterfaceTest, IntTypes);
- TYPED_TEST(PoissonDistributionInterfaceTest, SerializeTest) {
- using param_type = typename absl::poisson_distribution<TypeParam>::param_type;
- const double kMax =
- std::min(1e10 /* assertion limit */,
- static_cast<double>(std::numeric_limits<TypeParam>::max()));
- const double kParams[] = {
- // Cases around 1.
- 1, //
- std::nextafter(1.0, 0.0), // 1 - epsilon
- std::nextafter(1.0, 2.0), // 1 + epsilon
- // Arbitrary values.
- 1e-8, 1e-4,
- 0.0000005, // ~7.2e-7
- 0.2, // ~0.2x
- 0.5, // 0.72
- 2, // ~2.8
- 20, // 3x ~9.6
- 100, 1e4, 1e8, 1.5e9, 1e20,
- // Boundary cases.
- std::numeric_limits<double>::max(),
- std::numeric_limits<double>::epsilon(),
- std::nextafter(std::numeric_limits<double>::min(),
- 1.0), // min + epsilon
- std::numeric_limits<double>::min(), // smallest normal
- std::numeric_limits<double>::denorm_min(), // smallest denorm
- std::numeric_limits<double>::min() / 2, // denorm
- std::nextafter(std::numeric_limits<double>::min(),
- 0.0), // denorm_max
- };
- constexpr int kCount = 1000;
- absl::InsecureBitGen gen;
- for (const double m : kParams) {
- const double mean = std::min(kMax, m);
- const param_type param(mean);
- // Validate parameters.
- absl::poisson_distribution<TypeParam> before(mean);
- EXPECT_EQ(before.mean(), param.mean());
- {
- absl::poisson_distribution<TypeParam> via_param(param);
- EXPECT_EQ(via_param, before);
- EXPECT_EQ(via_param.param(), before.param());
- }
- // Smoke test.
- auto sample_min = before.max();
- auto sample_max = before.min();
- for (int i = 0; i < kCount; i++) {
- auto sample = before(gen);
- EXPECT_GE(sample, before.min());
- EXPECT_LE(sample, before.max());
- if (sample > sample_max) sample_max = sample;
- if (sample < sample_min) sample_min = sample;
- }
- ABSL_INTERNAL_LOG(INFO, absl::StrCat("Range {", param.mean(), "}: ",
- +sample_min, ", ", +sample_max));
- // Validate stream serialization.
- std::stringstream ss;
- ss << before;
- absl::poisson_distribution<TypeParam> after(3.8);
- EXPECT_NE(before.mean(), after.mean());
- EXPECT_NE(before.param(), after.param());
- EXPECT_NE(before, after);
- ss >> after;
- EXPECT_EQ(before.mean(), after.mean()) //
- << ss.str() << " " //
- << (ss.good() ? "good " : "") //
- << (ss.bad() ? "bad " : "") //
- << (ss.eof() ? "eof " : "") //
- << (ss.fail() ? "fail " : "");
- }
- }
- // See http://www.itl.nist.gov/div898/handbook/eda/section3/eda366j.htm
- class PoissonModel {
- public:
- explicit PoissonModel(double mean) : mean_(mean) {}
- double mean() const { return mean_; }
- double variance() const { return mean_; }
- double stddev() const { return std::sqrt(variance()); }
- double skew() const { return 1.0 / mean_; }
- double kurtosis() const { return 3.0 + 1.0 / mean_; }
- // InitCDF() initializes the CDF for the distribution parameters.
- void InitCDF();
- // The InverseCDF, or the Percent-point function returns x, P(x) < v.
- struct CDF {
- size_t index;
- double pmf;
- double cdf;
- };
- CDF InverseCDF(double p) {
- CDF target{0, 0, p};
- auto it = std::upper_bound(
- std::begin(cdf_), std::end(cdf_), target,
- [](const CDF& a, const CDF& b) { return a.cdf < b.cdf; });
- return *it;
- }
- void LogCDF() {
- ABSL_INTERNAL_LOG(INFO, absl::StrCat("CDF (mean = ", mean_, ")"));
- for (const auto c : cdf_) {
- ABSL_INTERNAL_LOG(INFO,
- absl::StrCat(c.index, ": pmf=", c.pmf, " cdf=", c.cdf));
- }
- }
- private:
- const double mean_;
- std::vector<CDF> cdf_;
- };
- // The goal is to compute an InverseCDF function, or percent point function for
- // the poisson distribution, and use that to partition our output into equal
- // range buckets. However there is no closed form solution for the inverse cdf
- // for poisson distributions (the closest is the incomplete gamma function).
- // Instead, `InitCDF` iteratively computes the PMF and the CDF. This enables
- // searching for the bucket points.
- void PoissonModel::InitCDF() {
- if (!cdf_.empty()) {
- // State already initialized.
- return;
- }
- ABSL_ASSERT(mean_ < 201.0);
- const size_t max_i = 50 * stddev() + mean();
- const double e_neg_mean = std::exp(-mean());
- ABSL_ASSERT(e_neg_mean > 0);
- double d = 1;
- double last_result = e_neg_mean;
- double cumulative = e_neg_mean;
- if (e_neg_mean > 1e-10) {
- cdf_.push_back({0, e_neg_mean, cumulative});
- }
- for (size_t i = 1; i < max_i; i++) {
- d *= (mean() / i);
- double result = e_neg_mean * d;
- cumulative += result;
- if (result < 1e-10 && result < last_result && cumulative > 0.999999) {
- break;
- }
- if (result > 1e-7) {
- cdf_.push_back({i, result, cumulative});
- }
- last_result = result;
- }
- ABSL_ASSERT(!cdf_.empty());
- }
- // PoissonDistributionZTest implements a z-test for the poisson distribution.
- struct ZParam {
- double mean;
- double p_fail; // Z-Test probability of failure.
- int trials; // Z-Test trials.
- size_t samples; // Z-Test samples.
- };
- class PoissonDistributionZTest : public testing::TestWithParam<ZParam>,
- public PoissonModel {
- public:
- PoissonDistributionZTest() : PoissonModel(GetParam().mean) {}
- // ZTestImpl provides a basic z-squared test of the mean vs. expected
- // mean for data generated by the poisson distribution.
- template <typename D>
- bool SingleZTest(const double p, const size_t samples);
- // We use a fixed bit generator for distribution accuracy tests. This allows
- // these tests to be deterministic, while still testing the qualify of the
- // implementation.
- absl::random_internal::pcg64_2018_engine rng_{0x2B7E151628AED2A6};
- };
- template <typename D>
- bool PoissonDistributionZTest::SingleZTest(const double p,
- const size_t samples) {
- D dis(mean());
- absl::flat_hash_map<int32_t, int> buckets;
- std::vector<double> data;
- data.reserve(samples);
- for (int j = 0; j < samples; j++) {
- const auto x = dis(rng_);
- buckets[x]++;
- data.push_back(x);
- }
- // The null-hypothesis is that the distribution is a poisson distribution with
- // the provided mean (not estimated from the data).
- const auto m = absl::random_internal::ComputeDistributionMoments(data);
- const double max_err = absl::random_internal::MaxErrorTolerance(p);
- const double z = absl::random_internal::ZScore(mean(), m);
- const bool pass = absl::random_internal::Near("z", z, 0.0, max_err);
- if (!pass) {
- ABSL_INTERNAL_LOG(
- INFO, absl::StrFormat("p=%f max_err=%f\n"
- " mean=%f vs. %f\n"
- " stddev=%f vs. %f\n"
- " skewness=%f vs. %f\n"
- " kurtosis=%f vs. %f\n"
- " z=%f",
- p, max_err, m.mean, mean(), std::sqrt(m.variance),
- stddev(), m.skewness, skew(), m.kurtosis,
- kurtosis(), z));
- }
- return pass;
- }
- TEST_P(PoissonDistributionZTest, AbslPoissonDistribution) {
- const auto& param = GetParam();
- const int expected_failures =
- std::max(1, static_cast<int>(std::ceil(param.trials * param.p_fail)));
- const double p = absl::random_internal::RequiredSuccessProbability(
- param.p_fail, param.trials);
- int failures = 0;
- for (int i = 0; i < param.trials; i++) {
- failures +=
- SingleZTest<absl::poisson_distribution<int32_t>>(p, param.samples) ? 0
- : 1;
- }
- EXPECT_LE(failures, expected_failures);
- }
- std::vector<ZParam> GetZParams() {
- // These values have been adjusted from the "exact" computed values to reduce
- // failure rates.
- //
- // It turns out that the actual values are not as close to the expected values
- // as would be ideal.
- return std::vector<ZParam>({
- // Knuth method.
- ZParam{0.5, 0.01, 100, 1000},
- ZParam{1.0, 0.01, 100, 1000},
- ZParam{10.0, 0.01, 100, 5000},
- // Split-knuth method.
- ZParam{20.0, 0.01, 100, 10000},
- ZParam{50.0, 0.01, 100, 10000},
- // Ratio of gaussians method.
- ZParam{51.0, 0.01, 100, 10000},
- ZParam{200.0, 0.05, 10, 100000},
- ZParam{100000.0, 0.05, 10, 1000000},
- });
- }
- std::string ZParamName(const ::testing::TestParamInfo<ZParam>& info) {
- const auto& p = info.param;
- std::string name = absl::StrCat("mean_", absl::SixDigits(p.mean));
- return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}});
- }
- INSTANTIATE_TEST_SUITE_P(All, PoissonDistributionZTest,
- ::testing::ValuesIn(GetZParams()), ZParamName);
- // The PoissonDistributionChiSquaredTest class provides a basic test framework
- // for variates generated by a conforming poisson_distribution.
- class PoissonDistributionChiSquaredTest : public testing::TestWithParam<double>,
- public PoissonModel {
- public:
- PoissonDistributionChiSquaredTest() : PoissonModel(GetParam()) {}
- // The ChiSquaredTestImpl provides a chi-squared goodness of fit test for data
- // generated by the poisson distribution.
- template <typename D>
- double ChiSquaredTestImpl();
- private:
- void InitChiSquaredTest(const double buckets);
- std::vector<size_t> cutoffs_;
- std::vector<double> expected_;
- // We use a fixed bit generator for distribution accuracy tests. This allows
- // these tests to be deterministic, while still testing the qualify of the
- // implementation.
- absl::random_internal::pcg64_2018_engine rng_{0x2B7E151628AED2A6};
- };
- void PoissonDistributionChiSquaredTest::InitChiSquaredTest(
- const double buckets) {
- if (!cutoffs_.empty() && !expected_.empty()) {
- return;
- }
- InitCDF();
- // The code below finds cuttoffs that yield approximately equally-sized
- // buckets to the extent that it is possible. However for poisson
- // distributions this is particularly challenging for small mean parameters.
- // Track the expected proportion of items in each bucket.
- double last_cdf = 0;
- const double inc = 1.0 / buckets;
- for (double p = inc; p <= 1.0; p += inc) {
- auto result = InverseCDF(p);
- if (!cutoffs_.empty() && cutoffs_.back() == result.index) {
- continue;
- }
- double d = result.cdf - last_cdf;
- cutoffs_.push_back(result.index);
- expected_.push_back(d);
- last_cdf = result.cdf;
- }
- cutoffs_.push_back(std::numeric_limits<size_t>::max());
- expected_.push_back(std::max(0.0, 1.0 - last_cdf));
- }
- template <typename D>
- double PoissonDistributionChiSquaredTest::ChiSquaredTestImpl() {
- const int kSamples = 2000;
- const int kBuckets = 50;
- // The poisson CDF fails for large mean values, since e^-mean exceeds the
- // machine precision. For these cases, using a normal approximation would be
- // appropriate.
- ABSL_ASSERT(mean() <= 200);
- InitChiSquaredTest(kBuckets);
- D dis(mean());
- std::vector<int32_t> counts(cutoffs_.size(), 0);
- for (int j = 0; j < kSamples; j++) {
- const size_t x = dis(rng_);
- auto it = std::lower_bound(std::begin(cutoffs_), std::end(cutoffs_), x);
- counts[std::distance(cutoffs_.begin(), it)]++;
- }
- // Normalize the counts.
- std::vector<int32_t> e(expected_.size(), 0);
- for (int i = 0; i < e.size(); i++) {
- e[i] = kSamples * expected_[i];
- }
- // The null-hypothesis is that the distribution is a poisson distribution with
- // the provided mean (not estimated from the data).
- const int dof = static_cast<int>(counts.size()) - 1;
- // The threshold for logging is 1-in-50.
- const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98);
- const double chi_square = absl::random_internal::ChiSquare(
- std::begin(counts), std::end(counts), std::begin(e), std::end(e));
- const double p = absl::random_internal::ChiSquarePValue(chi_square, dof);
- // Log if the chi_squared value is above the threshold.
- if (chi_square > threshold) {
- LogCDF();
- ABSL_INTERNAL_LOG(INFO, absl::StrCat("VALUES buckets=", counts.size(),
- " samples=", kSamples));
- for (size_t i = 0; i < counts.size(); i++) {
- ABSL_INTERNAL_LOG(
- INFO, absl::StrCat(cutoffs_[i], ": ", counts[i], " vs. E=", e[i]));
- }
- ABSL_INTERNAL_LOG(
- INFO,
- absl::StrCat(kChiSquared, "(data, dof=", dof, ") = ", chi_square, " (",
- p, ")\n", " vs.\n", kChiSquared, " @ 0.98 = ", threshold));
- }
- return p;
- }
- TEST_P(PoissonDistributionChiSquaredTest, AbslPoissonDistribution) {
- const int kTrials = 20;
- // Large values are not yet supported -- this requires estimating the cdf
- // using the normal distribution instead of the poisson in this case.
- ASSERT_LE(mean(), 200.0);
- if (mean() > 200.0) {
- return;
- }
- int failures = 0;
- for (int i = 0; i < kTrials; i++) {
- double p_value = ChiSquaredTestImpl<absl::poisson_distribution<int32_t>>();
- if (p_value < 0.005) {
- failures++;
- }
- }
- // There is a 0.10% chance of producing at least one failure, so raise the
- // failure threshold high enough to allow for a flake rate < 10,000.
- EXPECT_LE(failures, 4);
- }
- INSTANTIATE_TEST_SUITE_P(All, PoissonDistributionChiSquaredTest,
- ::testing::Values(0.5, 1.0, 2.0, 10.0, 50.0, 51.0,
- 200.0));
- // NOTE: absl::poisson_distribution is not guaranteed to be stable.
- TEST(PoissonDistributionTest, StabilityTest) {
- using testing::ElementsAre;
- // absl::poisson_distribution stability relies on stability of
- // std::exp, std::log, std::sqrt, std::ceil, std::floor, and
- // absl::FastUniformBits, absl::StirlingLogFactorial, absl::RandU64ToDouble.
- absl::random_internal::sequence_urbg urbg({
- 0x035b0dc7e0a18acfull, 0x06cebe0d2653682eull, 0x0061e9b23861596bull,
- 0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
- 0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
- 0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
- 0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull,
- 0x4864f22c059bf29eull, 0x247856d8b862665cull, 0xe46e86e9a1337e10ull,
- 0xd8c8541f3519b133ull, 0xe75b5162c567b9e4ull, 0xf732e5ded7009c5bull,
- 0xb170b98353121eacull, 0x1ec2e8986d2362caull, 0x814c8e35fe9a961aull,
- 0x0c3cd59c9b638a02ull, 0xcb3bb6478a07715cull, 0x1224e62c978bbc7full,
- 0x671ef2cb04e81f6eull, 0x3c1cbd811eaf1808ull, 0x1bbc23cfa8fac721ull,
- 0xa4c2cda65e596a51ull, 0xb77216fad37adf91ull, 0x836d794457c08849ull,
- 0xe083df03475f49d7ull, 0xbc9feb512e6b0d6cull, 0xb12d74fdd718c8c5ull,
- 0x12ff09653bfbe4caull, 0x8dd03a105bc4ee7eull, 0x5738341045ba0d85ull,
- 0xf3fd722dc65ad09eull, 0xfa14fd21ea2a5705ull, 0xffe6ea4d6edb0c73ull,
- 0xD07E9EFE2BF11FB4ull, 0x95DBDA4DAE909198ull, 0xEAAD8E716B93D5A0ull,
- 0xD08ED1D0AFC725E0ull, 0x8E3C5B2F8E7594B7ull, 0x8FF6E2FBF2122B64ull,
- 0x8888B812900DF01Cull, 0x4FAD5EA0688FC31Cull, 0xD1CFF191B3A8C1ADull,
- 0x2F2F2218BE0E1777ull, 0xEA752DFE8B021FA1ull, 0xE5A0CC0FB56F74E8ull,
- 0x18ACF3D6CE89E299ull, 0xB4A84FE0FD13E0B7ull, 0x7CC43B81D2ADA8D9ull,
- 0x165FA26680957705ull, 0x93CC7314211A1477ull, 0xE6AD206577B5FA86ull,
- 0xC75442F5FB9D35CFull, 0xEBCDAF0C7B3E89A0ull, 0xD6411BD3AE1E7E49ull,
- 0x00250E2D2071B35Eull, 0x226800BB57B8E0AFull, 0x2464369BF009B91Eull,
- 0x5563911D59DFA6AAull, 0x78C14389D95A537Full, 0x207D5BA202E5B9C5ull,
- 0x832603766295CFA9ull, 0x11C819684E734A41ull, 0xB3472DCA7B14A94Aull,
- });
- std::vector<int> output(10);
- // Method 1.
- {
- absl::poisson_distribution<int> dist(5);
- std::generate(std::begin(output), std::end(output),
- [&] { return dist(urbg); });
- }
- EXPECT_THAT(output, // mean = 4.2
- ElementsAre(1, 0, 0, 4, 2, 10, 3, 3, 7, 12));
- // Method 2.
- {
- urbg.reset();
- absl::poisson_distribution<int> dist(25);
- std::generate(std::begin(output), std::end(output),
- [&] { return dist(urbg); });
- }
- EXPECT_THAT(output, // mean = 19.8
- ElementsAre(9, 35, 18, 10, 35, 18, 10, 35, 18, 10));
- // Method 3.
- {
- urbg.reset();
- absl::poisson_distribution<int> dist(121);
- std::generate(std::begin(output), std::end(output),
- [&] { return dist(urbg); });
- }
- EXPECT_THAT(output, // mean = 124.1
- ElementsAre(161, 122, 129, 124, 112, 112, 117, 120, 130, 114));
- }
- TEST(PoissonDistributionTest, AlgorithmExpectedValue_1) {
- // This tests small values of the Knuth method.
- // The underlying uniform distribution will generate exactly 0.5.
- absl::random_internal::sequence_urbg urbg({0x8000000000000001ull});
- absl::poisson_distribution<int> dist(5);
- EXPECT_EQ(7, dist(urbg));
- }
- TEST(PoissonDistributionTest, AlgorithmExpectedValue_2) {
- // This tests larger values of the Knuth method.
- // The underlying uniform distribution will generate exactly 0.5.
- absl::random_internal::sequence_urbg urbg({0x8000000000000001ull});
- absl::poisson_distribution<int> dist(25);
- EXPECT_EQ(36, dist(urbg));
- }
- TEST(PoissonDistributionTest, AlgorithmExpectedValue_3) {
- // This variant uses the ratio of uniforms method.
- absl::random_internal::sequence_urbg urbg(
- {0x7fffffffffffffffull, 0x8000000000000000ull});
- absl::poisson_distribution<int> dist(121);
- EXPECT_EQ(121, dist(urbg));
- }
- } // namespace
|