123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259 |
- // Copyright 2017 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "absl/random/uniform_int_distribution.h"
- #include <cmath>
- #include <cstdint>
- #include <iterator>
- #include <random>
- #include <sstream>
- #include <vector>
- #include "gmock/gmock.h"
- #include "gtest/gtest.h"
- #include "absl/base/internal/raw_logging.h"
- #include "absl/random/internal/chi_square.h"
- #include "absl/random/internal/distribution_test_util.h"
- #include "absl/random/internal/pcg_engine.h"
- #include "absl/random/internal/sequence_urbg.h"
- #include "absl/random/random.h"
- #include "absl/strings/str_cat.h"
- namespace {
- template <typename IntType>
- class UniformIntDistributionTest : public ::testing::Test {};
- using IntTypes = ::testing::Types<int8_t, uint8_t, int16_t, uint16_t, int32_t,
- uint32_t, int64_t, uint64_t>;
- TYPED_TEST_SUITE(UniformIntDistributionTest, IntTypes);
- TYPED_TEST(UniformIntDistributionTest, ParamSerializeTest) {
- // This test essentially ensures that the parameters serialize,
- // not that the values generated cover the full range.
- using Limits = std::numeric_limits<TypeParam>;
- using param_type =
- typename absl::uniform_int_distribution<TypeParam>::param_type;
- const TypeParam kMin = std::is_unsigned<TypeParam>::value ? 37 : -105;
- const TypeParam kNegOneOrZero = std::is_unsigned<TypeParam>::value ? 0 : -1;
- constexpr int kCount = 1000;
- absl::InsecureBitGen gen;
- for (const auto& param : {
- param_type(),
- param_type(2, 2), // Same
- param_type(9, 32),
- param_type(kMin, 115),
- param_type(kNegOneOrZero, Limits::max()),
- param_type(Limits::min(), Limits::max()),
- param_type(Limits::lowest(), Limits::max()),
- param_type(Limits::min() + 1, Limits::max() - 1),
- }) {
- const auto a = param.a();
- const auto b = param.b();
- absl::uniform_int_distribution<TypeParam> before(a, b);
- EXPECT_EQ(before.a(), param.a());
- EXPECT_EQ(before.b(), param.b());
- {
- // Initialize via param_type
- absl::uniform_int_distribution<TypeParam> via_param(param);
- EXPECT_EQ(via_param, before);
- }
- // Initialize via iostreams
- std::stringstream ss;
- ss << before;
- absl::uniform_int_distribution<TypeParam> after(Limits::min() + 3,
- Limits::max() - 5);
- EXPECT_NE(before.a(), after.a());
- EXPECT_NE(before.b(), after.b());
- EXPECT_NE(before.param(), after.param());
- EXPECT_NE(before, after);
- ss >> after;
- EXPECT_EQ(before.a(), after.a());
- EXPECT_EQ(before.b(), after.b());
- EXPECT_EQ(before.param(), after.param());
- EXPECT_EQ(before, after);
- // Smoke test.
- auto sample_min = after.max();
- auto sample_max = after.min();
- for (int i = 0; i < kCount; i++) {
- auto sample = after(gen);
- EXPECT_GE(sample, after.min());
- EXPECT_LE(sample, after.max());
- if (sample > sample_max) {
- sample_max = sample;
- }
- if (sample < sample_min) {
- sample_min = sample;
- }
- }
- std::string msg = absl::StrCat("Range: ", +sample_min, ", ", +sample_max);
- ABSL_RAW_LOG(INFO, "%s", msg.c_str());
- }
- }
- TYPED_TEST(UniformIntDistributionTest, ViolatesPreconditionsDeathTest) {
- #if GTEST_HAS_DEATH_TEST
- // Hi < Lo
- EXPECT_DEBUG_DEATH({ absl::uniform_int_distribution<TypeParam> dist(10, 1); },
- "");
- #endif // GTEST_HAS_DEATH_TEST
- #if defined(NDEBUG)
- // opt-mode, for invalid parameters, will generate a garbage value,
- // but should not enter an infinite loop.
- absl::InsecureBitGen gen;
- absl::uniform_int_distribution<TypeParam> dist(10, 1);
- auto x = dist(gen);
- // Any value will generate a non-empty string.
- EXPECT_FALSE(absl::StrCat(+x).empty()) << x;
- #endif // NDEBUG
- }
- TYPED_TEST(UniformIntDistributionTest, TestMoments) {
- constexpr int kSize = 100000;
- using Limits = std::numeric_limits<TypeParam>;
- using param_type =
- typename absl::uniform_int_distribution<TypeParam>::param_type;
- // We use a fixed bit generator for distribution accuracy tests. This allows
- // these tests to be deterministic, while still testing the qualify of the
- // implementation.
- absl::random_internal::pcg64_2018_engine rng{0x2B7E151628AED2A6};
- std::vector<double> values(kSize);
- for (const auto& param :
- {param_type(0, Limits::max()), param_type(13, 127)}) {
- absl::uniform_int_distribution<TypeParam> dist(param);
- for (int i = 0; i < kSize; i++) {
- const auto sample = dist(rng);
- ASSERT_LE(dist.param().a(), sample);
- ASSERT_GE(dist.param().b(), sample);
- values[i] = sample;
- }
- auto moments = absl::random_internal::ComputeDistributionMoments(values);
- const double a = dist.param().a();
- const double b = dist.param().b();
- const double n = (b - a + 1);
- const double mean = (a + b) / 2;
- const double var = ((b - a + 1) * (b - a + 1) - 1) / 12;
- const double kurtosis = 3 - 6 * (n * n + 1) / (5 * (n * n - 1));
- // TODO(ahh): this is not the right bound
- // empirically validated with --runs_per_test=10000.
- EXPECT_NEAR(mean, moments.mean, 0.01 * var);
- EXPECT_NEAR(var, moments.variance, 0.015 * var);
- EXPECT_NEAR(0.0, moments.skewness, 0.025);
- EXPECT_NEAR(kurtosis, moments.kurtosis, 0.02 * kurtosis);
- }
- }
- TYPED_TEST(UniformIntDistributionTest, ChiSquaredTest50) {
- using absl::random_internal::kChiSquared;
- constexpr size_t kTrials = 1000;
- constexpr int kBuckets = 50; // inclusive, so actally +1
- constexpr double kExpected =
- static_cast<double>(kTrials) / static_cast<double>(kBuckets);
- // Empirically validated with --runs_per_test=10000.
- const int kThreshold =
- absl::random_internal::ChiSquareValue(kBuckets, 0.999999);
- const TypeParam min = std::is_unsigned<TypeParam>::value ? 37 : -37;
- const TypeParam max = min + kBuckets;
- // We use a fixed bit generator for distribution accuracy tests. This allows
- // these tests to be deterministic, while still testing the qualify of the
- // implementation.
- absl::random_internal::pcg64_2018_engine rng{0x2B7E151628AED2A6};
- absl::uniform_int_distribution<TypeParam> dist(min, max);
- std::vector<int32_t> counts(kBuckets + 1, 0);
- for (size_t i = 0; i < kTrials; i++) {
- auto x = dist(rng);
- counts[x - min]++;
- }
- double chi_square = absl::random_internal::ChiSquareWithExpected(
- std::begin(counts), std::end(counts), kExpected);
- if (chi_square > kThreshold) {
- double p_value =
- absl::random_internal::ChiSquarePValue(chi_square, kBuckets);
- // Chi-squared test failed. Output does not appear to be uniform.
- std::string msg;
- for (const auto& a : counts) {
- absl::StrAppend(&msg, a, "\n");
- }
- absl::StrAppend(&msg, kChiSquared, " p-value ", p_value, "\n");
- absl::StrAppend(&msg, "High ", kChiSquared, " value: ", chi_square, " > ",
- kThreshold);
- ABSL_RAW_LOG(INFO, "%s", msg.c_str());
- FAIL() << msg;
- }
- }
- TEST(UniformIntDistributionTest, StabilityTest) {
- // absl::uniform_int_distribution stability relies only on integer operations.
- absl::random_internal::sequence_urbg urbg(
- {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
- 0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
- 0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
- 0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
- std::vector<int> output(12);
- {
- absl::uniform_int_distribution<int32_t> dist(0, 4);
- for (auto& v : output) {
- v = dist(urbg);
- }
- }
- EXPECT_EQ(12, urbg.invocations());
- EXPECT_THAT(output, testing::ElementsAre(4, 4, 3, 2, 1, 0, 1, 4, 3, 1, 3, 1));
- {
- urbg.reset();
- absl::uniform_int_distribution<int32_t> dist(0, 100);
- for (auto& v : output) {
- v = dist(urbg);
- }
- }
- EXPECT_EQ(12, urbg.invocations());
- EXPECT_THAT(output, testing::ElementsAre(97, 86, 75, 41, 36, 16, 38, 92, 67,
- 30, 80, 38));
- {
- urbg.reset();
- absl::uniform_int_distribution<int32_t> dist(0, 10000);
- for (auto& v : output) {
- v = dist(urbg);
- }
- }
- EXPECT_EQ(12, urbg.invocations());
- EXPECT_THAT(output, testing::ElementsAre(9648, 8562, 7439, 4089, 3571, 1602,
- 3813, 9195, 6641, 2986, 7956, 3765));
- }
- } // namespace
|