123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782 |
- // Copyright 2018 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "absl/strings/charconv.h"
- #include <cstdlib>
- #include <string>
- #include "gmock/gmock.h"
- #include "gtest/gtest.h"
- #include "absl/strings/internal/pow10_helper.h"
- #include "absl/strings/str_cat.h"
- #include "absl/strings/str_format.h"
- #ifdef _MSC_FULL_VER
- #define ABSL_COMPILER_DOES_EXACT_ROUNDING 0
- #define ABSL_STRTOD_HANDLES_NAN_CORRECTLY 0
- #else
- #define ABSL_COMPILER_DOES_EXACT_ROUNDING 1
- #define ABSL_STRTOD_HANDLES_NAN_CORRECTLY 1
- #endif
- namespace {
- using absl::strings_internal::Pow10;
- #if ABSL_COMPILER_DOES_EXACT_ROUNDING
- // Tests that the given string is accepted by absl::from_chars, and that it
- // converts exactly equal to the given number.
- void TestDoubleParse(absl::string_view str, double expected_number) {
- SCOPED_TRACE(str);
- double actual_number = 0.0;
- absl::from_chars_result result =
- absl::from_chars(str.data(), str.data() + str.length(), actual_number);
- EXPECT_EQ(result.ec, std::errc());
- EXPECT_EQ(result.ptr, str.data() + str.length());
- EXPECT_EQ(actual_number, expected_number);
- }
- void TestFloatParse(absl::string_view str, float expected_number) {
- SCOPED_TRACE(str);
- float actual_number = 0.0;
- absl::from_chars_result result =
- absl::from_chars(str.data(), str.data() + str.length(), actual_number);
- EXPECT_EQ(result.ec, std::errc());
- EXPECT_EQ(result.ptr, str.data() + str.length());
- EXPECT_EQ(actual_number, expected_number);
- }
- // Tests that the given double or single precision floating point literal is
- // parsed correctly by absl::from_chars.
- //
- // These convenience macros assume that the C++ compiler being used also does
- // fully correct decimal-to-binary conversions.
- #define FROM_CHARS_TEST_DOUBLE(number) \
- { \
- TestDoubleParse(#number, number); \
- TestDoubleParse("-" #number, -number); \
- }
- #define FROM_CHARS_TEST_FLOAT(number) \
- { \
- TestFloatParse(#number, number##f); \
- TestFloatParse("-" #number, -number##f); \
- }
- TEST(FromChars, NearRoundingCases) {
- // Cases from "A Program for Testing IEEE Decimal-Binary Conversion"
- // by Vern Paxson.
- // Forms that should round towards zero. (These are the hardest cases for
- // each decimal mantissa size.)
- FROM_CHARS_TEST_DOUBLE(5.e125);
- FROM_CHARS_TEST_DOUBLE(69.e267);
- FROM_CHARS_TEST_DOUBLE(999.e-026);
- FROM_CHARS_TEST_DOUBLE(7861.e-034);
- FROM_CHARS_TEST_DOUBLE(75569.e-254);
- FROM_CHARS_TEST_DOUBLE(928609.e-261);
- FROM_CHARS_TEST_DOUBLE(9210917.e080);
- FROM_CHARS_TEST_DOUBLE(84863171.e114);
- FROM_CHARS_TEST_DOUBLE(653777767.e273);
- FROM_CHARS_TEST_DOUBLE(5232604057.e-298);
- FROM_CHARS_TEST_DOUBLE(27235667517.e-109);
- FROM_CHARS_TEST_DOUBLE(653532977297.e-123);
- FROM_CHARS_TEST_DOUBLE(3142213164987.e-294);
- FROM_CHARS_TEST_DOUBLE(46202199371337.e-072);
- FROM_CHARS_TEST_DOUBLE(231010996856685.e-073);
- FROM_CHARS_TEST_DOUBLE(9324754620109615.e212);
- FROM_CHARS_TEST_DOUBLE(78459735791271921.e049);
- FROM_CHARS_TEST_DOUBLE(272104041512242479.e200);
- FROM_CHARS_TEST_DOUBLE(6802601037806061975.e198);
- FROM_CHARS_TEST_DOUBLE(20505426358836677347.e-221);
- FROM_CHARS_TEST_DOUBLE(836168422905420598437.e-234);
- FROM_CHARS_TEST_DOUBLE(4891559871276714924261.e222);
- FROM_CHARS_TEST_FLOAT(5.e-20);
- FROM_CHARS_TEST_FLOAT(67.e14);
- FROM_CHARS_TEST_FLOAT(985.e15);
- FROM_CHARS_TEST_FLOAT(7693.e-42);
- FROM_CHARS_TEST_FLOAT(55895.e-16);
- FROM_CHARS_TEST_FLOAT(996622.e-44);
- FROM_CHARS_TEST_FLOAT(7038531.e-32);
- FROM_CHARS_TEST_FLOAT(60419369.e-46);
- FROM_CHARS_TEST_FLOAT(702990899.e-20);
- FROM_CHARS_TEST_FLOAT(6930161142.e-48);
- FROM_CHARS_TEST_FLOAT(25933168707.e-13);
- FROM_CHARS_TEST_FLOAT(596428896559.e20);
- // Similarly, forms that should round away from zero.
- FROM_CHARS_TEST_DOUBLE(9.e-265);
- FROM_CHARS_TEST_DOUBLE(85.e-037);
- FROM_CHARS_TEST_DOUBLE(623.e100);
- FROM_CHARS_TEST_DOUBLE(3571.e263);
- FROM_CHARS_TEST_DOUBLE(81661.e153);
- FROM_CHARS_TEST_DOUBLE(920657.e-023);
- FROM_CHARS_TEST_DOUBLE(4603285.e-024);
- FROM_CHARS_TEST_DOUBLE(87575437.e-309);
- FROM_CHARS_TEST_DOUBLE(245540327.e122);
- FROM_CHARS_TEST_DOUBLE(6138508175.e120);
- FROM_CHARS_TEST_DOUBLE(83356057653.e193);
- FROM_CHARS_TEST_DOUBLE(619534293513.e124);
- FROM_CHARS_TEST_DOUBLE(2335141086879.e218);
- FROM_CHARS_TEST_DOUBLE(36167929443327.e-159);
- FROM_CHARS_TEST_DOUBLE(609610927149051.e-255);
- FROM_CHARS_TEST_DOUBLE(3743626360493413.e-165);
- FROM_CHARS_TEST_DOUBLE(94080055902682397.e-242);
- FROM_CHARS_TEST_DOUBLE(899810892172646163.e283);
- FROM_CHARS_TEST_DOUBLE(7120190517612959703.e120);
- FROM_CHARS_TEST_DOUBLE(25188282901709339043.e-252);
- FROM_CHARS_TEST_DOUBLE(308984926168550152811.e-052);
- FROM_CHARS_TEST_DOUBLE(6372891218502368041059.e064);
- FROM_CHARS_TEST_FLOAT(3.e-23);
- FROM_CHARS_TEST_FLOAT(57.e18);
- FROM_CHARS_TEST_FLOAT(789.e-35);
- FROM_CHARS_TEST_FLOAT(2539.e-18);
- FROM_CHARS_TEST_FLOAT(76173.e28);
- FROM_CHARS_TEST_FLOAT(887745.e-11);
- FROM_CHARS_TEST_FLOAT(5382571.e-37);
- FROM_CHARS_TEST_FLOAT(82381273.e-35);
- FROM_CHARS_TEST_FLOAT(750486563.e-38);
- FROM_CHARS_TEST_FLOAT(3752432815.e-39);
- FROM_CHARS_TEST_FLOAT(75224575729.e-45);
- FROM_CHARS_TEST_FLOAT(459926601011.e15);
- }
- #undef FROM_CHARS_TEST_DOUBLE
- #undef FROM_CHARS_TEST_FLOAT
- #endif
- float ToFloat(absl::string_view s) {
- float f;
- absl::from_chars(s.data(), s.data() + s.size(), f);
- return f;
- }
- double ToDouble(absl::string_view s) {
- double d;
- absl::from_chars(s.data(), s.data() + s.size(), d);
- return d;
- }
- // A duplication of the test cases in "NearRoundingCases" above, but with
- // expected values expressed with integers, using ldexp/ldexpf. These test
- // cases will work even on compilers that do not accurately round floating point
- // literals.
- TEST(FromChars, NearRoundingCasesExplicit) {
- EXPECT_EQ(ToDouble("5.e125"), ldexp(6653062250012735, 365));
- EXPECT_EQ(ToDouble("69.e267"), ldexp(4705683757438170, 841));
- EXPECT_EQ(ToDouble("999.e-026"), ldexp(6798841691080350, -129));
- EXPECT_EQ(ToDouble("7861.e-034"), ldexp(8975675289889240, -153));
- EXPECT_EQ(ToDouble("75569.e-254"), ldexp(6091718967192243, -880));
- EXPECT_EQ(ToDouble("928609.e-261"), ldexp(7849264900213743, -900));
- EXPECT_EQ(ToDouble("9210917.e080"), ldexp(8341110837370930, 236));
- EXPECT_EQ(ToDouble("84863171.e114"), ldexp(4625202867375927, 353));
- EXPECT_EQ(ToDouble("653777767.e273"), ldexp(5068902999763073, 884));
- EXPECT_EQ(ToDouble("5232604057.e-298"), ldexp(5741343011915040, -1010));
- EXPECT_EQ(ToDouble("27235667517.e-109"), ldexp(6707124626673586, -380));
- EXPECT_EQ(ToDouble("653532977297.e-123"), ldexp(7078246407265384, -422));
- EXPECT_EQ(ToDouble("3142213164987.e-294"), ldexp(8219991337640559, -988));
- EXPECT_EQ(ToDouble("46202199371337.e-072"), ldexp(5224462102115359, -246));
- EXPECT_EQ(ToDouble("231010996856685.e-073"), ldexp(5224462102115359, -247));
- EXPECT_EQ(ToDouble("9324754620109615.e212"), ldexp(5539753864394442, 705));
- EXPECT_EQ(ToDouble("78459735791271921.e049"), ldexp(8388176519442766, 166));
- EXPECT_EQ(ToDouble("272104041512242479.e200"), ldexp(5554409530847367, 670));
- EXPECT_EQ(ToDouble("6802601037806061975.e198"), ldexp(5554409530847367, 668));
- EXPECT_EQ(ToDouble("20505426358836677347.e-221"),
- ldexp(4524032052079546, -722));
- EXPECT_EQ(ToDouble("836168422905420598437.e-234"),
- ldexp(5070963299887562, -760));
- EXPECT_EQ(ToDouble("4891559871276714924261.e222"),
- ldexp(6452687840519111, 757));
- EXPECT_EQ(ToFloat("5.e-20"), ldexpf(15474250, -88));
- EXPECT_EQ(ToFloat("67.e14"), ldexpf(12479722, 29));
- EXPECT_EQ(ToFloat("985.e15"), ldexpf(14333636, 36));
- EXPECT_EQ(ToFloat("7693.e-42"), ldexpf(10979816, -150));
- EXPECT_EQ(ToFloat("55895.e-16"), ldexpf(12888509, -61));
- EXPECT_EQ(ToFloat("996622.e-44"), ldexpf(14224264, -150));
- EXPECT_EQ(ToFloat("7038531.e-32"), ldexpf(11420669, -107));
- EXPECT_EQ(ToFloat("60419369.e-46"), ldexpf(8623340, -150));
- EXPECT_EQ(ToFloat("702990899.e-20"), ldexpf(16209866, -61));
- EXPECT_EQ(ToFloat("6930161142.e-48"), ldexpf(9891056, -150));
- EXPECT_EQ(ToFloat("25933168707.e-13"), ldexpf(11138211, -32));
- EXPECT_EQ(ToFloat("596428896559.e20"), ldexpf(12333860, 82));
- EXPECT_EQ(ToDouble("9.e-265"), ldexp(8168427841980010, -930));
- EXPECT_EQ(ToDouble("85.e-037"), ldexp(6360455125664090, -169));
- EXPECT_EQ(ToDouble("623.e100"), ldexp(6263531988747231, 289));
- EXPECT_EQ(ToDouble("3571.e263"), ldexp(6234526311072170, 833));
- EXPECT_EQ(ToDouble("81661.e153"), ldexp(6696636728760206, 472));
- EXPECT_EQ(ToDouble("920657.e-023"), ldexp(5975405561110124, -109));
- EXPECT_EQ(ToDouble("4603285.e-024"), ldexp(5975405561110124, -110));
- EXPECT_EQ(ToDouble("87575437.e-309"), ldexp(8452160731874668, -1053));
- EXPECT_EQ(ToDouble("245540327.e122"), ldexp(4985336549131723, 381));
- EXPECT_EQ(ToDouble("6138508175.e120"), ldexp(4985336549131723, 379));
- EXPECT_EQ(ToDouble("83356057653.e193"), ldexp(5986732817132056, 625));
- EXPECT_EQ(ToDouble("619534293513.e124"), ldexp(4798406992060657, 399));
- EXPECT_EQ(ToDouble("2335141086879.e218"), ldexp(5419088166961646, 713));
- EXPECT_EQ(ToDouble("36167929443327.e-159"), ldexp(8135819834632444, -536));
- EXPECT_EQ(ToDouble("609610927149051.e-255"), ldexp(4576664294594737, -850));
- EXPECT_EQ(ToDouble("3743626360493413.e-165"), ldexp(6898586531774201, -549));
- EXPECT_EQ(ToDouble("94080055902682397.e-242"), ldexp(6273271706052298, -800));
- EXPECT_EQ(ToDouble("899810892172646163.e283"), ldexp(7563892574477827, 947));
- EXPECT_EQ(ToDouble("7120190517612959703.e120"), ldexp(5385467232557565, 409));
- EXPECT_EQ(ToDouble("25188282901709339043.e-252"),
- ldexp(5635662608542340, -825));
- EXPECT_EQ(ToDouble("308984926168550152811.e-052"),
- ldexp(5644774693823803, -157));
- EXPECT_EQ(ToDouble("6372891218502368041059.e064"),
- ldexp(4616868614322430, 233));
- EXPECT_EQ(ToFloat("3.e-23"), ldexpf(9507380, -98));
- EXPECT_EQ(ToFloat("57.e18"), ldexpf(12960300, 42));
- EXPECT_EQ(ToFloat("789.e-35"), ldexpf(10739312, -130));
- EXPECT_EQ(ToFloat("2539.e-18"), ldexpf(11990089, -72));
- EXPECT_EQ(ToFloat("76173.e28"), ldexpf(9845130, 86));
- EXPECT_EQ(ToFloat("887745.e-11"), ldexpf(9760860, -40));
- EXPECT_EQ(ToFloat("5382571.e-37"), ldexpf(11447463, -124));
- EXPECT_EQ(ToFloat("82381273.e-35"), ldexpf(8554961, -113));
- EXPECT_EQ(ToFloat("750486563.e-38"), ldexpf(9975678, -120));
- EXPECT_EQ(ToFloat("3752432815.e-39"), ldexpf(9975678, -121));
- EXPECT_EQ(ToFloat("75224575729.e-45"), ldexpf(13105970, -137));
- EXPECT_EQ(ToFloat("459926601011.e15"), ldexpf(12466336, 65));
- }
- // Common test logic for converting a string which lies exactly halfway between
- // two target floats.
- //
- // mantissa and exponent represent the precise value between two floating point
- // numbers, `expected_low` and `expected_high`. The floating point
- // representation to parse in `StrCat(mantissa, "e", exponent)`.
- //
- // This function checks that an input just slightly less than the exact value
- // is rounded down to `expected_low`, and an input just slightly greater than
- // the exact value is rounded up to `expected_high`.
- //
- // The exact value should round to `expected_half`, which must be either
- // `expected_low` or `expected_high`.
- template <typename FloatType>
- void TestHalfwayValue(const std::string& mantissa, int exponent,
- FloatType expected_low, FloatType expected_high,
- FloatType expected_half) {
- std::string low_rep = mantissa;
- low_rep[low_rep.size() - 1] -= 1;
- absl::StrAppend(&low_rep, std::string(1000, '9'), "e", exponent);
- FloatType actual_low = 0;
- absl::from_chars(low_rep.data(), low_rep.data() + low_rep.size(), actual_low);
- EXPECT_EQ(expected_low, actual_low);
- std::string high_rep =
- absl::StrCat(mantissa, std::string(1000, '0'), "1e", exponent);
- FloatType actual_high = 0;
- absl::from_chars(high_rep.data(), high_rep.data() + high_rep.size(),
- actual_high);
- EXPECT_EQ(expected_high, actual_high);
- std::string halfway_rep = absl::StrCat(mantissa, "e", exponent);
- FloatType actual_half = 0;
- absl::from_chars(halfway_rep.data(), halfway_rep.data() + halfway_rep.size(),
- actual_half);
- EXPECT_EQ(expected_half, actual_half);
- }
- TEST(FromChars, DoubleRounding) {
- const double zero = 0.0;
- const double first_subnormal = nextafter(zero, 1.0);
- const double second_subnormal = nextafter(first_subnormal, 1.0);
- const double first_normal = DBL_MIN;
- const double last_subnormal = nextafter(first_normal, 0.0);
- const double second_normal = nextafter(first_normal, 1.0);
- const double last_normal = DBL_MAX;
- const double penultimate_normal = nextafter(last_normal, 0.0);
- // Various test cases for numbers between two representable floats. Each
- // call to TestHalfwayValue tests a number just below and just above the
- // halfway point, as well as the number exactly between them.
- // Test between zero and first_subnormal. Round-to-even tie rounds down.
- TestHalfwayValue(
- "2."
- "470328229206232720882843964341106861825299013071623822127928412503377536"
- "351043759326499181808179961898982823477228588654633283551779698981993873"
- "980053909390631503565951557022639229085839244910518443593180284993653615"
- "250031937045767824921936562366986365848075700158576926990370631192827955"
- "855133292783433840935197801553124659726357957462276646527282722005637400"
- "648549997709659947045402082816622623785739345073633900796776193057750674"
- "017632467360096895134053553745851666113422376667860416215968046191446729"
- "184030053005753084904876539171138659164623952491262365388187963623937328"
- "042389101867234849766823508986338858792562830275599565752445550725518931"
- "369083625477918694866799496832404970582102851318545139621383772282614543"
- "7693412532098591327667236328125",
- -324, zero, first_subnormal, zero);
- // first_subnormal and second_subnormal. Round-to-even tie rounds up.
- TestHalfwayValue(
- "7."
- "410984687618698162648531893023320585475897039214871466383785237510132609"
- "053131277979497545424539885696948470431685765963899850655339096945981621"
- "940161728171894510697854671067917687257517734731555330779540854980960845"
- "750095811137303474765809687100959097544227100475730780971111893578483867"
- "565399878350301522805593404659373979179073872386829939581848166016912201"
- "945649993128979841136206248449867871357218035220901702390328579173252022"
- "052897402080290685402160661237554998340267130003581248647904138574340187"
- "552090159017259254714629617513415977493871857473787096164563890871811984"
- "127167305601704549300470526959016576377688490826798697257336652176556794"
- "107250876433756084600398490497214911746308553955635418864151316847843631"
- "3080237596295773983001708984375",
- -324, first_subnormal, second_subnormal, second_subnormal);
- // last_subnormal and first_normal. Round-to-even tie rounds up.
- TestHalfwayValue(
- "2."
- "225073858507201136057409796709131975934819546351645648023426109724822222"
- "021076945516529523908135087914149158913039621106870086438694594645527657"
- "207407820621743379988141063267329253552286881372149012981122451451889849"
- "057222307285255133155755015914397476397983411801999323962548289017107081"
- "850690630666655994938275772572015763062690663332647565300009245888316433"
- "037779791869612049497390377829704905051080609940730262937128958950003583"
- "799967207254304360284078895771796150945516748243471030702609144621572289"
- "880258182545180325707018860872113128079512233426288368622321503775666622"
- "503982534335974568884423900265498198385487948292206894721689831099698365"
- "846814022854243330660339850886445804001034933970427567186443383770486037"
- "86162277173854562306587467901408672332763671875",
- -308, last_subnormal, first_normal, first_normal);
- // first_normal and second_normal. Round-to-even tie rounds down.
- TestHalfwayValue(
- "2."
- "225073858507201630123055637955676152503612414573018013083228724049586647"
- "606759446192036794116886953213985520549032000903434781884412325572184367"
- "563347617020518175998922941393629966742598285899994830148971433555578567"
- "693279306015978183162142425067962460785295885199272493577688320732492479"
- "924816869232247165964934329258783950102250973957579510571600738343645738"
- "494324192997092179207389919761694314131497173265255020084997973676783743"
- "155205818804439163810572367791175177756227497413804253387084478193655533"
- "073867420834526162513029462022730109054820067654020201547112002028139700"
- "141575259123440177362244273712468151750189745559978653234255886219611516"
- "335924167958029604477064946470184777360934300451421683607013647479513962"
- "13837722826145437693412532098591327667236328125",
- -308, first_normal, second_normal, first_normal);
- // penultimate_normal and last_normal. Round-to-even rounds down.
- TestHalfwayValue(
- "1."
- "797693134862315608353258760581052985162070023416521662616611746258695532"
- "672923265745300992879465492467506314903358770175220871059269879629062776"
- "047355692132901909191523941804762171253349609463563872612866401980290377"
- "995141836029815117562837277714038305214839639239356331336428021390916694"
- "57927874464075218944",
- 308, penultimate_normal, last_normal, penultimate_normal);
- }
- // Same test cases as DoubleRounding, now with new and improved Much Smaller
- // Precision!
- TEST(FromChars, FloatRounding) {
- const float zero = 0.0;
- const float first_subnormal = nextafterf(zero, 1.0);
- const float second_subnormal = nextafterf(first_subnormal, 1.0);
- const float first_normal = FLT_MIN;
- const float last_subnormal = nextafterf(first_normal, 0.0);
- const float second_normal = nextafterf(first_normal, 1.0);
- const float last_normal = FLT_MAX;
- const float penultimate_normal = nextafterf(last_normal, 0.0);
- // Test between zero and first_subnormal. Round-to-even tie rounds down.
- TestHalfwayValue(
- "7."
- "006492321624085354618647916449580656401309709382578858785341419448955413"
- "42930300743319094181060791015625",
- -46, zero, first_subnormal, zero);
- // first_subnormal and second_subnormal. Round-to-even tie rounds up.
- TestHalfwayValue(
- "2."
- "101947696487225606385594374934874196920392912814773657635602425834686624"
- "028790902229957282543182373046875",
- -45, first_subnormal, second_subnormal, second_subnormal);
- // last_subnormal and first_normal. Round-to-even tie rounds up.
- TestHalfwayValue(
- "1."
- "175494280757364291727882991035766513322858992758990427682963118425003064"
- "9651730385585324256680905818939208984375",
- -38, last_subnormal, first_normal, first_normal);
- // first_normal and second_normal. Round-to-even tie rounds down.
- TestHalfwayValue(
- "1."
- "175494420887210724209590083408724842314472120785184615334540294131831453"
- "9442813071445925743319094181060791015625",
- -38, first_normal, second_normal, first_normal);
- // penultimate_normal and last_normal. Round-to-even rounds down.
- TestHalfwayValue("3.40282336497324057985868971510891282432", 38,
- penultimate_normal, last_normal, penultimate_normal);
- }
- TEST(FromChars, Underflow) {
- // Check that underflow is handled correctly, according to the specification
- // in DR 3081.
- double d;
- float f;
- absl::from_chars_result result;
- std::string negative_underflow = "-1e-1000";
- const char* begin = negative_underflow.data();
- const char* end = begin + negative_underflow.size();
- d = 100.0;
- result = absl::from_chars(begin, end, d);
- EXPECT_EQ(result.ptr, end);
- EXPECT_EQ(result.ec, std::errc::result_out_of_range);
- EXPECT_TRUE(std::signbit(d)); // negative
- EXPECT_GE(d, -std::numeric_limits<double>::min());
- f = 100.0;
- result = absl::from_chars(begin, end, f);
- EXPECT_EQ(result.ptr, end);
- EXPECT_EQ(result.ec, std::errc::result_out_of_range);
- EXPECT_TRUE(std::signbit(f)); // negative
- EXPECT_GE(f, -std::numeric_limits<float>::min());
- std::string positive_underflow = "1e-1000";
- begin = positive_underflow.data();
- end = begin + positive_underflow.size();
- d = -100.0;
- result = absl::from_chars(begin, end, d);
- EXPECT_EQ(result.ptr, end);
- EXPECT_EQ(result.ec, std::errc::result_out_of_range);
- EXPECT_FALSE(std::signbit(d)); // positive
- EXPECT_LE(d, std::numeric_limits<double>::min());
- f = -100.0;
- result = absl::from_chars(begin, end, f);
- EXPECT_EQ(result.ptr, end);
- EXPECT_EQ(result.ec, std::errc::result_out_of_range);
- EXPECT_FALSE(std::signbit(f)); // positive
- EXPECT_LE(f, std::numeric_limits<float>::min());
- }
- TEST(FromChars, Overflow) {
- // Check that overflow is handled correctly, according to the specification
- // in DR 3081.
- double d;
- float f;
- absl::from_chars_result result;
- std::string negative_overflow = "-1e1000";
- const char* begin = negative_overflow.data();
- const char* end = begin + negative_overflow.size();
- d = 100.0;
- result = absl::from_chars(begin, end, d);
- EXPECT_EQ(result.ptr, end);
- EXPECT_EQ(result.ec, std::errc::result_out_of_range);
- EXPECT_TRUE(std::signbit(d)); // negative
- EXPECT_EQ(d, -std::numeric_limits<double>::max());
- f = 100.0;
- result = absl::from_chars(begin, end, f);
- EXPECT_EQ(result.ptr, end);
- EXPECT_EQ(result.ec, std::errc::result_out_of_range);
- EXPECT_TRUE(std::signbit(f)); // negative
- EXPECT_EQ(f, -std::numeric_limits<float>::max());
- std::string positive_overflow = "1e1000";
- begin = positive_overflow.data();
- end = begin + positive_overflow.size();
- d = -100.0;
- result = absl::from_chars(begin, end, d);
- EXPECT_EQ(result.ptr, end);
- EXPECT_EQ(result.ec, std::errc::result_out_of_range);
- EXPECT_FALSE(std::signbit(d)); // positive
- EXPECT_EQ(d, std::numeric_limits<double>::max());
- f = -100.0;
- result = absl::from_chars(begin, end, f);
- EXPECT_EQ(result.ptr, end);
- EXPECT_EQ(result.ec, std::errc::result_out_of_range);
- EXPECT_FALSE(std::signbit(f)); // positive
- EXPECT_EQ(f, std::numeric_limits<float>::max());
- }
- TEST(FromChars, RegressionTestsFromFuzzer) {
- absl::string_view src = "0x21900000p00000000099";
- float f;
- auto result = absl::from_chars(src.data(), src.data() + src.size(), f);
- EXPECT_EQ(result.ec, std::errc::result_out_of_range);
- }
- TEST(FromChars, ReturnValuePtr) {
- // Check that `ptr` points one past the number scanned, even if that number
- // is not representable.
- double d;
- absl::from_chars_result result;
- std::string normal = "3.14@#$%@#$%";
- result = absl::from_chars(normal.data(), normal.data() + normal.size(), d);
- EXPECT_EQ(result.ec, std::errc());
- EXPECT_EQ(result.ptr - normal.data(), 4);
- std::string overflow = "1e1000@#$%@#$%";
- result = absl::from_chars(overflow.data(),
- overflow.data() + overflow.size(), d);
- EXPECT_EQ(result.ec, std::errc::result_out_of_range);
- EXPECT_EQ(result.ptr - overflow.data(), 6);
- std::string garbage = "#$%@#$%";
- result = absl::from_chars(garbage.data(),
- garbage.data() + garbage.size(), d);
- EXPECT_EQ(result.ec, std::errc::invalid_argument);
- EXPECT_EQ(result.ptr - garbage.data(), 0);
- }
- // Check for a wide range of inputs that strtod() and absl::from_chars() exactly
- // agree on the conversion amount.
- //
- // This test assumes the platform's strtod() uses perfect round_to_nearest
- // rounding.
- TEST(FromChars, TestVersusStrtod) {
- for (int mantissa = 1000000; mantissa <= 9999999; mantissa += 501) {
- for (int exponent = -300; exponent < 300; ++exponent) {
- std::string candidate = absl::StrCat(mantissa, "e", exponent);
- double strtod_value = strtod(candidate.c_str(), nullptr);
- double absl_value = 0;
- absl::from_chars(candidate.data(), candidate.data() + candidate.size(),
- absl_value);
- ASSERT_EQ(strtod_value, absl_value) << candidate;
- }
- }
- }
- // Check for a wide range of inputs that strtof() and absl::from_chars() exactly
- // agree on the conversion amount.
- //
- // This test assumes the platform's strtof() uses perfect round_to_nearest
- // rounding.
- TEST(FromChars, TestVersusStrtof) {
- for (int mantissa = 1000000; mantissa <= 9999999; mantissa += 501) {
- for (int exponent = -43; exponent < 32; ++exponent) {
- std::string candidate = absl::StrCat(mantissa, "e", exponent);
- float strtod_value = strtof(candidate.c_str(), nullptr);
- float absl_value = 0;
- absl::from_chars(candidate.data(), candidate.data() + candidate.size(),
- absl_value);
- ASSERT_EQ(strtod_value, absl_value) << candidate;
- }
- }
- }
- // Tests if two floating point values have identical bit layouts. (EXPECT_EQ
- // is not suitable for NaN testing, since NaNs are never equal.)
- template <typename Float>
- bool Identical(Float a, Float b) {
- return 0 == memcmp(&a, &b, sizeof(Float));
- }
- // Check that NaNs are parsed correctly. The spec requires that
- // std::from_chars on "NaN(123abc)" return the same value as std::nan("123abc").
- // How such an n-char-sequence affects the generated NaN is unspecified, so we
- // just test for symmetry with std::nan and strtod here.
- //
- // (In Linux, this parses the value as a number and stuffs that number into the
- // free bits of a quiet NaN.)
- TEST(FromChars, NaNDoubles) {
- for (std::string n_char_sequence :
- {"", "1", "2", "3", "fff", "FFF", "200000", "400000", "4000000000000",
- "8000000000000", "abc123", "legal_but_unexpected",
- "99999999999999999999999", "_"}) {
- std::string input = absl::StrCat("nan(", n_char_sequence, ")");
- SCOPED_TRACE(input);
- double from_chars_double;
- absl::from_chars(input.data(), input.data() + input.size(),
- from_chars_double);
- double std_nan_double = std::nan(n_char_sequence.c_str());
- EXPECT_TRUE(Identical(from_chars_double, std_nan_double));
- // Also check that we match strtod()'s behavior. This test assumes that the
- // platform has a compliant strtod().
- #if ABSL_STRTOD_HANDLES_NAN_CORRECTLY
- double strtod_double = strtod(input.c_str(), nullptr);
- EXPECT_TRUE(Identical(from_chars_double, strtod_double));
- #endif // ABSL_STRTOD_HANDLES_NAN_CORRECTLY
- // Check that we can parse a negative NaN
- std::string negative_input = "-" + input;
- double negative_from_chars_double;
- absl::from_chars(negative_input.data(),
- negative_input.data() + negative_input.size(),
- negative_from_chars_double);
- EXPECT_TRUE(std::signbit(negative_from_chars_double));
- EXPECT_FALSE(Identical(negative_from_chars_double, from_chars_double));
- from_chars_double = std::copysign(from_chars_double, -1.0);
- EXPECT_TRUE(Identical(negative_from_chars_double, from_chars_double));
- }
- }
- TEST(FromChars, NaNFloats) {
- for (std::string n_char_sequence :
- {"", "1", "2", "3", "fff", "FFF", "200000", "400000", "4000000000000",
- "8000000000000", "abc123", "legal_but_unexpected",
- "99999999999999999999999", "_"}) {
- std::string input = absl::StrCat("nan(", n_char_sequence, ")");
- SCOPED_TRACE(input);
- float from_chars_float;
- absl::from_chars(input.data(), input.data() + input.size(),
- from_chars_float);
- float std_nan_float = std::nanf(n_char_sequence.c_str());
- EXPECT_TRUE(Identical(from_chars_float, std_nan_float));
- // Also check that we match strtof()'s behavior. This test assumes that the
- // platform has a compliant strtof().
- #if ABSL_STRTOD_HANDLES_NAN_CORRECTLY
- float strtof_float = strtof(input.c_str(), nullptr);
- EXPECT_TRUE(Identical(from_chars_float, strtof_float));
- #endif // ABSL_STRTOD_HANDLES_NAN_CORRECTLY
- // Check that we can parse a negative NaN
- std::string negative_input = "-" + input;
- float negative_from_chars_float;
- absl::from_chars(negative_input.data(),
- negative_input.data() + negative_input.size(),
- negative_from_chars_float);
- EXPECT_TRUE(std::signbit(negative_from_chars_float));
- EXPECT_FALSE(Identical(negative_from_chars_float, from_chars_float));
- // Use the (float, float) overload of std::copysign to prevent narrowing;
- // see https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98251.
- from_chars_float = std::copysign(from_chars_float, -1.0f);
- EXPECT_TRUE(Identical(negative_from_chars_float, from_chars_float));
- }
- }
- // Returns an integer larger than step. The values grow exponentially.
- int NextStep(int step) {
- return step + (step >> 2) + 1;
- }
- // Test a conversion on a family of input strings, checking that the calculation
- // is correct for in-bounds values, and that overflow and underflow are done
- // correctly for out-of-bounds values.
- //
- // input_generator maps from an integer index to a string to test.
- // expected_generator maps from an integer index to an expected Float value.
- // from_chars conversion of input_generator(i) should result in
- // expected_generator(i).
- //
- // lower_bound and upper_bound denote the smallest and largest values for which
- // the conversion is expected to succeed.
- template <typename Float>
- void TestOverflowAndUnderflow(
- const std::function<std::string(int)>& input_generator,
- const std::function<Float(int)>& expected_generator, int lower_bound,
- int upper_bound) {
- // test legal values near lower_bound
- int index, step;
- for (index = lower_bound, step = 1; index < upper_bound;
- index += step, step = NextStep(step)) {
- std::string input = input_generator(index);
- SCOPED_TRACE(input);
- Float expected = expected_generator(index);
- Float actual;
- auto result =
- absl::from_chars(input.data(), input.data() + input.size(), actual);
- EXPECT_EQ(result.ec, std::errc());
- EXPECT_EQ(expected, actual)
- << absl::StrFormat("%a vs %a", expected, actual);
- }
- // test legal values near upper_bound
- for (index = upper_bound, step = 1; index > lower_bound;
- index -= step, step = NextStep(step)) {
- std::string input = input_generator(index);
- SCOPED_TRACE(input);
- Float expected = expected_generator(index);
- Float actual;
- auto result =
- absl::from_chars(input.data(), input.data() + input.size(), actual);
- EXPECT_EQ(result.ec, std::errc());
- EXPECT_EQ(expected, actual)
- << absl::StrFormat("%a vs %a", expected, actual);
- }
- // Test underflow values below lower_bound
- for (index = lower_bound - 1, step = 1; index > -1000000;
- index -= step, step = NextStep(step)) {
- std::string input = input_generator(index);
- SCOPED_TRACE(input);
- Float actual;
- auto result =
- absl::from_chars(input.data(), input.data() + input.size(), actual);
- EXPECT_EQ(result.ec, std::errc::result_out_of_range);
- EXPECT_LT(actual, 1.0); // check for underflow
- }
- // Test overflow values above upper_bound
- for (index = upper_bound + 1, step = 1; index < 1000000;
- index += step, step = NextStep(step)) {
- std::string input = input_generator(index);
- SCOPED_TRACE(input);
- Float actual;
- auto result =
- absl::from_chars(input.data(), input.data() + input.size(), actual);
- EXPECT_EQ(result.ec, std::errc::result_out_of_range);
- EXPECT_GT(actual, 1.0); // check for overflow
- }
- }
- // Check that overflow and underflow are caught correctly for hex doubles.
- //
- // The largest representable double is 0x1.fffffffffffffp+1023, and the
- // smallest representable subnormal is 0x0.0000000000001p-1022, which equals
- // 0x1p-1074. Therefore 1023 and -1074 are the limits of acceptable exponents
- // in this test.
- TEST(FromChars, HexdecimalDoubleLimits) {
- auto input_gen = [](int index) { return absl::StrCat("0x1.0p", index); };
- auto expected_gen = [](int index) { return std::ldexp(1.0, index); };
- TestOverflowAndUnderflow<double>(input_gen, expected_gen, -1074, 1023);
- }
- // Check that overflow and underflow are caught correctly for hex floats.
- //
- // The largest representable float is 0x1.fffffep+127, and the smallest
- // representable subnormal is 0x0.000002p-126, which equals 0x1p-149.
- // Therefore 127 and -149 are the limits of acceptable exponents in this test.
- TEST(FromChars, HexdecimalFloatLimits) {
- auto input_gen = [](int index) { return absl::StrCat("0x1.0p", index); };
- auto expected_gen = [](int index) { return std::ldexp(1.0f, index); };
- TestOverflowAndUnderflow<float>(input_gen, expected_gen, -149, 127);
- }
- // Check that overflow and underflow are caught correctly for decimal doubles.
- //
- // The largest representable double is about 1.8e308, and the smallest
- // representable subnormal is about 5e-324. '1e-324' therefore rounds away from
- // the smallest representable positive value. -323 and 308 are the limits of
- // acceptable exponents in this test.
- TEST(FromChars, DecimalDoubleLimits) {
- auto input_gen = [](int index) { return absl::StrCat("1.0e", index); };
- auto expected_gen = [](int index) { return Pow10(index); };
- TestOverflowAndUnderflow<double>(input_gen, expected_gen, -323, 308);
- }
- // Check that overflow and underflow are caught correctly for decimal floats.
- //
- // The largest representable float is about 3.4e38, and the smallest
- // representable subnormal is about 1.45e-45. '1e-45' therefore rounds towards
- // the smallest representable positive value. -45 and 38 are the limits of
- // acceptable exponents in this test.
- TEST(FromChars, DecimalFloatLimits) {
- auto input_gen = [](int index) { return absl::StrCat("1.0e", index); };
- auto expected_gen = [](int index) { return Pow10(index); };
- TestOverflowAndUnderflow<float>(input_gen, expected_gen, -45, 38);
- }
- } // namespace
|