time_test.cc 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280
  1. // Copyright 2017 The Abseil Authors.
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // https://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include "absl/time/time.h"
  15. #if defined(_MSC_VER)
  16. #include <winsock2.h> // for timeval
  17. #endif
  18. #include <chrono> // NOLINT(build/c++11)
  19. #include <cstring>
  20. #include <ctime>
  21. #include <iomanip>
  22. #include <limits>
  23. #include <string>
  24. #include "gmock/gmock.h"
  25. #include "gtest/gtest.h"
  26. #include "absl/numeric/int128.h"
  27. #include "absl/time/clock.h"
  28. #include "absl/time/internal/test_util.h"
  29. namespace {
  30. #if defined(GTEST_USES_SIMPLE_RE) && GTEST_USES_SIMPLE_RE
  31. const char kZoneAbbrRE[] = ".*"; // just punt
  32. #else
  33. const char kZoneAbbrRE[] = "[A-Za-z]{3,4}|[-+][0-9]{2}([0-9]{2})?";
  34. #endif
  35. // This helper is a macro so that failed expectations show up with the
  36. // correct line numbers.
  37. #define EXPECT_CIVIL_INFO(ci, y, m, d, h, min, s, off, isdst) \
  38. do { \
  39. EXPECT_EQ(y, ci.cs.year()); \
  40. EXPECT_EQ(m, ci.cs.month()); \
  41. EXPECT_EQ(d, ci.cs.day()); \
  42. EXPECT_EQ(h, ci.cs.hour()); \
  43. EXPECT_EQ(min, ci.cs.minute()); \
  44. EXPECT_EQ(s, ci.cs.second()); \
  45. EXPECT_EQ(off, ci.offset); \
  46. EXPECT_EQ(isdst, ci.is_dst); \
  47. EXPECT_THAT(ci.zone_abbr, testing::MatchesRegex(kZoneAbbrRE)); \
  48. } while (0)
  49. // A gMock matcher to match timespec values. Use this matcher like:
  50. // timespec ts1, ts2;
  51. // EXPECT_THAT(ts1, TimespecMatcher(ts2));
  52. MATCHER_P(TimespecMatcher, ts, "") {
  53. if (ts.tv_sec == arg.tv_sec && ts.tv_nsec == arg.tv_nsec) return true;
  54. *result_listener << "expected: {" << ts.tv_sec << ", " << ts.tv_nsec << "} ";
  55. *result_listener << "actual: {" << arg.tv_sec << ", " << arg.tv_nsec << "}";
  56. return false;
  57. }
  58. // A gMock matcher to match timeval values. Use this matcher like:
  59. // timeval tv1, tv2;
  60. // EXPECT_THAT(tv1, TimevalMatcher(tv2));
  61. MATCHER_P(TimevalMatcher, tv, "") {
  62. if (tv.tv_sec == arg.tv_sec && tv.tv_usec == arg.tv_usec) return true;
  63. *result_listener << "expected: {" << tv.tv_sec << ", " << tv.tv_usec << "} ";
  64. *result_listener << "actual: {" << arg.tv_sec << ", " << arg.tv_usec << "}";
  65. return false;
  66. }
  67. TEST(Time, ConstExpr) {
  68. constexpr absl::Time t0 = absl::UnixEpoch();
  69. static_assert(t0 == absl::Time(), "UnixEpoch");
  70. constexpr absl::Time t1 = absl::InfiniteFuture();
  71. static_assert(t1 != absl::Time(), "InfiniteFuture");
  72. constexpr absl::Time t2 = absl::InfinitePast();
  73. static_assert(t2 != absl::Time(), "InfinitePast");
  74. constexpr absl::Time t3 = absl::FromUnixNanos(0);
  75. static_assert(t3 == absl::Time(), "FromUnixNanos");
  76. constexpr absl::Time t4 = absl::FromUnixMicros(0);
  77. static_assert(t4 == absl::Time(), "FromUnixMicros");
  78. constexpr absl::Time t5 = absl::FromUnixMillis(0);
  79. static_assert(t5 == absl::Time(), "FromUnixMillis");
  80. constexpr absl::Time t6 = absl::FromUnixSeconds(0);
  81. static_assert(t6 == absl::Time(), "FromUnixSeconds");
  82. constexpr absl::Time t7 = absl::FromTimeT(0);
  83. static_assert(t7 == absl::Time(), "FromTimeT");
  84. }
  85. TEST(Time, ValueSemantics) {
  86. absl::Time a; // Default construction
  87. absl::Time b = a; // Copy construction
  88. EXPECT_EQ(a, b);
  89. absl::Time c(a); // Copy construction (again)
  90. EXPECT_EQ(a, b);
  91. EXPECT_EQ(a, c);
  92. EXPECT_EQ(b, c);
  93. b = c; // Assignment
  94. EXPECT_EQ(a, b);
  95. EXPECT_EQ(a, c);
  96. EXPECT_EQ(b, c);
  97. }
  98. TEST(Time, UnixEpoch) {
  99. const auto ci = absl::UTCTimeZone().At(absl::UnixEpoch());
  100. EXPECT_EQ(absl::CivilSecond(1970, 1, 1, 0, 0, 0), ci.cs);
  101. EXPECT_EQ(absl::ZeroDuration(), ci.subsecond);
  102. EXPECT_EQ(absl::Weekday::thursday, absl::GetWeekday(ci.cs));
  103. }
  104. TEST(Time, Breakdown) {
  105. absl::TimeZone tz = absl::time_internal::LoadTimeZone("America/New_York");
  106. absl::Time t = absl::UnixEpoch();
  107. // The Unix epoch as seen in NYC.
  108. auto ci = tz.At(t);
  109. EXPECT_CIVIL_INFO(ci, 1969, 12, 31, 19, 0, 0, -18000, false);
  110. EXPECT_EQ(absl::ZeroDuration(), ci.subsecond);
  111. EXPECT_EQ(absl::Weekday::wednesday, absl::GetWeekday(ci.cs));
  112. // Just before the epoch.
  113. t -= absl::Nanoseconds(1);
  114. ci = tz.At(t);
  115. EXPECT_CIVIL_INFO(ci, 1969, 12, 31, 18, 59, 59, -18000, false);
  116. EXPECT_EQ(absl::Nanoseconds(999999999), ci.subsecond);
  117. EXPECT_EQ(absl::Weekday::wednesday, absl::GetWeekday(ci.cs));
  118. // Some time later.
  119. t += absl::Hours(24) * 2735;
  120. t += absl::Hours(18) + absl::Minutes(30) + absl::Seconds(15) +
  121. absl::Nanoseconds(9);
  122. ci = tz.At(t);
  123. EXPECT_CIVIL_INFO(ci, 1977, 6, 28, 14, 30, 15, -14400, true);
  124. EXPECT_EQ(8, ci.subsecond / absl::Nanoseconds(1));
  125. EXPECT_EQ(absl::Weekday::tuesday, absl::GetWeekday(ci.cs));
  126. }
  127. TEST(Time, AdditiveOperators) {
  128. const absl::Duration d = absl::Nanoseconds(1);
  129. const absl::Time t0;
  130. const absl::Time t1 = t0 + d;
  131. EXPECT_EQ(d, t1 - t0);
  132. EXPECT_EQ(-d, t0 - t1);
  133. EXPECT_EQ(t0, t1 - d);
  134. absl::Time t(t0);
  135. EXPECT_EQ(t0, t);
  136. t += d;
  137. EXPECT_EQ(t0 + d, t);
  138. EXPECT_EQ(d, t - t0);
  139. t -= d;
  140. EXPECT_EQ(t0, t);
  141. // Tests overflow between subseconds and seconds.
  142. t = absl::UnixEpoch();
  143. t += absl::Milliseconds(500);
  144. EXPECT_EQ(absl::UnixEpoch() + absl::Milliseconds(500), t);
  145. t += absl::Milliseconds(600);
  146. EXPECT_EQ(absl::UnixEpoch() + absl::Milliseconds(1100), t);
  147. t -= absl::Milliseconds(600);
  148. EXPECT_EQ(absl::UnixEpoch() + absl::Milliseconds(500), t);
  149. t -= absl::Milliseconds(500);
  150. EXPECT_EQ(absl::UnixEpoch(), t);
  151. }
  152. TEST(Time, RelationalOperators) {
  153. constexpr absl::Time t1 = absl::FromUnixNanos(0);
  154. constexpr absl::Time t2 = absl::FromUnixNanos(1);
  155. constexpr absl::Time t3 = absl::FromUnixNanos(2);
  156. static_assert(absl::Time() == t1, "");
  157. static_assert(t1 == t1, "");
  158. static_assert(t2 == t2, "");
  159. static_assert(t3 == t3, "");
  160. static_assert(t1 < t2, "");
  161. static_assert(t2 < t3, "");
  162. static_assert(t1 < t3, "");
  163. static_assert(t1 <= t1, "");
  164. static_assert(t1 <= t2, "");
  165. static_assert(t2 <= t2, "");
  166. static_assert(t2 <= t3, "");
  167. static_assert(t3 <= t3, "");
  168. static_assert(t1 <= t3, "");
  169. static_assert(t2 > t1, "");
  170. static_assert(t3 > t2, "");
  171. static_assert(t3 > t1, "");
  172. static_assert(t2 >= t2, "");
  173. static_assert(t2 >= t1, "");
  174. static_assert(t3 >= t3, "");
  175. static_assert(t3 >= t2, "");
  176. static_assert(t1 >= t1, "");
  177. static_assert(t3 >= t1, "");
  178. }
  179. TEST(Time, Infinity) {
  180. constexpr absl::Time ifuture = absl::InfiniteFuture();
  181. constexpr absl::Time ipast = absl::InfinitePast();
  182. static_assert(ifuture == ifuture, "");
  183. static_assert(ipast == ipast, "");
  184. static_assert(ipast < ifuture, "");
  185. static_assert(ifuture > ipast, "");
  186. // Arithmetic saturates
  187. EXPECT_EQ(ifuture, ifuture + absl::Seconds(1));
  188. EXPECT_EQ(ifuture, ifuture - absl::Seconds(1));
  189. EXPECT_EQ(ipast, ipast + absl::Seconds(1));
  190. EXPECT_EQ(ipast, ipast - absl::Seconds(1));
  191. EXPECT_EQ(absl::InfiniteDuration(), ifuture - ifuture);
  192. EXPECT_EQ(absl::InfiniteDuration(), ifuture - ipast);
  193. EXPECT_EQ(-absl::InfiniteDuration(), ipast - ifuture);
  194. EXPECT_EQ(-absl::InfiniteDuration(), ipast - ipast);
  195. constexpr absl::Time t = absl::UnixEpoch(); // Any finite time.
  196. static_assert(t < ifuture, "");
  197. static_assert(t > ipast, "");
  198. EXPECT_EQ(ifuture, t + absl::InfiniteDuration());
  199. EXPECT_EQ(ipast, t - absl::InfiniteDuration());
  200. }
  201. TEST(Time, FloorConversion) {
  202. #define TEST_FLOOR_CONVERSION(TO, FROM) \
  203. EXPECT_EQ(1, TO(FROM(1001))); \
  204. EXPECT_EQ(1, TO(FROM(1000))); \
  205. EXPECT_EQ(0, TO(FROM(999))); \
  206. EXPECT_EQ(0, TO(FROM(1))); \
  207. EXPECT_EQ(0, TO(FROM(0))); \
  208. EXPECT_EQ(-1, TO(FROM(-1))); \
  209. EXPECT_EQ(-1, TO(FROM(-999))); \
  210. EXPECT_EQ(-1, TO(FROM(-1000))); \
  211. EXPECT_EQ(-2, TO(FROM(-1001)));
  212. TEST_FLOOR_CONVERSION(absl::ToUnixMicros, absl::FromUnixNanos);
  213. TEST_FLOOR_CONVERSION(absl::ToUnixMillis, absl::FromUnixMicros);
  214. TEST_FLOOR_CONVERSION(absl::ToUnixSeconds, absl::FromUnixMillis);
  215. TEST_FLOOR_CONVERSION(absl::ToTimeT, absl::FromUnixMillis);
  216. #undef TEST_FLOOR_CONVERSION
  217. // Tests ToUnixNanos.
  218. EXPECT_EQ(1, absl::ToUnixNanos(absl::UnixEpoch() + absl::Nanoseconds(3) / 2));
  219. EXPECT_EQ(1, absl::ToUnixNanos(absl::UnixEpoch() + absl::Nanoseconds(1)));
  220. EXPECT_EQ(0, absl::ToUnixNanos(absl::UnixEpoch() + absl::Nanoseconds(1) / 2));
  221. EXPECT_EQ(0, absl::ToUnixNanos(absl::UnixEpoch() + absl::Nanoseconds(0)));
  222. EXPECT_EQ(-1,
  223. absl::ToUnixNanos(absl::UnixEpoch() - absl::Nanoseconds(1) / 2));
  224. EXPECT_EQ(-1, absl::ToUnixNanos(absl::UnixEpoch() - absl::Nanoseconds(1)));
  225. EXPECT_EQ(-2,
  226. absl::ToUnixNanos(absl::UnixEpoch() - absl::Nanoseconds(3) / 2));
  227. // Tests ToUniversal, which uses a different epoch than the tests above.
  228. EXPECT_EQ(1,
  229. absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(101)));
  230. EXPECT_EQ(1,
  231. absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(100)));
  232. EXPECT_EQ(0,
  233. absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(99)));
  234. EXPECT_EQ(0,
  235. absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(1)));
  236. EXPECT_EQ(0,
  237. absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(0)));
  238. EXPECT_EQ(-1,
  239. absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-1)));
  240. EXPECT_EQ(-1,
  241. absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-99)));
  242. EXPECT_EQ(
  243. -1, absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-100)));
  244. EXPECT_EQ(
  245. -2, absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-101)));
  246. // Tests ToTimespec()/TimeFromTimespec()
  247. const struct {
  248. absl::Time t;
  249. timespec ts;
  250. } to_ts[] = {
  251. {absl::FromUnixSeconds(1) + absl::Nanoseconds(1), {1, 1}},
  252. {absl::FromUnixSeconds(1) + absl::Nanoseconds(1) / 2, {1, 0}},
  253. {absl::FromUnixSeconds(1) + absl::Nanoseconds(0), {1, 0}},
  254. {absl::FromUnixSeconds(0) + absl::Nanoseconds(0), {0, 0}},
  255. {absl::FromUnixSeconds(0) - absl::Nanoseconds(1) / 2, {-1, 999999999}},
  256. {absl::FromUnixSeconds(0) - absl::Nanoseconds(1), {-1, 999999999}},
  257. {absl::FromUnixSeconds(-1) + absl::Nanoseconds(1), {-1, 1}},
  258. {absl::FromUnixSeconds(-1) + absl::Nanoseconds(1) / 2, {-1, 0}},
  259. {absl::FromUnixSeconds(-1) + absl::Nanoseconds(0), {-1, 0}},
  260. {absl::FromUnixSeconds(-1) - absl::Nanoseconds(1) / 2, {-2, 999999999}},
  261. };
  262. for (const auto& test : to_ts) {
  263. EXPECT_THAT(absl::ToTimespec(test.t), TimespecMatcher(test.ts));
  264. }
  265. const struct {
  266. timespec ts;
  267. absl::Time t;
  268. } from_ts[] = {
  269. {{1, 1}, absl::FromUnixSeconds(1) + absl::Nanoseconds(1)},
  270. {{1, 0}, absl::FromUnixSeconds(1) + absl::Nanoseconds(0)},
  271. {{0, 0}, absl::FromUnixSeconds(0) + absl::Nanoseconds(0)},
  272. {{0, -1}, absl::FromUnixSeconds(0) - absl::Nanoseconds(1)},
  273. {{-1, 999999999}, absl::FromUnixSeconds(0) - absl::Nanoseconds(1)},
  274. {{-1, 1}, absl::FromUnixSeconds(-1) + absl::Nanoseconds(1)},
  275. {{-1, 0}, absl::FromUnixSeconds(-1) + absl::Nanoseconds(0)},
  276. {{-1, -1}, absl::FromUnixSeconds(-1) - absl::Nanoseconds(1)},
  277. {{-2, 999999999}, absl::FromUnixSeconds(-1) - absl::Nanoseconds(1)},
  278. };
  279. for (const auto& test : from_ts) {
  280. EXPECT_EQ(test.t, absl::TimeFromTimespec(test.ts));
  281. }
  282. // Tests ToTimeval()/TimeFromTimeval() (same as timespec above)
  283. const struct {
  284. absl::Time t;
  285. timeval tv;
  286. } to_tv[] = {
  287. {absl::FromUnixSeconds(1) + absl::Microseconds(1), {1, 1}},
  288. {absl::FromUnixSeconds(1) + absl::Microseconds(1) / 2, {1, 0}},
  289. {absl::FromUnixSeconds(1) + absl::Microseconds(0), {1, 0}},
  290. {absl::FromUnixSeconds(0) + absl::Microseconds(0), {0, 0}},
  291. {absl::FromUnixSeconds(0) - absl::Microseconds(1) / 2, {-1, 999999}},
  292. {absl::FromUnixSeconds(0) - absl::Microseconds(1), {-1, 999999}},
  293. {absl::FromUnixSeconds(-1) + absl::Microseconds(1), {-1, 1}},
  294. {absl::FromUnixSeconds(-1) + absl::Microseconds(1) / 2, {-1, 0}},
  295. {absl::FromUnixSeconds(-1) + absl::Microseconds(0), {-1, 0}},
  296. {absl::FromUnixSeconds(-1) - absl::Microseconds(1) / 2, {-2, 999999}},
  297. };
  298. for (const auto& test : to_tv) {
  299. EXPECT_THAT(ToTimeval(test.t), TimevalMatcher(test.tv));
  300. }
  301. const struct {
  302. timeval tv;
  303. absl::Time t;
  304. } from_tv[] = {
  305. {{1, 1}, absl::FromUnixSeconds(1) + absl::Microseconds(1)},
  306. {{1, 0}, absl::FromUnixSeconds(1) + absl::Microseconds(0)},
  307. {{0, 0}, absl::FromUnixSeconds(0) + absl::Microseconds(0)},
  308. {{0, -1}, absl::FromUnixSeconds(0) - absl::Microseconds(1)},
  309. {{-1, 999999}, absl::FromUnixSeconds(0) - absl::Microseconds(1)},
  310. {{-1, 1}, absl::FromUnixSeconds(-1) + absl::Microseconds(1)},
  311. {{-1, 0}, absl::FromUnixSeconds(-1) + absl::Microseconds(0)},
  312. {{-1, -1}, absl::FromUnixSeconds(-1) - absl::Microseconds(1)},
  313. {{-2, 999999}, absl::FromUnixSeconds(-1) - absl::Microseconds(1)},
  314. };
  315. for (const auto& test : from_tv) {
  316. EXPECT_EQ(test.t, absl::TimeFromTimeval(test.tv));
  317. }
  318. // Tests flooring near negative infinity.
  319. const int64_t min_plus_1 = std::numeric_limits<int64_t>::min() + 1;
  320. EXPECT_EQ(min_plus_1, absl::ToUnixSeconds(absl::FromUnixSeconds(min_plus_1)));
  321. EXPECT_EQ(std::numeric_limits<int64_t>::min(),
  322. absl::ToUnixSeconds(absl::FromUnixSeconds(min_plus_1) -
  323. absl::Nanoseconds(1) / 2));
  324. // Tests flooring near positive infinity.
  325. EXPECT_EQ(std::numeric_limits<int64_t>::max(),
  326. absl::ToUnixSeconds(
  327. absl::FromUnixSeconds(std::numeric_limits<int64_t>::max()) +
  328. absl::Nanoseconds(1) / 2));
  329. EXPECT_EQ(std::numeric_limits<int64_t>::max(),
  330. absl::ToUnixSeconds(
  331. absl::FromUnixSeconds(std::numeric_limits<int64_t>::max())));
  332. EXPECT_EQ(std::numeric_limits<int64_t>::max() - 1,
  333. absl::ToUnixSeconds(
  334. absl::FromUnixSeconds(std::numeric_limits<int64_t>::max()) -
  335. absl::Nanoseconds(1) / 2));
  336. }
  337. TEST(Time, RoundtripConversion) {
  338. #define TEST_CONVERSION_ROUND_TRIP(SOURCE, FROM, TO, MATCHER) \
  339. EXPECT_THAT(TO(FROM(SOURCE)), MATCHER(SOURCE))
  340. // FromUnixNanos() and ToUnixNanos()
  341. int64_t now_ns = absl::GetCurrentTimeNanos();
  342. TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixNanos, absl::ToUnixNanos,
  343. testing::Eq);
  344. TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixNanos, absl::ToUnixNanos,
  345. testing::Eq);
  346. TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixNanos, absl::ToUnixNanos,
  347. testing::Eq);
  348. TEST_CONVERSION_ROUND_TRIP(now_ns, absl::FromUnixNanos, absl::ToUnixNanos,
  349. testing::Eq)
  350. << now_ns;
  351. // FromUnixMicros() and ToUnixMicros()
  352. int64_t now_us = absl::GetCurrentTimeNanos() / 1000;
  353. TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixMicros, absl::ToUnixMicros,
  354. testing::Eq);
  355. TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixMicros, absl::ToUnixMicros,
  356. testing::Eq);
  357. TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixMicros, absl::ToUnixMicros,
  358. testing::Eq);
  359. TEST_CONVERSION_ROUND_TRIP(now_us, absl::FromUnixMicros, absl::ToUnixMicros,
  360. testing::Eq)
  361. << now_us;
  362. // FromUnixMillis() and ToUnixMillis()
  363. int64_t now_ms = absl::GetCurrentTimeNanos() / 1000000;
  364. TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixMillis, absl::ToUnixMillis,
  365. testing::Eq);
  366. TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixMillis, absl::ToUnixMillis,
  367. testing::Eq);
  368. TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixMillis, absl::ToUnixMillis,
  369. testing::Eq);
  370. TEST_CONVERSION_ROUND_TRIP(now_ms, absl::FromUnixMillis, absl::ToUnixMillis,
  371. testing::Eq)
  372. << now_ms;
  373. // FromUnixSeconds() and ToUnixSeconds()
  374. int64_t now_s = std::time(nullptr);
  375. TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixSeconds, absl::ToUnixSeconds,
  376. testing::Eq);
  377. TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixSeconds, absl::ToUnixSeconds,
  378. testing::Eq);
  379. TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixSeconds, absl::ToUnixSeconds,
  380. testing::Eq);
  381. TEST_CONVERSION_ROUND_TRIP(now_s, absl::FromUnixSeconds, absl::ToUnixSeconds,
  382. testing::Eq)
  383. << now_s;
  384. // FromTimeT() and ToTimeT()
  385. time_t now_time_t = std::time(nullptr);
  386. TEST_CONVERSION_ROUND_TRIP(-1, absl::FromTimeT, absl::ToTimeT, testing::Eq);
  387. TEST_CONVERSION_ROUND_TRIP(0, absl::FromTimeT, absl::ToTimeT, testing::Eq);
  388. TEST_CONVERSION_ROUND_TRIP(1, absl::FromTimeT, absl::ToTimeT, testing::Eq);
  389. TEST_CONVERSION_ROUND_TRIP(now_time_t, absl::FromTimeT, absl::ToTimeT,
  390. testing::Eq)
  391. << now_time_t;
  392. // TimeFromTimeval() and ToTimeval()
  393. timeval tv;
  394. tv.tv_sec = -1;
  395. tv.tv_usec = 0;
  396. TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval,
  397. TimevalMatcher);
  398. tv.tv_sec = -1;
  399. tv.tv_usec = 999999;
  400. TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval,
  401. TimevalMatcher);
  402. tv.tv_sec = 0;
  403. tv.tv_usec = 0;
  404. TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval,
  405. TimevalMatcher);
  406. tv.tv_sec = 0;
  407. tv.tv_usec = 1;
  408. TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval,
  409. TimevalMatcher);
  410. tv.tv_sec = 1;
  411. tv.tv_usec = 0;
  412. TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval,
  413. TimevalMatcher);
  414. // TimeFromTimespec() and ToTimespec()
  415. timespec ts;
  416. ts.tv_sec = -1;
  417. ts.tv_nsec = 0;
  418. TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec,
  419. TimespecMatcher);
  420. ts.tv_sec = -1;
  421. ts.tv_nsec = 999999999;
  422. TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec,
  423. TimespecMatcher);
  424. ts.tv_sec = 0;
  425. ts.tv_nsec = 0;
  426. TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec,
  427. TimespecMatcher);
  428. ts.tv_sec = 0;
  429. ts.tv_nsec = 1;
  430. TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec,
  431. TimespecMatcher);
  432. ts.tv_sec = 1;
  433. ts.tv_nsec = 0;
  434. TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec,
  435. TimespecMatcher);
  436. // FromUDate() and ToUDate()
  437. double now_ud = absl::GetCurrentTimeNanos() / 1000000;
  438. TEST_CONVERSION_ROUND_TRIP(-1.5, absl::FromUDate, absl::ToUDate,
  439. testing::DoubleEq);
  440. TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUDate, absl::ToUDate,
  441. testing::DoubleEq);
  442. TEST_CONVERSION_ROUND_TRIP(-0.5, absl::FromUDate, absl::ToUDate,
  443. testing::DoubleEq);
  444. TEST_CONVERSION_ROUND_TRIP(0, absl::FromUDate, absl::ToUDate,
  445. testing::DoubleEq);
  446. TEST_CONVERSION_ROUND_TRIP(0.5, absl::FromUDate, absl::ToUDate,
  447. testing::DoubleEq);
  448. TEST_CONVERSION_ROUND_TRIP(1, absl::FromUDate, absl::ToUDate,
  449. testing::DoubleEq);
  450. TEST_CONVERSION_ROUND_TRIP(1.5, absl::FromUDate, absl::ToUDate,
  451. testing::DoubleEq);
  452. TEST_CONVERSION_ROUND_TRIP(now_ud, absl::FromUDate, absl::ToUDate,
  453. testing::DoubleEq)
  454. << std::fixed << std::setprecision(17) << now_ud;
  455. // FromUniversal() and ToUniversal()
  456. int64_t now_uni = ((719162LL * (24 * 60 * 60)) * (1000 * 1000 * 10)) +
  457. (absl::GetCurrentTimeNanos() / 100);
  458. TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUniversal, absl::ToUniversal,
  459. testing::Eq);
  460. TEST_CONVERSION_ROUND_TRIP(0, absl::FromUniversal, absl::ToUniversal,
  461. testing::Eq);
  462. TEST_CONVERSION_ROUND_TRIP(1, absl::FromUniversal, absl::ToUniversal,
  463. testing::Eq);
  464. TEST_CONVERSION_ROUND_TRIP(now_uni, absl::FromUniversal, absl::ToUniversal,
  465. testing::Eq)
  466. << now_uni;
  467. #undef TEST_CONVERSION_ROUND_TRIP
  468. }
  469. template <typename Duration>
  470. std::chrono::system_clock::time_point MakeChronoUnixTime(const Duration& d) {
  471. return std::chrono::system_clock::from_time_t(0) + d;
  472. }
  473. TEST(Time, FromChrono) {
  474. EXPECT_EQ(absl::FromTimeT(-1),
  475. absl::FromChrono(std::chrono::system_clock::from_time_t(-1)));
  476. EXPECT_EQ(absl::FromTimeT(0),
  477. absl::FromChrono(std::chrono::system_clock::from_time_t(0)));
  478. EXPECT_EQ(absl::FromTimeT(1),
  479. absl::FromChrono(std::chrono::system_clock::from_time_t(1)));
  480. EXPECT_EQ(
  481. absl::FromUnixMillis(-1),
  482. absl::FromChrono(MakeChronoUnixTime(std::chrono::milliseconds(-1))));
  483. EXPECT_EQ(absl::FromUnixMillis(0),
  484. absl::FromChrono(MakeChronoUnixTime(std::chrono::milliseconds(0))));
  485. EXPECT_EQ(absl::FromUnixMillis(1),
  486. absl::FromChrono(MakeChronoUnixTime(std::chrono::milliseconds(1))));
  487. // Chrono doesn't define exactly its range and precision (neither does
  488. // absl::Time), so let's simply test +/- ~100 years to make sure things work.
  489. const auto century_sec = 60 * 60 * 24 * 365 * int64_t{100};
  490. const auto century = std::chrono::seconds(century_sec);
  491. const auto chrono_future = MakeChronoUnixTime(century);
  492. const auto chrono_past = MakeChronoUnixTime(-century);
  493. EXPECT_EQ(absl::FromUnixSeconds(century_sec),
  494. absl::FromChrono(chrono_future));
  495. EXPECT_EQ(absl::FromUnixSeconds(-century_sec), absl::FromChrono(chrono_past));
  496. // Roundtrip them both back to chrono.
  497. EXPECT_EQ(chrono_future,
  498. absl::ToChronoTime(absl::FromUnixSeconds(century_sec)));
  499. EXPECT_EQ(chrono_past,
  500. absl::ToChronoTime(absl::FromUnixSeconds(-century_sec)));
  501. }
  502. TEST(Time, ToChronoTime) {
  503. EXPECT_EQ(std::chrono::system_clock::from_time_t(-1),
  504. absl::ToChronoTime(absl::FromTimeT(-1)));
  505. EXPECT_EQ(std::chrono::system_clock::from_time_t(0),
  506. absl::ToChronoTime(absl::FromTimeT(0)));
  507. EXPECT_EQ(std::chrono::system_clock::from_time_t(1),
  508. absl::ToChronoTime(absl::FromTimeT(1)));
  509. EXPECT_EQ(MakeChronoUnixTime(std::chrono::milliseconds(-1)),
  510. absl::ToChronoTime(absl::FromUnixMillis(-1)));
  511. EXPECT_EQ(MakeChronoUnixTime(std::chrono::milliseconds(0)),
  512. absl::ToChronoTime(absl::FromUnixMillis(0)));
  513. EXPECT_EQ(MakeChronoUnixTime(std::chrono::milliseconds(1)),
  514. absl::ToChronoTime(absl::FromUnixMillis(1)));
  515. // Time before the Unix epoch should floor, not trunc.
  516. const auto tick = absl::Nanoseconds(1) / 4;
  517. EXPECT_EQ(std::chrono::system_clock::from_time_t(0) -
  518. std::chrono::system_clock::duration(1),
  519. absl::ToChronoTime(absl::UnixEpoch() - tick));
  520. }
  521. // Check that absl::int128 works as a std::chrono::duration representation.
  522. TEST(Time, Chrono128) {
  523. // Define a std::chrono::time_point type whose time[sic]_since_epoch() is
  524. // a signed 128-bit count of attoseconds. This has a range and resolution
  525. // (currently) beyond those of absl::Time, and undoubtedly also beyond those
  526. // of std::chrono::system_clock::time_point.
  527. //
  528. // Note: The to/from-chrono support should probably be updated to handle
  529. // such wide representations.
  530. using Timestamp =
  531. std::chrono::time_point<std::chrono::system_clock,
  532. std::chrono::duration<absl::int128, std::atto>>;
  533. // Expect that we can round-trip the std::chrono::system_clock::time_point
  534. // extremes through both absl::Time and Timestamp, and that Timestamp can
  535. // handle the (current) absl::Time extremes.
  536. //
  537. // Note: We should use std::chrono::floor() instead of time_point_cast(),
  538. // but floor() is only available since c++17.
  539. for (const auto tp : {std::chrono::system_clock::time_point::min(),
  540. std::chrono::system_clock::time_point::max()}) {
  541. EXPECT_EQ(tp, absl::ToChronoTime(absl::FromChrono(tp)));
  542. EXPECT_EQ(tp, std::chrono::time_point_cast<
  543. std::chrono::system_clock::time_point::duration>(
  544. std::chrono::time_point_cast<Timestamp::duration>(tp)));
  545. }
  546. Timestamp::duration::rep v = std::numeric_limits<int64_t>::min();
  547. v *= Timestamp::duration::period::den;
  548. auto ts = Timestamp(Timestamp::duration(v));
  549. ts += std::chrono::duration<int64_t, std::atto>(0);
  550. EXPECT_EQ(std::numeric_limits<int64_t>::min(),
  551. ts.time_since_epoch().count() / Timestamp::duration::period::den);
  552. EXPECT_EQ(0,
  553. ts.time_since_epoch().count() % Timestamp::duration::period::den);
  554. v = std::numeric_limits<int64_t>::max();
  555. v *= Timestamp::duration::period::den;
  556. ts = Timestamp(Timestamp::duration(v));
  557. ts += std::chrono::duration<int64_t, std::atto>(999999999750000000);
  558. EXPECT_EQ(std::numeric_limits<int64_t>::max(),
  559. ts.time_since_epoch().count() / Timestamp::duration::period::den);
  560. EXPECT_EQ(999999999750000000,
  561. ts.time_since_epoch().count() % Timestamp::duration::period::den);
  562. }
  563. TEST(Time, TimeZoneAt) {
  564. const absl::TimeZone nyc =
  565. absl::time_internal::LoadTimeZone("America/New_York");
  566. const std::string fmt = "%a, %e %b %Y %H:%M:%S %z (%Z)";
  567. // A non-transition where the civil time is unique.
  568. absl::CivilSecond nov01(2013, 11, 1, 8, 30, 0);
  569. const auto nov01_ci = nyc.At(nov01);
  570. EXPECT_EQ(absl::TimeZone::TimeInfo::UNIQUE, nov01_ci.kind);
  571. EXPECT_EQ("Fri, 1 Nov 2013 08:30:00 -0400 (EDT)",
  572. absl::FormatTime(fmt, nov01_ci.pre, nyc));
  573. EXPECT_EQ(nov01_ci.pre, nov01_ci.trans);
  574. EXPECT_EQ(nov01_ci.pre, nov01_ci.post);
  575. EXPECT_EQ(nov01_ci.pre, absl::FromCivil(nov01, nyc));
  576. // A Spring DST transition, when there is a gap in civil time
  577. // and we prefer the later of the possible interpretations of a
  578. // non-existent time.
  579. absl::CivilSecond mar13(2011, 3, 13, 2, 15, 0);
  580. const auto mar_ci = nyc.At(mar13);
  581. EXPECT_EQ(absl::TimeZone::TimeInfo::SKIPPED, mar_ci.kind);
  582. EXPECT_EQ("Sun, 13 Mar 2011 03:15:00 -0400 (EDT)",
  583. absl::FormatTime(fmt, mar_ci.pre, nyc));
  584. EXPECT_EQ("Sun, 13 Mar 2011 03:00:00 -0400 (EDT)",
  585. absl::FormatTime(fmt, mar_ci.trans, nyc));
  586. EXPECT_EQ("Sun, 13 Mar 2011 01:15:00 -0500 (EST)",
  587. absl::FormatTime(fmt, mar_ci.post, nyc));
  588. EXPECT_EQ(mar_ci.trans, absl::FromCivil(mar13, nyc));
  589. // A Fall DST transition, when civil times are repeated and
  590. // we prefer the earlier of the possible interpretations of an
  591. // ambiguous time.
  592. absl::CivilSecond nov06(2011, 11, 6, 1, 15, 0);
  593. const auto nov06_ci = nyc.At(nov06);
  594. EXPECT_EQ(absl::TimeZone::TimeInfo::REPEATED, nov06_ci.kind);
  595. EXPECT_EQ("Sun, 6 Nov 2011 01:15:00 -0400 (EDT)",
  596. absl::FormatTime(fmt, nov06_ci.pre, nyc));
  597. EXPECT_EQ("Sun, 6 Nov 2011 01:00:00 -0500 (EST)",
  598. absl::FormatTime(fmt, nov06_ci.trans, nyc));
  599. EXPECT_EQ("Sun, 6 Nov 2011 01:15:00 -0500 (EST)",
  600. absl::FormatTime(fmt, nov06_ci.post, nyc));
  601. EXPECT_EQ(nov06_ci.pre, absl::FromCivil(nov06, nyc));
  602. // Check that (time_t) -1 is handled correctly.
  603. absl::CivilSecond minus1(1969, 12, 31, 18, 59, 59);
  604. const auto minus1_cl = nyc.At(minus1);
  605. EXPECT_EQ(absl::TimeZone::TimeInfo::UNIQUE, minus1_cl.kind);
  606. EXPECT_EQ(-1, absl::ToTimeT(minus1_cl.pre));
  607. EXPECT_EQ("Wed, 31 Dec 1969 18:59:59 -0500 (EST)",
  608. absl::FormatTime(fmt, minus1_cl.pre, nyc));
  609. EXPECT_EQ("Wed, 31 Dec 1969 23:59:59 +0000 (UTC)",
  610. absl::FormatTime(fmt, minus1_cl.pre, absl::UTCTimeZone()));
  611. }
  612. // FromCivil(CivilSecond(year, mon, day, hour, min, sec), UTCTimeZone())
  613. // has a specialized fastpath implementation, which we exercise here.
  614. TEST(Time, FromCivilUTC) {
  615. const absl::TimeZone utc = absl::UTCTimeZone();
  616. const std::string fmt = "%a, %e %b %Y %H:%M:%S %z (%Z)";
  617. const int kMax = std::numeric_limits<int>::max();
  618. const int kMin = std::numeric_limits<int>::min();
  619. absl::Time t;
  620. // 292091940881 is the last positive year to use the fastpath.
  621. t = absl::FromCivil(
  622. absl::CivilSecond(292091940881, kMax, kMax, kMax, kMax, kMax), utc);
  623. EXPECT_EQ("Fri, 25 Nov 292277026596 12:21:07 +0000 (UTC)",
  624. absl::FormatTime(fmt, t, utc));
  625. t = absl::FromCivil(
  626. absl::CivilSecond(292091940882, kMax, kMax, kMax, kMax, kMax), utc);
  627. EXPECT_EQ("infinite-future", absl::FormatTime(fmt, t, utc)); // no overflow
  628. // -292091936940 is the last negative year to use the fastpath.
  629. t = absl::FromCivil(
  630. absl::CivilSecond(-292091936940, kMin, kMin, kMin, kMin, kMin), utc);
  631. EXPECT_EQ("Fri, 1 Nov -292277022657 10:37:52 +0000 (UTC)",
  632. absl::FormatTime(fmt, t, utc));
  633. t = absl::FromCivil(
  634. absl::CivilSecond(-292091936941, kMin, kMin, kMin, kMin, kMin), utc);
  635. EXPECT_EQ("infinite-past", absl::FormatTime(fmt, t, utc)); // no underflow
  636. // Check that we're counting leap years correctly.
  637. t = absl::FromCivil(absl::CivilSecond(1900, 2, 28, 23, 59, 59), utc);
  638. EXPECT_EQ("Wed, 28 Feb 1900 23:59:59 +0000 (UTC)",
  639. absl::FormatTime(fmt, t, utc));
  640. t = absl::FromCivil(absl::CivilSecond(1900, 3, 1, 0, 0, 0), utc);
  641. EXPECT_EQ("Thu, 1 Mar 1900 00:00:00 +0000 (UTC)",
  642. absl::FormatTime(fmt, t, utc));
  643. t = absl::FromCivil(absl::CivilSecond(2000, 2, 29, 23, 59, 59), utc);
  644. EXPECT_EQ("Tue, 29 Feb 2000 23:59:59 +0000 (UTC)",
  645. absl::FormatTime(fmt, t, utc));
  646. t = absl::FromCivil(absl::CivilSecond(2000, 3, 1, 0, 0, 0), utc);
  647. EXPECT_EQ("Wed, 1 Mar 2000 00:00:00 +0000 (UTC)",
  648. absl::FormatTime(fmt, t, utc));
  649. }
  650. TEST(Time, ToTM) {
  651. const absl::TimeZone utc = absl::UTCTimeZone();
  652. // Compares the results of ToTM() to gmtime_r() for lots of times over the
  653. // course of a few days.
  654. const absl::Time start =
  655. absl::FromCivil(absl::CivilSecond(2014, 1, 2, 3, 4, 5), utc);
  656. const absl::Time end =
  657. absl::FromCivil(absl::CivilSecond(2014, 1, 5, 3, 4, 5), utc);
  658. for (absl::Time t = start; t < end; t += absl::Seconds(30)) {
  659. const struct tm tm_bt = ToTM(t, utc);
  660. const time_t tt = absl::ToTimeT(t);
  661. struct tm tm_lc;
  662. #ifdef _WIN32
  663. gmtime_s(&tm_lc, &tt);
  664. #else
  665. gmtime_r(&tt, &tm_lc);
  666. #endif
  667. EXPECT_EQ(tm_lc.tm_year, tm_bt.tm_year);
  668. EXPECT_EQ(tm_lc.tm_mon, tm_bt.tm_mon);
  669. EXPECT_EQ(tm_lc.tm_mday, tm_bt.tm_mday);
  670. EXPECT_EQ(tm_lc.tm_hour, tm_bt.tm_hour);
  671. EXPECT_EQ(tm_lc.tm_min, tm_bt.tm_min);
  672. EXPECT_EQ(tm_lc.tm_sec, tm_bt.tm_sec);
  673. EXPECT_EQ(tm_lc.tm_wday, tm_bt.tm_wday);
  674. EXPECT_EQ(tm_lc.tm_yday, tm_bt.tm_yday);
  675. EXPECT_EQ(tm_lc.tm_isdst, tm_bt.tm_isdst);
  676. ASSERT_FALSE(HasFailure());
  677. }
  678. // Checks that the tm_isdst field is correct when in standard time.
  679. const absl::TimeZone nyc =
  680. absl::time_internal::LoadTimeZone("America/New_York");
  681. absl::Time t = absl::FromCivil(absl::CivilSecond(2014, 3, 1, 0, 0, 0), nyc);
  682. struct tm tm = ToTM(t, nyc);
  683. EXPECT_FALSE(tm.tm_isdst);
  684. // Checks that the tm_isdst field is correct when in daylight time.
  685. t = absl::FromCivil(absl::CivilSecond(2014, 4, 1, 0, 0, 0), nyc);
  686. tm = ToTM(t, nyc);
  687. EXPECT_TRUE(tm.tm_isdst);
  688. // Checks overflow.
  689. tm = ToTM(absl::InfiniteFuture(), nyc);
  690. EXPECT_EQ(std::numeric_limits<int>::max() - 1900, tm.tm_year);
  691. EXPECT_EQ(11, tm.tm_mon);
  692. EXPECT_EQ(31, tm.tm_mday);
  693. EXPECT_EQ(23, tm.tm_hour);
  694. EXPECT_EQ(59, tm.tm_min);
  695. EXPECT_EQ(59, tm.tm_sec);
  696. EXPECT_EQ(4, tm.tm_wday);
  697. EXPECT_EQ(364, tm.tm_yday);
  698. EXPECT_FALSE(tm.tm_isdst);
  699. // Checks underflow.
  700. tm = ToTM(absl::InfinitePast(), nyc);
  701. EXPECT_EQ(std::numeric_limits<int>::min(), tm.tm_year);
  702. EXPECT_EQ(0, tm.tm_mon);
  703. EXPECT_EQ(1, tm.tm_mday);
  704. EXPECT_EQ(0, tm.tm_hour);
  705. EXPECT_EQ(0, tm.tm_min);
  706. EXPECT_EQ(0, tm.tm_sec);
  707. EXPECT_EQ(0, tm.tm_wday);
  708. EXPECT_EQ(0, tm.tm_yday);
  709. EXPECT_FALSE(tm.tm_isdst);
  710. }
  711. TEST(Time, FromTM) {
  712. const absl::TimeZone nyc =
  713. absl::time_internal::LoadTimeZone("America/New_York");
  714. // Verifies that tm_isdst doesn't affect anything when the time is unique.
  715. struct tm tm;
  716. std::memset(&tm, 0, sizeof(tm));
  717. tm.tm_year = 2014 - 1900;
  718. tm.tm_mon = 6 - 1;
  719. tm.tm_mday = 28;
  720. tm.tm_hour = 1;
  721. tm.tm_min = 2;
  722. tm.tm_sec = 3;
  723. tm.tm_isdst = -1;
  724. absl::Time t = FromTM(tm, nyc);
  725. EXPECT_EQ("2014-06-28T01:02:03-04:00", absl::FormatTime(t, nyc)); // DST
  726. tm.tm_isdst = 0;
  727. t = FromTM(tm, nyc);
  728. EXPECT_EQ("2014-06-28T01:02:03-04:00", absl::FormatTime(t, nyc)); // DST
  729. tm.tm_isdst = 1;
  730. t = FromTM(tm, nyc);
  731. EXPECT_EQ("2014-06-28T01:02:03-04:00", absl::FormatTime(t, nyc)); // DST
  732. // Adjusts tm to refer to an ambiguous time.
  733. tm.tm_year = 2014 - 1900;
  734. tm.tm_mon = 11 - 1;
  735. tm.tm_mday = 2;
  736. tm.tm_hour = 1;
  737. tm.tm_min = 30;
  738. tm.tm_sec = 42;
  739. tm.tm_isdst = -1;
  740. t = FromTM(tm, nyc);
  741. EXPECT_EQ("2014-11-02T01:30:42-04:00", absl::FormatTime(t, nyc)); // DST
  742. tm.tm_isdst = 0;
  743. t = FromTM(tm, nyc);
  744. EXPECT_EQ("2014-11-02T01:30:42-05:00", absl::FormatTime(t, nyc)); // STD
  745. tm.tm_isdst = 1;
  746. t = FromTM(tm, nyc);
  747. EXPECT_EQ("2014-11-02T01:30:42-04:00", absl::FormatTime(t, nyc)); // DST
  748. // Adjusts tm to refer to a skipped time.
  749. tm.tm_year = 2014 - 1900;
  750. tm.tm_mon = 3 - 1;
  751. tm.tm_mday = 9;
  752. tm.tm_hour = 2;
  753. tm.tm_min = 30;
  754. tm.tm_sec = 42;
  755. tm.tm_isdst = -1;
  756. t = FromTM(tm, nyc);
  757. EXPECT_EQ("2014-03-09T03:30:42-04:00", absl::FormatTime(t, nyc)); // DST
  758. tm.tm_isdst = 0;
  759. t = FromTM(tm, nyc);
  760. EXPECT_EQ("2014-03-09T01:30:42-05:00", absl::FormatTime(t, nyc)); // STD
  761. tm.tm_isdst = 1;
  762. t = FromTM(tm, nyc);
  763. EXPECT_EQ("2014-03-09T03:30:42-04:00", absl::FormatTime(t, nyc)); // DST
  764. // Adjusts tm to refer to a time with a year larger than 2147483647.
  765. tm.tm_year = 2147483647 - 1900 + 1;
  766. tm.tm_mon = 6 - 1;
  767. tm.tm_mday = 28;
  768. tm.tm_hour = 1;
  769. tm.tm_min = 2;
  770. tm.tm_sec = 3;
  771. tm.tm_isdst = -1;
  772. t = FromTM(tm, absl::UTCTimeZone());
  773. EXPECT_EQ("2147483648-06-28T01:02:03+00:00",
  774. absl::FormatTime(t, absl::UTCTimeZone()));
  775. // Adjusts tm to refer to a time with a very large month.
  776. tm.tm_year = 2019 - 1900;
  777. tm.tm_mon = 2147483647;
  778. tm.tm_mday = 28;
  779. tm.tm_hour = 1;
  780. tm.tm_min = 2;
  781. tm.tm_sec = 3;
  782. tm.tm_isdst = -1;
  783. t = FromTM(tm, absl::UTCTimeZone());
  784. EXPECT_EQ("178958989-08-28T01:02:03+00:00",
  785. absl::FormatTime(t, absl::UTCTimeZone()));
  786. }
  787. TEST(Time, TMRoundTrip) {
  788. const absl::TimeZone nyc =
  789. absl::time_internal::LoadTimeZone("America/New_York");
  790. // Test round-tripping across a skipped transition
  791. absl::Time start = absl::FromCivil(absl::CivilHour(2014, 3, 9, 0), nyc);
  792. absl::Time end = absl::FromCivil(absl::CivilHour(2014, 3, 9, 4), nyc);
  793. for (absl::Time t = start; t < end; t += absl::Minutes(1)) {
  794. struct tm tm = ToTM(t, nyc);
  795. absl::Time rt = FromTM(tm, nyc);
  796. EXPECT_EQ(rt, t);
  797. }
  798. // Test round-tripping across an ambiguous transition
  799. start = absl::FromCivil(absl::CivilHour(2014, 11, 2, 0), nyc);
  800. end = absl::FromCivil(absl::CivilHour(2014, 11, 2, 4), nyc);
  801. for (absl::Time t = start; t < end; t += absl::Minutes(1)) {
  802. struct tm tm = ToTM(t, nyc);
  803. absl::Time rt = FromTM(tm, nyc);
  804. EXPECT_EQ(rt, t);
  805. }
  806. // Test round-tripping of unique instants crossing a day boundary
  807. start = absl::FromCivil(absl::CivilHour(2014, 6, 27, 22), nyc);
  808. end = absl::FromCivil(absl::CivilHour(2014, 6, 28, 4), nyc);
  809. for (absl::Time t = start; t < end; t += absl::Minutes(1)) {
  810. struct tm tm = ToTM(t, nyc);
  811. absl::Time rt = FromTM(tm, nyc);
  812. EXPECT_EQ(rt, t);
  813. }
  814. }
  815. TEST(Time, Range) {
  816. // The API's documented range is +/- 100 billion years.
  817. const absl::Duration range = absl::Hours(24) * 365.2425 * 100000000000;
  818. // Arithmetic and comparison still works at +/-range around base values.
  819. absl::Time bases[2] = {absl::UnixEpoch(), absl::Now()};
  820. for (const auto base : bases) {
  821. absl::Time bottom = base - range;
  822. EXPECT_GT(bottom, bottom - absl::Nanoseconds(1));
  823. EXPECT_LT(bottom, bottom + absl::Nanoseconds(1));
  824. absl::Time top = base + range;
  825. EXPECT_GT(top, top - absl::Nanoseconds(1));
  826. EXPECT_LT(top, top + absl::Nanoseconds(1));
  827. absl::Duration full_range = 2 * range;
  828. EXPECT_EQ(full_range, top - bottom);
  829. EXPECT_EQ(-full_range, bottom - top);
  830. }
  831. }
  832. TEST(Time, Limits) {
  833. // It is an implementation detail that Time().rep_ == ZeroDuration(),
  834. // and that the resolution of a Duration is 1/4 of a nanosecond.
  835. const absl::Time zero;
  836. const absl::Time max =
  837. zero + absl::Seconds(std::numeric_limits<int64_t>::max()) +
  838. absl::Nanoseconds(999999999) + absl::Nanoseconds(3) / 4;
  839. const absl::Time min =
  840. zero + absl::Seconds(std::numeric_limits<int64_t>::min());
  841. // Some simple max/min bounds checks.
  842. EXPECT_LT(max, absl::InfiniteFuture());
  843. EXPECT_GT(min, absl::InfinitePast());
  844. EXPECT_LT(zero, max);
  845. EXPECT_GT(zero, min);
  846. EXPECT_GE(absl::UnixEpoch(), min);
  847. EXPECT_LT(absl::UnixEpoch(), max);
  848. // Check sign of Time differences.
  849. EXPECT_LT(absl::ZeroDuration(), max - zero);
  850. EXPECT_LT(absl::ZeroDuration(),
  851. zero - absl::Nanoseconds(1) / 4 - min); // avoid zero - min
  852. // Arithmetic works at max - 0.25ns and min + 0.25ns.
  853. EXPECT_GT(max, max - absl::Nanoseconds(1) / 4);
  854. EXPECT_LT(min, min + absl::Nanoseconds(1) / 4);
  855. }
  856. TEST(Time, ConversionSaturation) {
  857. const absl::TimeZone utc = absl::UTCTimeZone();
  858. absl::Time t;
  859. const auto max_time_t = std::numeric_limits<time_t>::max();
  860. const auto min_time_t = std::numeric_limits<time_t>::min();
  861. time_t tt = max_time_t - 1;
  862. t = absl::FromTimeT(tt);
  863. tt = absl::ToTimeT(t);
  864. EXPECT_EQ(max_time_t - 1, tt);
  865. t += absl::Seconds(1);
  866. tt = absl::ToTimeT(t);
  867. EXPECT_EQ(max_time_t, tt);
  868. t += absl::Seconds(1); // no effect
  869. tt = absl::ToTimeT(t);
  870. EXPECT_EQ(max_time_t, tt);
  871. tt = min_time_t + 1;
  872. t = absl::FromTimeT(tt);
  873. tt = absl::ToTimeT(t);
  874. EXPECT_EQ(min_time_t + 1, tt);
  875. t -= absl::Seconds(1);
  876. tt = absl::ToTimeT(t);
  877. EXPECT_EQ(min_time_t, tt);
  878. t -= absl::Seconds(1); // no effect
  879. tt = absl::ToTimeT(t);
  880. EXPECT_EQ(min_time_t, tt);
  881. const auto max_timeval_sec =
  882. std::numeric_limits<decltype(timeval::tv_sec)>::max();
  883. const auto min_timeval_sec =
  884. std::numeric_limits<decltype(timeval::tv_sec)>::min();
  885. timeval tv;
  886. tv.tv_sec = max_timeval_sec;
  887. tv.tv_usec = 999998;
  888. t = absl::TimeFromTimeval(tv);
  889. tv = ToTimeval(t);
  890. EXPECT_EQ(max_timeval_sec, tv.tv_sec);
  891. EXPECT_EQ(999998, tv.tv_usec);
  892. t += absl::Microseconds(1);
  893. tv = ToTimeval(t);
  894. EXPECT_EQ(max_timeval_sec, tv.tv_sec);
  895. EXPECT_EQ(999999, tv.tv_usec);
  896. t += absl::Microseconds(1); // no effect
  897. tv = ToTimeval(t);
  898. EXPECT_EQ(max_timeval_sec, tv.tv_sec);
  899. EXPECT_EQ(999999, tv.tv_usec);
  900. tv.tv_sec = min_timeval_sec;
  901. tv.tv_usec = 1;
  902. t = absl::TimeFromTimeval(tv);
  903. tv = ToTimeval(t);
  904. EXPECT_EQ(min_timeval_sec, tv.tv_sec);
  905. EXPECT_EQ(1, tv.tv_usec);
  906. t -= absl::Microseconds(1);
  907. tv = ToTimeval(t);
  908. EXPECT_EQ(min_timeval_sec, tv.tv_sec);
  909. EXPECT_EQ(0, tv.tv_usec);
  910. t -= absl::Microseconds(1); // no effect
  911. tv = ToTimeval(t);
  912. EXPECT_EQ(min_timeval_sec, tv.tv_sec);
  913. EXPECT_EQ(0, tv.tv_usec);
  914. const auto max_timespec_sec =
  915. std::numeric_limits<decltype(timespec::tv_sec)>::max();
  916. const auto min_timespec_sec =
  917. std::numeric_limits<decltype(timespec::tv_sec)>::min();
  918. timespec ts;
  919. ts.tv_sec = max_timespec_sec;
  920. ts.tv_nsec = 999999998;
  921. t = absl::TimeFromTimespec(ts);
  922. ts = absl::ToTimespec(t);
  923. EXPECT_EQ(max_timespec_sec, ts.tv_sec);
  924. EXPECT_EQ(999999998, ts.tv_nsec);
  925. t += absl::Nanoseconds(1);
  926. ts = absl::ToTimespec(t);
  927. EXPECT_EQ(max_timespec_sec, ts.tv_sec);
  928. EXPECT_EQ(999999999, ts.tv_nsec);
  929. t += absl::Nanoseconds(1); // no effect
  930. ts = absl::ToTimespec(t);
  931. EXPECT_EQ(max_timespec_sec, ts.tv_sec);
  932. EXPECT_EQ(999999999, ts.tv_nsec);
  933. ts.tv_sec = min_timespec_sec;
  934. ts.tv_nsec = 1;
  935. t = absl::TimeFromTimespec(ts);
  936. ts = absl::ToTimespec(t);
  937. EXPECT_EQ(min_timespec_sec, ts.tv_sec);
  938. EXPECT_EQ(1, ts.tv_nsec);
  939. t -= absl::Nanoseconds(1);
  940. ts = absl::ToTimespec(t);
  941. EXPECT_EQ(min_timespec_sec, ts.tv_sec);
  942. EXPECT_EQ(0, ts.tv_nsec);
  943. t -= absl::Nanoseconds(1); // no effect
  944. ts = absl::ToTimespec(t);
  945. EXPECT_EQ(min_timespec_sec, ts.tv_sec);
  946. EXPECT_EQ(0, ts.tv_nsec);
  947. // Checks how TimeZone::At() saturates on infinities.
  948. auto ci = utc.At(absl::InfiniteFuture());
  949. EXPECT_CIVIL_INFO(ci, std::numeric_limits<int64_t>::max(), 12, 31, 23, 59, 59,
  950. 0, false);
  951. EXPECT_EQ(absl::InfiniteDuration(), ci.subsecond);
  952. EXPECT_EQ(absl::Weekday::thursday, absl::GetWeekday(ci.cs));
  953. EXPECT_EQ(365, absl::GetYearDay(ci.cs));
  954. EXPECT_STREQ("-00", ci.zone_abbr); // artifact of TimeZone::At()
  955. ci = utc.At(absl::InfinitePast());
  956. EXPECT_CIVIL_INFO(ci, std::numeric_limits<int64_t>::min(), 1, 1, 0, 0, 0, 0,
  957. false);
  958. EXPECT_EQ(-absl::InfiniteDuration(), ci.subsecond);
  959. EXPECT_EQ(absl::Weekday::sunday, absl::GetWeekday(ci.cs));
  960. EXPECT_EQ(1, absl::GetYearDay(ci.cs));
  961. EXPECT_STREQ("-00", ci.zone_abbr); // artifact of TimeZone::At()
  962. // Approach the maximal Time value from below.
  963. t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 15, 30, 6), utc);
  964. EXPECT_EQ("292277026596-12-04T15:30:06+00:00",
  965. absl::FormatTime(absl::RFC3339_full, t, utc));
  966. t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 15, 30, 7), utc);
  967. EXPECT_EQ("292277026596-12-04T15:30:07+00:00",
  968. absl::FormatTime(absl::RFC3339_full, t, utc));
  969. EXPECT_EQ(
  970. absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::max()),
  971. t);
  972. // Checks that we can also get the maximal Time value for a far-east zone.
  973. const absl::TimeZone plus14 = absl::FixedTimeZone(14 * 60 * 60);
  974. t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 5, 5, 30, 7), plus14);
  975. EXPECT_EQ("292277026596-12-05T05:30:07+14:00",
  976. absl::FormatTime(absl::RFC3339_full, t, plus14));
  977. EXPECT_EQ(
  978. absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::max()),
  979. t);
  980. // One second later should push us to infinity.
  981. t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 15, 30, 8), utc);
  982. EXPECT_EQ("infinite-future", absl::FormatTime(absl::RFC3339_full, t, utc));
  983. // Approach the minimal Time value from above.
  984. t = absl::FromCivil(absl::CivilSecond(-292277022657, 1, 27, 8, 29, 53), utc);
  985. EXPECT_EQ("-292277022657-01-27T08:29:53+00:00",
  986. absl::FormatTime(absl::RFC3339_full, t, utc));
  987. t = absl::FromCivil(absl::CivilSecond(-292277022657, 1, 27, 8, 29, 52), utc);
  988. EXPECT_EQ("-292277022657-01-27T08:29:52+00:00",
  989. absl::FormatTime(absl::RFC3339_full, t, utc));
  990. EXPECT_EQ(
  991. absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::min()),
  992. t);
  993. // Checks that we can also get the minimal Time value for a far-west zone.
  994. const absl::TimeZone minus12 = absl::FixedTimeZone(-12 * 60 * 60);
  995. t = absl::FromCivil(absl::CivilSecond(-292277022657, 1, 26, 20, 29, 52),
  996. minus12);
  997. EXPECT_EQ("-292277022657-01-26T20:29:52-12:00",
  998. absl::FormatTime(absl::RFC3339_full, t, minus12));
  999. EXPECT_EQ(
  1000. absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::min()),
  1001. t);
  1002. // One second before should push us to -infinity.
  1003. t = absl::FromCivil(absl::CivilSecond(-292277022657, 1, 27, 8, 29, 51), utc);
  1004. EXPECT_EQ("infinite-past", absl::FormatTime(absl::RFC3339_full, t, utc));
  1005. }
  1006. // In zones with POSIX-style recurring rules we use special logic to
  1007. // handle conversions in the distant future. Here we check the limits
  1008. // of those conversions, particularly with respect to integer overflow.
  1009. TEST(Time, ExtendedConversionSaturation) {
  1010. const absl::TimeZone syd =
  1011. absl::time_internal::LoadTimeZone("Australia/Sydney");
  1012. const absl::TimeZone nyc =
  1013. absl::time_internal::LoadTimeZone("America/New_York");
  1014. const absl::Time max =
  1015. absl::FromUnixSeconds(std::numeric_limits<int64_t>::max());
  1016. absl::TimeZone::CivilInfo ci;
  1017. absl::Time t;
  1018. // The maximal time converted in each zone.
  1019. ci = syd.At(max);
  1020. EXPECT_CIVIL_INFO(ci, 292277026596, 12, 5, 2, 30, 7, 39600, true);
  1021. t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 5, 2, 30, 7), syd);
  1022. EXPECT_EQ(max, t);
  1023. ci = nyc.At(max);
  1024. EXPECT_CIVIL_INFO(ci, 292277026596, 12, 4, 10, 30, 7, -18000, false);
  1025. t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 10, 30, 7), nyc);
  1026. EXPECT_EQ(max, t);
  1027. // One second later should push us to infinity.
  1028. t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 5, 2, 30, 8), syd);
  1029. EXPECT_EQ(absl::InfiniteFuture(), t);
  1030. t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 10, 30, 8), nyc);
  1031. EXPECT_EQ(absl::InfiniteFuture(), t);
  1032. // And we should stick there.
  1033. t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 5, 2, 30, 9), syd);
  1034. EXPECT_EQ(absl::InfiniteFuture(), t);
  1035. t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 10, 30, 9), nyc);
  1036. EXPECT_EQ(absl::InfiniteFuture(), t);
  1037. // All the way up to a saturated date/time, without overflow.
  1038. t = absl::FromCivil(absl::CivilSecond::max(), syd);
  1039. EXPECT_EQ(absl::InfiniteFuture(), t);
  1040. t = absl::FromCivil(absl::CivilSecond::max(), nyc);
  1041. EXPECT_EQ(absl::InfiniteFuture(), t);
  1042. }
  1043. TEST(Time, FromCivilAlignment) {
  1044. const absl::TimeZone utc = absl::UTCTimeZone();
  1045. const absl::CivilSecond cs(2015, 2, 3, 4, 5, 6);
  1046. absl::Time t = absl::FromCivil(cs, utc);
  1047. EXPECT_EQ("2015-02-03T04:05:06+00:00", absl::FormatTime(t, utc));
  1048. t = absl::FromCivil(absl::CivilMinute(cs), utc);
  1049. EXPECT_EQ("2015-02-03T04:05:00+00:00", absl::FormatTime(t, utc));
  1050. t = absl::FromCivil(absl::CivilHour(cs), utc);
  1051. EXPECT_EQ("2015-02-03T04:00:00+00:00", absl::FormatTime(t, utc));
  1052. t = absl::FromCivil(absl::CivilDay(cs), utc);
  1053. EXPECT_EQ("2015-02-03T00:00:00+00:00", absl::FormatTime(t, utc));
  1054. t = absl::FromCivil(absl::CivilMonth(cs), utc);
  1055. EXPECT_EQ("2015-02-01T00:00:00+00:00", absl::FormatTime(t, utc));
  1056. t = absl::FromCivil(absl::CivilYear(cs), utc);
  1057. EXPECT_EQ("2015-01-01T00:00:00+00:00", absl::FormatTime(t, utc));
  1058. }
  1059. TEST(Time, LegacyDateTime) {
  1060. const absl::TimeZone utc = absl::UTCTimeZone();
  1061. const std::string ymdhms = "%Y-%m-%d %H:%M:%S";
  1062. const int kMax = std::numeric_limits<int>::max();
  1063. const int kMin = std::numeric_limits<int>::min();
  1064. absl::Time t;
  1065. t = absl::FromDateTime(std::numeric_limits<absl::civil_year_t>::max(), kMax,
  1066. kMax, kMax, kMax, kMax, utc);
  1067. EXPECT_EQ("infinite-future",
  1068. absl::FormatTime(ymdhms, t, utc)); // no overflow
  1069. t = absl::FromDateTime(std::numeric_limits<absl::civil_year_t>::min(), kMin,
  1070. kMin, kMin, kMin, kMin, utc);
  1071. EXPECT_EQ("infinite-past", absl::FormatTime(ymdhms, t, utc)); // no overflow
  1072. // Check normalization.
  1073. EXPECT_TRUE(absl::ConvertDateTime(2013, 10, 32, 8, 30, 0, utc).normalized);
  1074. t = absl::FromDateTime(2015, 1, 1, 0, 0, 60, utc);
  1075. EXPECT_EQ("2015-01-01 00:01:00", absl::FormatTime(ymdhms, t, utc));
  1076. t = absl::FromDateTime(2015, 1, 1, 0, 60, 0, utc);
  1077. EXPECT_EQ("2015-01-01 01:00:00", absl::FormatTime(ymdhms, t, utc));
  1078. t = absl::FromDateTime(2015, 1, 1, 24, 0, 0, utc);
  1079. EXPECT_EQ("2015-01-02 00:00:00", absl::FormatTime(ymdhms, t, utc));
  1080. t = absl::FromDateTime(2015, 1, 32, 0, 0, 0, utc);
  1081. EXPECT_EQ("2015-02-01 00:00:00", absl::FormatTime(ymdhms, t, utc));
  1082. t = absl::FromDateTime(2015, 13, 1, 0, 0, 0, utc);
  1083. EXPECT_EQ("2016-01-01 00:00:00", absl::FormatTime(ymdhms, t, utc));
  1084. t = absl::FromDateTime(2015, 13, 32, 60, 60, 60, utc);
  1085. EXPECT_EQ("2016-02-03 13:01:00", absl::FormatTime(ymdhms, t, utc));
  1086. t = absl::FromDateTime(2015, 1, 1, 0, 0, -1, utc);
  1087. EXPECT_EQ("2014-12-31 23:59:59", absl::FormatTime(ymdhms, t, utc));
  1088. t = absl::FromDateTime(2015, 1, 1, 0, -1, 0, utc);
  1089. EXPECT_EQ("2014-12-31 23:59:00", absl::FormatTime(ymdhms, t, utc));
  1090. t = absl::FromDateTime(2015, 1, 1, -1, 0, 0, utc);
  1091. EXPECT_EQ("2014-12-31 23:00:00", absl::FormatTime(ymdhms, t, utc));
  1092. t = absl::FromDateTime(2015, 1, -1, 0, 0, 0, utc);
  1093. EXPECT_EQ("2014-12-30 00:00:00", absl::FormatTime(ymdhms, t, utc));
  1094. t = absl::FromDateTime(2015, -1, 1, 0, 0, 0, utc);
  1095. EXPECT_EQ("2014-11-01 00:00:00", absl::FormatTime(ymdhms, t, utc));
  1096. t = absl::FromDateTime(2015, -1, -1, -1, -1, -1, utc);
  1097. EXPECT_EQ("2014-10-29 22:58:59", absl::FormatTime(ymdhms, t, utc));
  1098. }
  1099. TEST(Time, NextTransitionUTC) {
  1100. const auto tz = absl::UTCTimeZone();
  1101. absl::TimeZone::CivilTransition trans;
  1102. auto t = absl::InfinitePast();
  1103. EXPECT_FALSE(tz.NextTransition(t, &trans));
  1104. t = absl::InfiniteFuture();
  1105. EXPECT_FALSE(tz.NextTransition(t, &trans));
  1106. }
  1107. TEST(Time, PrevTransitionUTC) {
  1108. const auto tz = absl::UTCTimeZone();
  1109. absl::TimeZone::CivilTransition trans;
  1110. auto t = absl::InfiniteFuture();
  1111. EXPECT_FALSE(tz.PrevTransition(t, &trans));
  1112. t = absl::InfinitePast();
  1113. EXPECT_FALSE(tz.PrevTransition(t, &trans));
  1114. }
  1115. TEST(Time, NextTransitionNYC) {
  1116. const auto tz = absl::time_internal::LoadTimeZone("America/New_York");
  1117. absl::TimeZone::CivilTransition trans;
  1118. auto t = absl::FromCivil(absl::CivilSecond(2018, 6, 30, 0, 0, 0), tz);
  1119. EXPECT_TRUE(tz.NextTransition(t, &trans));
  1120. EXPECT_EQ(absl::CivilSecond(2018, 11, 4, 2, 0, 0), trans.from);
  1121. EXPECT_EQ(absl::CivilSecond(2018, 11, 4, 1, 0, 0), trans.to);
  1122. t = absl::InfiniteFuture();
  1123. EXPECT_FALSE(tz.NextTransition(t, &trans));
  1124. t = absl::InfinitePast();
  1125. EXPECT_TRUE(tz.NextTransition(t, &trans));
  1126. if (trans.from == absl::CivilSecond(1918, 03, 31, 2, 0, 0)) {
  1127. // It looks like the tzdata is only 32 bit (probably macOS),
  1128. // which bottoms out at 1901-12-13T20:45:52+00:00.
  1129. EXPECT_EQ(absl::CivilSecond(1918, 3, 31, 3, 0, 0), trans.to);
  1130. } else {
  1131. EXPECT_EQ(absl::CivilSecond(1883, 11, 18, 12, 3, 58), trans.from);
  1132. EXPECT_EQ(absl::CivilSecond(1883, 11, 18, 12, 0, 0), trans.to);
  1133. }
  1134. }
  1135. TEST(Time, PrevTransitionNYC) {
  1136. const auto tz = absl::time_internal::LoadTimeZone("America/New_York");
  1137. absl::TimeZone::CivilTransition trans;
  1138. auto t = absl::FromCivil(absl::CivilSecond(2018, 6, 30, 0, 0, 0), tz);
  1139. EXPECT_TRUE(tz.PrevTransition(t, &trans));
  1140. EXPECT_EQ(absl::CivilSecond(2018, 3, 11, 2, 0, 0), trans.from);
  1141. EXPECT_EQ(absl::CivilSecond(2018, 3, 11, 3, 0, 0), trans.to);
  1142. t = absl::InfinitePast();
  1143. EXPECT_FALSE(tz.PrevTransition(t, &trans));
  1144. t = absl::InfiniteFuture();
  1145. EXPECT_TRUE(tz.PrevTransition(t, &trans));
  1146. // We have a transition but we don't know which one.
  1147. }
  1148. } // namespace