123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245 |
- #include "benchmark/benchmark.h"
- #include <assert.h>
- #include <math.h>
- #include <stdint.h>
- #include <chrono>
- #include <cstdlib>
- #include <iostream>
- #include <limits>
- #include <list>
- #include <map>
- #include <mutex>
- #include <set>
- #include <sstream>
- #include <string>
- #include <thread>
- #include <utility>
- #include <vector>
- #if defined(__GNUC__)
- #define BENCHMARK_NOINLINE __attribute__((noinline))
- #else
- #define BENCHMARK_NOINLINE
- #endif
- namespace {
- int BENCHMARK_NOINLINE Factorial(uint32_t n) {
- return (n == 1) ? 1 : n * Factorial(n - 1);
- }
- double CalculatePi(int depth) {
- double pi = 0.0;
- for (int i = 0; i < depth; ++i) {
- double numerator = static_cast<double>(((i % 2) * 2) - 1);
- double denominator = static_cast<double>((2 * i) - 1);
- pi += numerator / denominator;
- }
- return (pi - 1.0) * 4;
- }
- std::set<int64_t> ConstructRandomSet(int64_t size) {
- std::set<int64_t> s;
- for (int i = 0; i < size; ++i) s.insert(s.end(), i);
- return s;
- }
- std::mutex test_vector_mu;
- std::vector<int>* test_vector = nullptr;
- } // end namespace
- static void BM_Factorial(benchmark::State& state) {
- int fac_42 = 0;
- for (auto _ : state) fac_42 = Factorial(8);
- // Prevent compiler optimizations
- std::stringstream ss;
- ss << fac_42;
- state.SetLabel(ss.str());
- }
- BENCHMARK(BM_Factorial);
- BENCHMARK(BM_Factorial)->UseRealTime();
- static void BM_CalculatePiRange(benchmark::State& state) {
- double pi = 0.0;
- for (auto _ : state) pi = CalculatePi(static_cast<int>(state.range(0)));
- std::stringstream ss;
- ss << pi;
- state.SetLabel(ss.str());
- }
- BENCHMARK_RANGE(BM_CalculatePiRange, 1, 1024 * 1024);
- static void BM_CalculatePi(benchmark::State& state) {
- static const int depth = 1024;
- for (auto _ : state) {
- benchmark::DoNotOptimize(CalculatePi(static_cast<int>(depth)));
- }
- }
- BENCHMARK(BM_CalculatePi)->Threads(8);
- BENCHMARK(BM_CalculatePi)->ThreadRange(1, 32);
- BENCHMARK(BM_CalculatePi)->ThreadPerCpu();
- static void BM_SetInsert(benchmark::State& state) {
- std::set<int64_t> data;
- for (auto _ : state) {
- state.PauseTiming();
- data = ConstructRandomSet(state.range(0));
- state.ResumeTiming();
- for (int j = 0; j < state.range(1); ++j) data.insert(rand());
- }
- state.SetItemsProcessed(state.iterations() * state.range(1));
- state.SetBytesProcessed(state.iterations() * state.range(1) * sizeof(int));
- }
- // Test many inserts at once to reduce the total iterations needed. Otherwise, the slower,
- // non-timed part of each iteration will make the benchmark take forever.
- BENCHMARK(BM_SetInsert)->Ranges({{1 << 10, 8 << 10}, {128, 512}});
- template <typename Container,
- typename ValueType = typename Container::value_type>
- static void BM_Sequential(benchmark::State& state) {
- ValueType v = 42;
- for (auto _ : state) {
- Container c;
- for (int64_t i = state.range(0); --i;) c.push_back(v);
- }
- const int64_t items_processed = state.iterations() * state.range(0);
- state.SetItemsProcessed(items_processed);
- state.SetBytesProcessed(items_processed * sizeof(v));
- }
- BENCHMARK_TEMPLATE2(BM_Sequential, std::vector<int>, int)
- ->Range(1 << 0, 1 << 10);
- BENCHMARK_TEMPLATE(BM_Sequential, std::list<int>)->Range(1 << 0, 1 << 10);
- // Test the variadic version of BENCHMARK_TEMPLATE in C++11 and beyond.
- #ifdef BENCHMARK_HAS_CXX11
- BENCHMARK_TEMPLATE(BM_Sequential, std::vector<int>, int)->Arg(512);
- #endif
- static void BM_StringCompare(benchmark::State& state) {
- size_t len = static_cast<size_t>(state.range(0));
- std::string s1(len, '-');
- std::string s2(len, '-');
- for (auto _ : state) benchmark::DoNotOptimize(s1.compare(s2));
- }
- BENCHMARK(BM_StringCompare)->Range(1, 1 << 20);
- static void BM_SetupTeardown(benchmark::State& state) {
- if (state.thread_index() == 0) {
- // No need to lock test_vector_mu here as this is running single-threaded.
- test_vector = new std::vector<int>();
- }
- int i = 0;
- for (auto _ : state) {
- std::lock_guard<std::mutex> l(test_vector_mu);
- if (i % 2 == 0)
- test_vector->push_back(i);
- else
- test_vector->pop_back();
- ++i;
- }
- if (state.thread_index() == 0) {
- delete test_vector;
- }
- }
- BENCHMARK(BM_SetupTeardown)->ThreadPerCpu();
- static void BM_LongTest(benchmark::State& state) {
- double tracker = 0.0;
- for (auto _ : state) {
- for (int i = 0; i < state.range(0); ++i)
- benchmark::DoNotOptimize(tracker += i);
- }
- }
- BENCHMARK(BM_LongTest)->Range(1 << 16, 1 << 28);
- static void BM_ParallelMemset(benchmark::State& state) {
- int64_t size = state.range(0) / static_cast<int64_t>(sizeof(int));
- int thread_size = static_cast<int>(size) / state.threads();
- int from = thread_size * state.thread_index();
- int to = from + thread_size;
- if (state.thread_index() == 0) {
- test_vector = new std::vector<int>(static_cast<size_t>(size));
- }
- for (auto _ : state) {
- for (int i = from; i < to; i++) {
- // No need to lock test_vector_mu as ranges
- // do not overlap between threads.
- benchmark::DoNotOptimize(test_vector->at(i) = 1);
- }
- }
- if (state.thread_index() == 0) {
- delete test_vector;
- }
- }
- BENCHMARK(BM_ParallelMemset)->Arg(10 << 20)->ThreadRange(1, 4);
- static void BM_ManualTiming(benchmark::State& state) {
- int64_t slept_for = 0;
- int64_t microseconds = state.range(0);
- std::chrono::duration<double, std::micro> sleep_duration{
- static_cast<double>(microseconds)};
- for (auto _ : state) {
- auto start = std::chrono::high_resolution_clock::now();
- // Simulate some useful workload with a sleep
- std::this_thread::sleep_for(
- std::chrono::duration_cast<std::chrono::nanoseconds>(sleep_duration));
- auto end = std::chrono::high_resolution_clock::now();
- auto elapsed =
- std::chrono::duration_cast<std::chrono::duration<double>>(end - start);
- state.SetIterationTime(elapsed.count());
- slept_for += microseconds;
- }
- state.SetItemsProcessed(slept_for);
- }
- BENCHMARK(BM_ManualTiming)->Range(1, 1 << 14)->UseRealTime();
- BENCHMARK(BM_ManualTiming)->Range(1, 1 << 14)->UseManualTime();
- #ifdef BENCHMARK_HAS_CXX11
- template <class... Args>
- void BM_with_args(benchmark::State& state, Args&&...) {
- for (auto _ : state) {
- }
- }
- BENCHMARK_CAPTURE(BM_with_args, int_test, 42, 43, 44);
- BENCHMARK_CAPTURE(BM_with_args, string_and_pair_test, std::string("abc"),
- std::pair<int, double>(42, 3.8));
- void BM_non_template_args(benchmark::State& state, int, double) {
- while(state.KeepRunning()) {}
- }
- BENCHMARK_CAPTURE(BM_non_template_args, basic_test, 0, 0);
- #endif // BENCHMARK_HAS_CXX11
- static void BM_DenseThreadRanges(benchmark::State& st) {
- switch (st.range(0)) {
- case 1:
- assert(st.threads() == 1 || st.threads() == 2 || st.threads() == 3);
- break;
- case 2:
- assert(st.threads() == 1 || st.threads() == 3 || st.threads() == 4);
- break;
- case 3:
- assert(st.threads() == 5 || st.threads() == 8 || st.threads() == 11 ||
- st.threads() == 14);
- break;
- default:
- assert(false && "Invalid test case number");
- }
- while (st.KeepRunning()) {
- }
- }
- BENCHMARK(BM_DenseThreadRanges)->Arg(1)->DenseThreadRange(1, 3);
- BENCHMARK(BM_DenseThreadRanges)->Arg(2)->DenseThreadRange(1, 4, 2);
- BENCHMARK(BM_DenseThreadRanges)->Arg(3)->DenseThreadRange(5, 14, 3);
- BENCHMARK_MAIN();
|