charconv.cc 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984
  1. // Copyright 2018 The Abseil Authors.
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // https://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include "absl/strings/charconv.h"
  15. #include <algorithm>
  16. #include <cassert>
  17. #include <cmath>
  18. #include <cstring>
  19. #include "absl/base/casts.h"
  20. #include "absl/numeric/bits.h"
  21. #include "absl/numeric/int128.h"
  22. #include "absl/strings/internal/charconv_bigint.h"
  23. #include "absl/strings/internal/charconv_parse.h"
  24. // The macro ABSL_BIT_PACK_FLOATS is defined on x86-64, where IEEE floating
  25. // point numbers have the same endianness in memory as a bitfield struct
  26. // containing the corresponding parts.
  27. //
  28. // When set, we replace calls to ldexp() with manual bit packing, which is
  29. // faster and is unaffected by floating point environment.
  30. #ifdef ABSL_BIT_PACK_FLOATS
  31. #error ABSL_BIT_PACK_FLOATS cannot be directly set
  32. #elif defined(__x86_64__) || defined(_M_X64)
  33. #define ABSL_BIT_PACK_FLOATS 1
  34. #endif
  35. // A note about subnormals:
  36. //
  37. // The code below talks about "normals" and "subnormals". A normal IEEE float
  38. // has a fixed-width mantissa and power of two exponent. For example, a normal
  39. // `double` has a 53-bit mantissa. Because the high bit is always 1, it is not
  40. // stored in the representation. The implicit bit buys an extra bit of
  41. // resolution in the datatype.
  42. //
  43. // The downside of this scheme is that there is a large gap between DBL_MIN and
  44. // zero. (Large, at least, relative to the different between DBL_MIN and the
  45. // next representable number). This gap is softened by the "subnormal" numbers,
  46. // which have the same power-of-two exponent as DBL_MIN, but no implicit 53rd
  47. // bit. An all-bits-zero exponent in the encoding represents subnormals. (Zero
  48. // is represented as a subnormal with an all-bits-zero mantissa.)
  49. //
  50. // The code below, in calculations, represents the mantissa as a uint64_t. The
  51. // end result normally has the 53rd bit set. It represents subnormals by using
  52. // narrower mantissas.
  53. namespace absl {
  54. ABSL_NAMESPACE_BEGIN
  55. namespace {
  56. template <typename FloatType>
  57. struct FloatTraits;
  58. template <>
  59. struct FloatTraits<double> {
  60. // The number of mantissa bits in the given float type. This includes the
  61. // implied high bit.
  62. static constexpr int kTargetMantissaBits = 53;
  63. // The largest supported IEEE exponent, in our integral mantissa
  64. // representation.
  65. //
  66. // If `m` is the largest possible int kTargetMantissaBits bits wide, then
  67. // m * 2**kMaxExponent is exactly equal to DBL_MAX.
  68. static constexpr int kMaxExponent = 971;
  69. // The smallest supported IEEE normal exponent, in our integral mantissa
  70. // representation.
  71. //
  72. // If `m` is the smallest possible int kTargetMantissaBits bits wide, then
  73. // m * 2**kMinNormalExponent is exactly equal to DBL_MIN.
  74. static constexpr int kMinNormalExponent = -1074;
  75. static double MakeNan(const char* tagp) {
  76. // Support nan no matter which namespace it's in. Some platforms
  77. // incorrectly don't put it in namespace std.
  78. using namespace std; // NOLINT
  79. return nan(tagp);
  80. }
  81. // Builds a nonzero floating point number out of the provided parts.
  82. //
  83. // This is intended to do the same operation as ldexp(mantissa, exponent),
  84. // but using purely integer math, to avoid -ffastmath and floating
  85. // point environment issues. Using type punning is also faster. We fall back
  86. // to ldexp on a per-platform basis for portability.
  87. //
  88. // `exponent` must be between kMinNormalExponent and kMaxExponent.
  89. //
  90. // `mantissa` must either be exactly kTargetMantissaBits wide, in which case
  91. // a normal value is made, or it must be less narrow than that, in which case
  92. // `exponent` must be exactly kMinNormalExponent, and a subnormal value is
  93. // made.
  94. static double Make(uint64_t mantissa, int exponent, bool sign) {
  95. #ifndef ABSL_BIT_PACK_FLOATS
  96. // Support ldexp no matter which namespace it's in. Some platforms
  97. // incorrectly don't put it in namespace std.
  98. using namespace std; // NOLINT
  99. return sign ? -ldexp(mantissa, exponent) : ldexp(mantissa, exponent);
  100. #else
  101. constexpr uint64_t kMantissaMask =
  102. (uint64_t{1} << (kTargetMantissaBits - 1)) - 1;
  103. uint64_t dbl = static_cast<uint64_t>(sign) << 63;
  104. if (mantissa > kMantissaMask) {
  105. // Normal value.
  106. // Adjust by 1023 for the exponent representation bias, and an additional
  107. // 52 due to the implied decimal point in the IEEE mantissa represenation.
  108. dbl += uint64_t{exponent + 1023u + kTargetMantissaBits - 1} << 52;
  109. mantissa &= kMantissaMask;
  110. } else {
  111. // subnormal value
  112. assert(exponent == kMinNormalExponent);
  113. }
  114. dbl += mantissa;
  115. return absl::bit_cast<double>(dbl);
  116. #endif // ABSL_BIT_PACK_FLOATS
  117. }
  118. };
  119. // Specialization of floating point traits for the `float` type. See the
  120. // FloatTraits<double> specialization above for meaning of each of the following
  121. // members and methods.
  122. template <>
  123. struct FloatTraits<float> {
  124. static constexpr int kTargetMantissaBits = 24;
  125. static constexpr int kMaxExponent = 104;
  126. static constexpr int kMinNormalExponent = -149;
  127. static float MakeNan(const char* tagp) {
  128. // Support nanf no matter which namespace it's in. Some platforms
  129. // incorrectly don't put it in namespace std.
  130. using namespace std; // NOLINT
  131. return nanf(tagp);
  132. }
  133. static float Make(uint32_t mantissa, int exponent, bool sign) {
  134. #ifndef ABSL_BIT_PACK_FLOATS
  135. // Support ldexpf no matter which namespace it's in. Some platforms
  136. // incorrectly don't put it in namespace std.
  137. using namespace std; // NOLINT
  138. return sign ? -ldexpf(mantissa, exponent) : ldexpf(mantissa, exponent);
  139. #else
  140. constexpr uint32_t kMantissaMask =
  141. (uint32_t{1} << (kTargetMantissaBits - 1)) - 1;
  142. uint32_t flt = static_cast<uint32_t>(sign) << 31;
  143. if (mantissa > kMantissaMask) {
  144. // Normal value.
  145. // Adjust by 127 for the exponent representation bias, and an additional
  146. // 23 due to the implied decimal point in the IEEE mantissa represenation.
  147. flt += uint32_t{exponent + 127u + kTargetMantissaBits - 1} << 23;
  148. mantissa &= kMantissaMask;
  149. } else {
  150. // subnormal value
  151. assert(exponent == kMinNormalExponent);
  152. }
  153. flt += mantissa;
  154. return absl::bit_cast<float>(flt);
  155. #endif // ABSL_BIT_PACK_FLOATS
  156. }
  157. };
  158. // Decimal-to-binary conversions require coercing powers of 10 into a mantissa
  159. // and a power of 2. The two helper functions Power10Mantissa(n) and
  160. // Power10Exponent(n) perform this task. Together, these represent a hand-
  161. // rolled floating point value which is equal to or just less than 10**n.
  162. //
  163. // The return values satisfy two range guarantees:
  164. //
  165. // Power10Mantissa(n) * 2**Power10Exponent(n) <= 10**n
  166. // < (Power10Mantissa(n) + 1) * 2**Power10Exponent(n)
  167. //
  168. // 2**63 <= Power10Mantissa(n) < 2**64.
  169. //
  170. // Lookups into the power-of-10 table must first check the Power10Overflow() and
  171. // Power10Underflow() functions, to avoid out-of-bounds table access.
  172. //
  173. // Indexes into these tables are biased by -kPower10TableMin, and the table has
  174. // values in the range [kPower10TableMin, kPower10TableMax].
  175. extern const uint64_t kPower10MantissaTable[];
  176. extern const int16_t kPower10ExponentTable[];
  177. // The smallest allowed value for use with the Power10Mantissa() and
  178. // Power10Exponent() functions below. (If a smaller exponent is needed in
  179. // calculations, the end result is guaranteed to underflow.)
  180. constexpr int kPower10TableMin = -342;
  181. // The largest allowed value for use with the Power10Mantissa() and
  182. // Power10Exponent() functions below. (If a smaller exponent is needed in
  183. // calculations, the end result is guaranteed to overflow.)
  184. constexpr int kPower10TableMax = 308;
  185. uint64_t Power10Mantissa(int n) {
  186. return kPower10MantissaTable[n - kPower10TableMin];
  187. }
  188. int Power10Exponent(int n) {
  189. return kPower10ExponentTable[n - kPower10TableMin];
  190. }
  191. // Returns true if n is large enough that 10**n always results in an IEEE
  192. // overflow.
  193. bool Power10Overflow(int n) { return n > kPower10TableMax; }
  194. // Returns true if n is small enough that 10**n times a ParsedFloat mantissa
  195. // always results in an IEEE underflow.
  196. bool Power10Underflow(int n) { return n < kPower10TableMin; }
  197. // Returns true if Power10Mantissa(n) * 2**Power10Exponent(n) is exactly equal
  198. // to 10**n numerically. Put another way, this returns true if there is no
  199. // truncation error in Power10Mantissa(n).
  200. bool Power10Exact(int n) { return n >= 0 && n <= 27; }
  201. // Sentinel exponent values for representing numbers too large or too close to
  202. // zero to represent in a double.
  203. constexpr int kOverflow = 99999;
  204. constexpr int kUnderflow = -99999;
  205. // Struct representing the calculated conversion result of a positive (nonzero)
  206. // floating point number.
  207. //
  208. // The calculated number is mantissa * 2**exponent (mantissa is treated as an
  209. // integer.) `mantissa` is chosen to be the correct width for the IEEE float
  210. // representation being calculated. (`mantissa` will always have the same bit
  211. // width for normal values, and narrower bit widths for subnormals.)
  212. //
  213. // If the result of conversion was an underflow or overflow, exponent is set
  214. // to kUnderflow or kOverflow.
  215. struct CalculatedFloat {
  216. uint64_t mantissa = 0;
  217. int exponent = 0;
  218. };
  219. // Returns the bit width of the given uint128. (Equivalently, returns 128
  220. // minus the number of leading zero bits.)
  221. unsigned BitWidth(uint128 value) {
  222. if (Uint128High64(value) == 0) {
  223. return static_cast<unsigned>(bit_width(Uint128Low64(value)));
  224. }
  225. return 128 - countl_zero(Uint128High64(value));
  226. }
  227. // Calculates how far to the right a mantissa needs to be shifted to create a
  228. // properly adjusted mantissa for an IEEE floating point number.
  229. //
  230. // `mantissa_width` is the bit width of the mantissa to be shifted, and
  231. // `binary_exponent` is the exponent of the number before the shift.
  232. //
  233. // This accounts for subnormal values, and will return a larger-than-normal
  234. // shift if binary_exponent would otherwise be too low.
  235. template <typename FloatType>
  236. int NormalizedShiftSize(int mantissa_width, int binary_exponent) {
  237. const int normal_shift =
  238. mantissa_width - FloatTraits<FloatType>::kTargetMantissaBits;
  239. const int minimum_shift =
  240. FloatTraits<FloatType>::kMinNormalExponent - binary_exponent;
  241. return std::max(normal_shift, minimum_shift);
  242. }
  243. // Right shifts a uint128 so that it has the requested bit width. (The
  244. // resulting value will have 128 - bit_width leading zeroes.) The initial
  245. // `value` must be wider than the requested bit width.
  246. //
  247. // Returns the number of bits shifted.
  248. int TruncateToBitWidth(int bit_width, uint128* value) {
  249. const int current_bit_width = BitWidth(*value);
  250. const int shift = current_bit_width - bit_width;
  251. *value >>= shift;
  252. return shift;
  253. }
  254. // Checks if the given ParsedFloat represents one of the edge cases that are
  255. // not dependent on number base: zero, infinity, or NaN. If so, sets *value
  256. // the appropriate double, and returns true.
  257. template <typename FloatType>
  258. bool HandleEdgeCase(const strings_internal::ParsedFloat& input, bool negative,
  259. FloatType* value) {
  260. if (input.type == strings_internal::FloatType::kNan) {
  261. // A bug in both clang and gcc would cause the compiler to optimize away the
  262. // buffer we are building below. Declaring the buffer volatile avoids the
  263. // issue, and has no measurable performance impact in microbenchmarks.
  264. //
  265. // https://bugs.llvm.org/show_bug.cgi?id=37778
  266. // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86113
  267. constexpr ptrdiff_t kNanBufferSize = 128;
  268. volatile char n_char_sequence[kNanBufferSize];
  269. if (input.subrange_begin == nullptr) {
  270. n_char_sequence[0] = '\0';
  271. } else {
  272. ptrdiff_t nan_size = input.subrange_end - input.subrange_begin;
  273. nan_size = std::min(nan_size, kNanBufferSize - 1);
  274. std::copy_n(input.subrange_begin, nan_size, n_char_sequence);
  275. n_char_sequence[nan_size] = '\0';
  276. }
  277. char* nan_argument = const_cast<char*>(n_char_sequence);
  278. *value = negative ? -FloatTraits<FloatType>::MakeNan(nan_argument)
  279. : FloatTraits<FloatType>::MakeNan(nan_argument);
  280. return true;
  281. }
  282. if (input.type == strings_internal::FloatType::kInfinity) {
  283. *value = negative ? -std::numeric_limits<FloatType>::infinity()
  284. : std::numeric_limits<FloatType>::infinity();
  285. return true;
  286. }
  287. if (input.mantissa == 0) {
  288. *value = negative ? -0.0 : 0.0;
  289. return true;
  290. }
  291. return false;
  292. }
  293. // Given a CalculatedFloat result of a from_chars conversion, generate the
  294. // correct output values.
  295. //
  296. // CalculatedFloat can represent an underflow or overflow, in which case the
  297. // error code in *result is set. Otherwise, the calculated floating point
  298. // number is stored in *value.
  299. template <typename FloatType>
  300. void EncodeResult(const CalculatedFloat& calculated, bool negative,
  301. absl::from_chars_result* result, FloatType* value) {
  302. if (calculated.exponent == kOverflow) {
  303. result->ec = std::errc::result_out_of_range;
  304. *value = negative ? -std::numeric_limits<FloatType>::max()
  305. : std::numeric_limits<FloatType>::max();
  306. return;
  307. } else if (calculated.mantissa == 0 || calculated.exponent == kUnderflow) {
  308. result->ec = std::errc::result_out_of_range;
  309. *value = negative ? -0.0 : 0.0;
  310. return;
  311. }
  312. *value = FloatTraits<FloatType>::Make(calculated.mantissa,
  313. calculated.exponent, negative);
  314. }
  315. // Returns the given uint128 shifted to the right by `shift` bits, and rounds
  316. // the remaining bits using round_to_nearest logic. The value is returned as a
  317. // uint64_t, since this is the type used by this library for storing calculated
  318. // floating point mantissas.
  319. //
  320. // It is expected that the width of the input value shifted by `shift` will
  321. // be the correct bit-width for the target mantissa, which is strictly narrower
  322. // than a uint64_t.
  323. //
  324. // If `input_exact` is false, then a nonzero error epsilon is assumed. For
  325. // rounding purposes, the true value being rounded is strictly greater than the
  326. // input value. The error may represent a single lost carry bit.
  327. //
  328. // When input_exact, shifted bits of the form 1000000... represent a tie, which
  329. // is broken by rounding to even -- the rounding direction is chosen so the low
  330. // bit of the returned value is 0.
  331. //
  332. // When !input_exact, shifted bits of the form 10000000... represent a value
  333. // strictly greater than one half (due to the error epsilon), and so ties are
  334. // always broken by rounding up.
  335. //
  336. // When !input_exact, shifted bits of the form 01111111... are uncertain;
  337. // the true value may or may not be greater than 10000000..., due to the
  338. // possible lost carry bit. The correct rounding direction is unknown. In this
  339. // case, the result is rounded down, and `output_exact` is set to false.
  340. //
  341. // Zero and negative values of `shift` are accepted, in which case the word is
  342. // shifted left, as necessary.
  343. uint64_t ShiftRightAndRound(uint128 value, int shift, bool input_exact,
  344. bool* output_exact) {
  345. if (shift <= 0) {
  346. *output_exact = input_exact;
  347. return static_cast<uint64_t>(value << -shift);
  348. }
  349. if (shift >= 128) {
  350. // Exponent is so small that we are shifting away all significant bits.
  351. // Answer will not be representable, even as a subnormal, so return a zero
  352. // mantissa (which represents underflow).
  353. *output_exact = true;
  354. return 0;
  355. }
  356. *output_exact = true;
  357. const uint128 shift_mask = (uint128(1) << shift) - 1;
  358. const uint128 halfway_point = uint128(1) << (shift - 1);
  359. const uint128 shifted_bits = value & shift_mask;
  360. value >>= shift;
  361. if (shifted_bits > halfway_point) {
  362. // Shifted bits greater than 10000... require rounding up.
  363. return static_cast<uint64_t>(value + 1);
  364. }
  365. if (shifted_bits == halfway_point) {
  366. // In exact mode, shifted bits of 10000... mean we're exactly halfway
  367. // between two numbers, and we must round to even. So only round up if
  368. // the low bit of `value` is set.
  369. //
  370. // In inexact mode, the nonzero error means the actual value is greater
  371. // than the halfway point and we must alway round up.
  372. if ((value & 1) == 1 || !input_exact) {
  373. ++value;
  374. }
  375. return static_cast<uint64_t>(value);
  376. }
  377. if (!input_exact && shifted_bits == halfway_point - 1) {
  378. // Rounding direction is unclear, due to error.
  379. *output_exact = false;
  380. }
  381. // Otherwise, round down.
  382. return static_cast<uint64_t>(value);
  383. }
  384. // Checks if a floating point guess needs to be rounded up, using high precision
  385. // math.
  386. //
  387. // `guess_mantissa` and `guess_exponent` represent a candidate guess for the
  388. // number represented by `parsed_decimal`.
  389. //
  390. // The exact number represented by `parsed_decimal` must lie between the two
  391. // numbers:
  392. // A = `guess_mantissa * 2**guess_exponent`
  393. // B = `(guess_mantissa + 1) * 2**guess_exponent`
  394. //
  395. // This function returns false if `A` is the better guess, and true if `B` is
  396. // the better guess, with rounding ties broken by rounding to even.
  397. bool MustRoundUp(uint64_t guess_mantissa, int guess_exponent,
  398. const strings_internal::ParsedFloat& parsed_decimal) {
  399. // 768 is the number of digits needed in the worst case. We could determine a
  400. // better limit dynamically based on the value of parsed_decimal.exponent.
  401. // This would optimize pathological input cases only. (Sane inputs won't have
  402. // hundreds of digits of mantissa.)
  403. absl::strings_internal::BigUnsigned<84> exact_mantissa;
  404. int exact_exponent = exact_mantissa.ReadFloatMantissa(parsed_decimal, 768);
  405. // Adjust the `guess` arguments to be halfway between A and B.
  406. guess_mantissa = guess_mantissa * 2 + 1;
  407. guess_exponent -= 1;
  408. // In our comparison:
  409. // lhs = exact = exact_mantissa * 10**exact_exponent
  410. // = exact_mantissa * 5**exact_exponent * 2**exact_exponent
  411. // rhs = guess = guess_mantissa * 2**guess_exponent
  412. //
  413. // Because we are doing integer math, we can't directly deal with negative
  414. // exponents. We instead move these to the other side of the inequality.
  415. absl::strings_internal::BigUnsigned<84>& lhs = exact_mantissa;
  416. int comparison;
  417. if (exact_exponent >= 0) {
  418. lhs.MultiplyByFiveToTheNth(exact_exponent);
  419. absl::strings_internal::BigUnsigned<84> rhs(guess_mantissa);
  420. // There are powers of 2 on both sides of the inequality; reduce this to
  421. // a single bit-shift.
  422. if (exact_exponent > guess_exponent) {
  423. lhs.ShiftLeft(exact_exponent - guess_exponent);
  424. } else {
  425. rhs.ShiftLeft(guess_exponent - exact_exponent);
  426. }
  427. comparison = Compare(lhs, rhs);
  428. } else {
  429. // Move the power of 5 to the other side of the equation, giving us:
  430. // lhs = exact_mantissa * 2**exact_exponent
  431. // rhs = guess_mantissa * 5**(-exact_exponent) * 2**guess_exponent
  432. absl::strings_internal::BigUnsigned<84> rhs =
  433. absl::strings_internal::BigUnsigned<84>::FiveToTheNth(-exact_exponent);
  434. rhs.MultiplyBy(guess_mantissa);
  435. if (exact_exponent > guess_exponent) {
  436. lhs.ShiftLeft(exact_exponent - guess_exponent);
  437. } else {
  438. rhs.ShiftLeft(guess_exponent - exact_exponent);
  439. }
  440. comparison = Compare(lhs, rhs);
  441. }
  442. if (comparison < 0) {
  443. return false;
  444. } else if (comparison > 0) {
  445. return true;
  446. } else {
  447. // When lhs == rhs, the decimal input is exactly between A and B.
  448. // Round towards even -- round up only if the low bit of the initial
  449. // `guess_mantissa` was a 1. We shifted guess_mantissa left 1 bit at
  450. // the beginning of this function, so test the 2nd bit here.
  451. return (guess_mantissa & 2) == 2;
  452. }
  453. }
  454. // Constructs a CalculatedFloat from a given mantissa and exponent, but
  455. // with the following normalizations applied:
  456. //
  457. // If rounding has caused mantissa to increase just past the allowed bit
  458. // width, shift and adjust exponent.
  459. //
  460. // If exponent is too high, sets kOverflow.
  461. //
  462. // If mantissa is zero (representing a non-zero value not representable, even
  463. // as a subnormal), sets kUnderflow.
  464. template <typename FloatType>
  465. CalculatedFloat CalculatedFloatFromRawValues(uint64_t mantissa, int exponent) {
  466. CalculatedFloat result;
  467. if (mantissa == uint64_t{1} << FloatTraits<FloatType>::kTargetMantissaBits) {
  468. mantissa >>= 1;
  469. exponent += 1;
  470. }
  471. if (exponent > FloatTraits<FloatType>::kMaxExponent) {
  472. result.exponent = kOverflow;
  473. } else if (mantissa == 0) {
  474. result.exponent = kUnderflow;
  475. } else {
  476. result.exponent = exponent;
  477. result.mantissa = mantissa;
  478. }
  479. return result;
  480. }
  481. template <typename FloatType>
  482. CalculatedFloat CalculateFromParsedHexadecimal(
  483. const strings_internal::ParsedFloat& parsed_hex) {
  484. uint64_t mantissa = parsed_hex.mantissa;
  485. int exponent = parsed_hex.exponent;
  486. auto mantissa_width = static_cast<unsigned>(bit_width(mantissa));
  487. const int shift = NormalizedShiftSize<FloatType>(mantissa_width, exponent);
  488. bool result_exact;
  489. exponent += shift;
  490. mantissa = ShiftRightAndRound(mantissa, shift,
  491. /* input exact= */ true, &result_exact);
  492. // ParseFloat handles rounding in the hexadecimal case, so we don't have to
  493. // check `result_exact` here.
  494. return CalculatedFloatFromRawValues<FloatType>(mantissa, exponent);
  495. }
  496. template <typename FloatType>
  497. CalculatedFloat CalculateFromParsedDecimal(
  498. const strings_internal::ParsedFloat& parsed_decimal) {
  499. CalculatedFloat result;
  500. // Large or small enough decimal exponents will always result in overflow
  501. // or underflow.
  502. if (Power10Underflow(parsed_decimal.exponent)) {
  503. result.exponent = kUnderflow;
  504. return result;
  505. } else if (Power10Overflow(parsed_decimal.exponent)) {
  506. result.exponent = kOverflow;
  507. return result;
  508. }
  509. // Otherwise convert our power of 10 into a power of 2 times an integer
  510. // mantissa, and multiply this by our parsed decimal mantissa.
  511. uint128 wide_binary_mantissa = parsed_decimal.mantissa;
  512. wide_binary_mantissa *= Power10Mantissa(parsed_decimal.exponent);
  513. int binary_exponent = Power10Exponent(parsed_decimal.exponent);
  514. // Discard bits that are inaccurate due to truncation error. The magic
  515. // `mantissa_width` constants below are justified in
  516. // https://abseil.io/about/design/charconv. They represent the number of bits
  517. // in `wide_binary_mantissa` that are guaranteed to be unaffected by error
  518. // propagation.
  519. bool mantissa_exact;
  520. int mantissa_width;
  521. if (parsed_decimal.subrange_begin) {
  522. // Truncated mantissa
  523. mantissa_width = 58;
  524. mantissa_exact = false;
  525. binary_exponent +=
  526. TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
  527. } else if (!Power10Exact(parsed_decimal.exponent)) {
  528. // Exact mantissa, truncated power of ten
  529. mantissa_width = 63;
  530. mantissa_exact = false;
  531. binary_exponent +=
  532. TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
  533. } else {
  534. // Product is exact
  535. mantissa_width = BitWidth(wide_binary_mantissa);
  536. mantissa_exact = true;
  537. }
  538. // Shift into an FloatType-sized mantissa, and round to nearest.
  539. const int shift =
  540. NormalizedShiftSize<FloatType>(mantissa_width, binary_exponent);
  541. bool result_exact;
  542. binary_exponent += shift;
  543. uint64_t binary_mantissa = ShiftRightAndRound(wide_binary_mantissa, shift,
  544. mantissa_exact, &result_exact);
  545. if (!result_exact) {
  546. // We could not determine the rounding direction using int128 math. Use
  547. // full resolution math instead.
  548. if (MustRoundUp(binary_mantissa, binary_exponent, parsed_decimal)) {
  549. binary_mantissa += 1;
  550. }
  551. }
  552. return CalculatedFloatFromRawValues<FloatType>(binary_mantissa,
  553. binary_exponent);
  554. }
  555. template <typename FloatType>
  556. from_chars_result FromCharsImpl(const char* first, const char* last,
  557. FloatType& value, chars_format fmt_flags) {
  558. from_chars_result result;
  559. result.ptr = first; // overwritten on successful parse
  560. result.ec = std::errc();
  561. bool negative = false;
  562. if (first != last && *first == '-') {
  563. ++first;
  564. negative = true;
  565. }
  566. // If the `hex` flag is *not* set, then we will accept a 0x prefix and try
  567. // to parse a hexadecimal float.
  568. if ((fmt_flags & chars_format::hex) == chars_format{} && last - first >= 2 &&
  569. *first == '0' && (first[1] == 'x' || first[1] == 'X')) {
  570. const char* hex_first = first + 2;
  571. strings_internal::ParsedFloat hex_parse =
  572. strings_internal::ParseFloat<16>(hex_first, last, fmt_flags);
  573. if (hex_parse.end == nullptr ||
  574. hex_parse.type != strings_internal::FloatType::kNumber) {
  575. // Either we failed to parse a hex float after the "0x", or we read
  576. // "0xinf" or "0xnan" which we don't want to match.
  577. //
  578. // However, a string that begins with "0x" also begins with "0", which
  579. // is normally a valid match for the number zero. So we want these
  580. // strings to match zero unless fmt_flags is `scientific`. (This flag
  581. // means an exponent is required, which the string "0" does not have.)
  582. if (fmt_flags == chars_format::scientific) {
  583. result.ec = std::errc::invalid_argument;
  584. } else {
  585. result.ptr = first + 1;
  586. value = negative ? -0.0 : 0.0;
  587. }
  588. return result;
  589. }
  590. // We matched a value.
  591. result.ptr = hex_parse.end;
  592. if (HandleEdgeCase(hex_parse, negative, &value)) {
  593. return result;
  594. }
  595. CalculatedFloat calculated =
  596. CalculateFromParsedHexadecimal<FloatType>(hex_parse);
  597. EncodeResult(calculated, negative, &result, &value);
  598. return result;
  599. }
  600. // Otherwise, we choose the number base based on the flags.
  601. if ((fmt_flags & chars_format::hex) == chars_format::hex) {
  602. strings_internal::ParsedFloat hex_parse =
  603. strings_internal::ParseFloat<16>(first, last, fmt_flags);
  604. if (hex_parse.end == nullptr) {
  605. result.ec = std::errc::invalid_argument;
  606. return result;
  607. }
  608. result.ptr = hex_parse.end;
  609. if (HandleEdgeCase(hex_parse, negative, &value)) {
  610. return result;
  611. }
  612. CalculatedFloat calculated =
  613. CalculateFromParsedHexadecimal<FloatType>(hex_parse);
  614. EncodeResult(calculated, negative, &result, &value);
  615. return result;
  616. } else {
  617. strings_internal::ParsedFloat decimal_parse =
  618. strings_internal::ParseFloat<10>(first, last, fmt_flags);
  619. if (decimal_parse.end == nullptr) {
  620. result.ec = std::errc::invalid_argument;
  621. return result;
  622. }
  623. result.ptr = decimal_parse.end;
  624. if (HandleEdgeCase(decimal_parse, negative, &value)) {
  625. return result;
  626. }
  627. CalculatedFloat calculated =
  628. CalculateFromParsedDecimal<FloatType>(decimal_parse);
  629. EncodeResult(calculated, negative, &result, &value);
  630. return result;
  631. }
  632. }
  633. } // namespace
  634. from_chars_result from_chars(const char* first, const char* last, double& value,
  635. chars_format fmt) {
  636. return FromCharsImpl(first, last, value, fmt);
  637. }
  638. from_chars_result from_chars(const char* first, const char* last, float& value,
  639. chars_format fmt) {
  640. return FromCharsImpl(first, last, value, fmt);
  641. }
  642. namespace {
  643. // Table of powers of 10, from kPower10TableMin to kPower10TableMax.
  644. //
  645. // kPower10MantissaTable[i - kPower10TableMin] stores the 64-bit mantissa (high
  646. // bit always on), and kPower10ExponentTable[i - kPower10TableMin] stores the
  647. // power-of-two exponent. For a given number i, this gives the unique mantissa
  648. // and exponent such that mantissa * 2**exponent <= 10**i < (mantissa + 1) *
  649. // 2**exponent.
  650. const uint64_t kPower10MantissaTable[] = {
  651. 0xeef453d6923bd65aU, 0x9558b4661b6565f8U, 0xbaaee17fa23ebf76U,
  652. 0xe95a99df8ace6f53U, 0x91d8a02bb6c10594U, 0xb64ec836a47146f9U,
  653. 0xe3e27a444d8d98b7U, 0x8e6d8c6ab0787f72U, 0xb208ef855c969f4fU,
  654. 0xde8b2b66b3bc4723U, 0x8b16fb203055ac76U, 0xaddcb9e83c6b1793U,
  655. 0xd953e8624b85dd78U, 0x87d4713d6f33aa6bU, 0xa9c98d8ccb009506U,
  656. 0xd43bf0effdc0ba48U, 0x84a57695fe98746dU, 0xa5ced43b7e3e9188U,
  657. 0xcf42894a5dce35eaU, 0x818995ce7aa0e1b2U, 0xa1ebfb4219491a1fU,
  658. 0xca66fa129f9b60a6U, 0xfd00b897478238d0U, 0x9e20735e8cb16382U,
  659. 0xc5a890362fddbc62U, 0xf712b443bbd52b7bU, 0x9a6bb0aa55653b2dU,
  660. 0xc1069cd4eabe89f8U, 0xf148440a256e2c76U, 0x96cd2a865764dbcaU,
  661. 0xbc807527ed3e12bcU, 0xeba09271e88d976bU, 0x93445b8731587ea3U,
  662. 0xb8157268fdae9e4cU, 0xe61acf033d1a45dfU, 0x8fd0c16206306babU,
  663. 0xb3c4f1ba87bc8696U, 0xe0b62e2929aba83cU, 0x8c71dcd9ba0b4925U,
  664. 0xaf8e5410288e1b6fU, 0xdb71e91432b1a24aU, 0x892731ac9faf056eU,
  665. 0xab70fe17c79ac6caU, 0xd64d3d9db981787dU, 0x85f0468293f0eb4eU,
  666. 0xa76c582338ed2621U, 0xd1476e2c07286faaU, 0x82cca4db847945caU,
  667. 0xa37fce126597973cU, 0xcc5fc196fefd7d0cU, 0xff77b1fcbebcdc4fU,
  668. 0x9faacf3df73609b1U, 0xc795830d75038c1dU, 0xf97ae3d0d2446f25U,
  669. 0x9becce62836ac577U, 0xc2e801fb244576d5U, 0xf3a20279ed56d48aU,
  670. 0x9845418c345644d6U, 0xbe5691ef416bd60cU, 0xedec366b11c6cb8fU,
  671. 0x94b3a202eb1c3f39U, 0xb9e08a83a5e34f07U, 0xe858ad248f5c22c9U,
  672. 0x91376c36d99995beU, 0xb58547448ffffb2dU, 0xe2e69915b3fff9f9U,
  673. 0x8dd01fad907ffc3bU, 0xb1442798f49ffb4aU, 0xdd95317f31c7fa1dU,
  674. 0x8a7d3eef7f1cfc52U, 0xad1c8eab5ee43b66U, 0xd863b256369d4a40U,
  675. 0x873e4f75e2224e68U, 0xa90de3535aaae202U, 0xd3515c2831559a83U,
  676. 0x8412d9991ed58091U, 0xa5178fff668ae0b6U, 0xce5d73ff402d98e3U,
  677. 0x80fa687f881c7f8eU, 0xa139029f6a239f72U, 0xc987434744ac874eU,
  678. 0xfbe9141915d7a922U, 0x9d71ac8fada6c9b5U, 0xc4ce17b399107c22U,
  679. 0xf6019da07f549b2bU, 0x99c102844f94e0fbU, 0xc0314325637a1939U,
  680. 0xf03d93eebc589f88U, 0x96267c7535b763b5U, 0xbbb01b9283253ca2U,
  681. 0xea9c227723ee8bcbU, 0x92a1958a7675175fU, 0xb749faed14125d36U,
  682. 0xe51c79a85916f484U, 0x8f31cc0937ae58d2U, 0xb2fe3f0b8599ef07U,
  683. 0xdfbdcece67006ac9U, 0x8bd6a141006042bdU, 0xaecc49914078536dU,
  684. 0xda7f5bf590966848U, 0x888f99797a5e012dU, 0xaab37fd7d8f58178U,
  685. 0xd5605fcdcf32e1d6U, 0x855c3be0a17fcd26U, 0xa6b34ad8c9dfc06fU,
  686. 0xd0601d8efc57b08bU, 0x823c12795db6ce57U, 0xa2cb1717b52481edU,
  687. 0xcb7ddcdda26da268U, 0xfe5d54150b090b02U, 0x9efa548d26e5a6e1U,
  688. 0xc6b8e9b0709f109aU, 0xf867241c8cc6d4c0U, 0x9b407691d7fc44f8U,
  689. 0xc21094364dfb5636U, 0xf294b943e17a2bc4U, 0x979cf3ca6cec5b5aU,
  690. 0xbd8430bd08277231U, 0xece53cec4a314ebdU, 0x940f4613ae5ed136U,
  691. 0xb913179899f68584U, 0xe757dd7ec07426e5U, 0x9096ea6f3848984fU,
  692. 0xb4bca50b065abe63U, 0xe1ebce4dc7f16dfbU, 0x8d3360f09cf6e4bdU,
  693. 0xb080392cc4349decU, 0xdca04777f541c567U, 0x89e42caaf9491b60U,
  694. 0xac5d37d5b79b6239U, 0xd77485cb25823ac7U, 0x86a8d39ef77164bcU,
  695. 0xa8530886b54dbdebU, 0xd267caa862a12d66U, 0x8380dea93da4bc60U,
  696. 0xa46116538d0deb78U, 0xcd795be870516656U, 0x806bd9714632dff6U,
  697. 0xa086cfcd97bf97f3U, 0xc8a883c0fdaf7df0U, 0xfad2a4b13d1b5d6cU,
  698. 0x9cc3a6eec6311a63U, 0xc3f490aa77bd60fcU, 0xf4f1b4d515acb93bU,
  699. 0x991711052d8bf3c5U, 0xbf5cd54678eef0b6U, 0xef340a98172aace4U,
  700. 0x9580869f0e7aac0eU, 0xbae0a846d2195712U, 0xe998d258869facd7U,
  701. 0x91ff83775423cc06U, 0xb67f6455292cbf08U, 0xe41f3d6a7377eecaU,
  702. 0x8e938662882af53eU, 0xb23867fb2a35b28dU, 0xdec681f9f4c31f31U,
  703. 0x8b3c113c38f9f37eU, 0xae0b158b4738705eU, 0xd98ddaee19068c76U,
  704. 0x87f8a8d4cfa417c9U, 0xa9f6d30a038d1dbcU, 0xd47487cc8470652bU,
  705. 0x84c8d4dfd2c63f3bU, 0xa5fb0a17c777cf09U, 0xcf79cc9db955c2ccU,
  706. 0x81ac1fe293d599bfU, 0xa21727db38cb002fU, 0xca9cf1d206fdc03bU,
  707. 0xfd442e4688bd304aU, 0x9e4a9cec15763e2eU, 0xc5dd44271ad3cdbaU,
  708. 0xf7549530e188c128U, 0x9a94dd3e8cf578b9U, 0xc13a148e3032d6e7U,
  709. 0xf18899b1bc3f8ca1U, 0x96f5600f15a7b7e5U, 0xbcb2b812db11a5deU,
  710. 0xebdf661791d60f56U, 0x936b9fcebb25c995U, 0xb84687c269ef3bfbU,
  711. 0xe65829b3046b0afaU, 0x8ff71a0fe2c2e6dcU, 0xb3f4e093db73a093U,
  712. 0xe0f218b8d25088b8U, 0x8c974f7383725573U, 0xafbd2350644eeacfU,
  713. 0xdbac6c247d62a583U, 0x894bc396ce5da772U, 0xab9eb47c81f5114fU,
  714. 0xd686619ba27255a2U, 0x8613fd0145877585U, 0xa798fc4196e952e7U,
  715. 0xd17f3b51fca3a7a0U, 0x82ef85133de648c4U, 0xa3ab66580d5fdaf5U,
  716. 0xcc963fee10b7d1b3U, 0xffbbcfe994e5c61fU, 0x9fd561f1fd0f9bd3U,
  717. 0xc7caba6e7c5382c8U, 0xf9bd690a1b68637bU, 0x9c1661a651213e2dU,
  718. 0xc31bfa0fe5698db8U, 0xf3e2f893dec3f126U, 0x986ddb5c6b3a76b7U,
  719. 0xbe89523386091465U, 0xee2ba6c0678b597fU, 0x94db483840b717efU,
  720. 0xba121a4650e4ddebU, 0xe896a0d7e51e1566U, 0x915e2486ef32cd60U,
  721. 0xb5b5ada8aaff80b8U, 0xe3231912d5bf60e6U, 0x8df5efabc5979c8fU,
  722. 0xb1736b96b6fd83b3U, 0xddd0467c64bce4a0U, 0x8aa22c0dbef60ee4U,
  723. 0xad4ab7112eb3929dU, 0xd89d64d57a607744U, 0x87625f056c7c4a8bU,
  724. 0xa93af6c6c79b5d2dU, 0xd389b47879823479U, 0x843610cb4bf160cbU,
  725. 0xa54394fe1eedb8feU, 0xce947a3da6a9273eU, 0x811ccc668829b887U,
  726. 0xa163ff802a3426a8U, 0xc9bcff6034c13052U, 0xfc2c3f3841f17c67U,
  727. 0x9d9ba7832936edc0U, 0xc5029163f384a931U, 0xf64335bcf065d37dU,
  728. 0x99ea0196163fa42eU, 0xc06481fb9bcf8d39U, 0xf07da27a82c37088U,
  729. 0x964e858c91ba2655U, 0xbbe226efb628afeaU, 0xeadab0aba3b2dbe5U,
  730. 0x92c8ae6b464fc96fU, 0xb77ada0617e3bbcbU, 0xe55990879ddcaabdU,
  731. 0x8f57fa54c2a9eab6U, 0xb32df8e9f3546564U, 0xdff9772470297ebdU,
  732. 0x8bfbea76c619ef36U, 0xaefae51477a06b03U, 0xdab99e59958885c4U,
  733. 0x88b402f7fd75539bU, 0xaae103b5fcd2a881U, 0xd59944a37c0752a2U,
  734. 0x857fcae62d8493a5U, 0xa6dfbd9fb8e5b88eU, 0xd097ad07a71f26b2U,
  735. 0x825ecc24c873782fU, 0xa2f67f2dfa90563bU, 0xcbb41ef979346bcaU,
  736. 0xfea126b7d78186bcU, 0x9f24b832e6b0f436U, 0xc6ede63fa05d3143U,
  737. 0xf8a95fcf88747d94U, 0x9b69dbe1b548ce7cU, 0xc24452da229b021bU,
  738. 0xf2d56790ab41c2a2U, 0x97c560ba6b0919a5U, 0xbdb6b8e905cb600fU,
  739. 0xed246723473e3813U, 0x9436c0760c86e30bU, 0xb94470938fa89bceU,
  740. 0xe7958cb87392c2c2U, 0x90bd77f3483bb9b9U, 0xb4ecd5f01a4aa828U,
  741. 0xe2280b6c20dd5232U, 0x8d590723948a535fU, 0xb0af48ec79ace837U,
  742. 0xdcdb1b2798182244U, 0x8a08f0f8bf0f156bU, 0xac8b2d36eed2dac5U,
  743. 0xd7adf884aa879177U, 0x86ccbb52ea94baeaU, 0xa87fea27a539e9a5U,
  744. 0xd29fe4b18e88640eU, 0x83a3eeeef9153e89U, 0xa48ceaaab75a8e2bU,
  745. 0xcdb02555653131b6U, 0x808e17555f3ebf11U, 0xa0b19d2ab70e6ed6U,
  746. 0xc8de047564d20a8bU, 0xfb158592be068d2eU, 0x9ced737bb6c4183dU,
  747. 0xc428d05aa4751e4cU, 0xf53304714d9265dfU, 0x993fe2c6d07b7fabU,
  748. 0xbf8fdb78849a5f96U, 0xef73d256a5c0f77cU, 0x95a8637627989aadU,
  749. 0xbb127c53b17ec159U, 0xe9d71b689dde71afU, 0x9226712162ab070dU,
  750. 0xb6b00d69bb55c8d1U, 0xe45c10c42a2b3b05U, 0x8eb98a7a9a5b04e3U,
  751. 0xb267ed1940f1c61cU, 0xdf01e85f912e37a3U, 0x8b61313bbabce2c6U,
  752. 0xae397d8aa96c1b77U, 0xd9c7dced53c72255U, 0x881cea14545c7575U,
  753. 0xaa242499697392d2U, 0xd4ad2dbfc3d07787U, 0x84ec3c97da624ab4U,
  754. 0xa6274bbdd0fadd61U, 0xcfb11ead453994baU, 0x81ceb32c4b43fcf4U,
  755. 0xa2425ff75e14fc31U, 0xcad2f7f5359a3b3eU, 0xfd87b5f28300ca0dU,
  756. 0x9e74d1b791e07e48U, 0xc612062576589ddaU, 0xf79687aed3eec551U,
  757. 0x9abe14cd44753b52U, 0xc16d9a0095928a27U, 0xf1c90080baf72cb1U,
  758. 0x971da05074da7beeU, 0xbce5086492111aeaU, 0xec1e4a7db69561a5U,
  759. 0x9392ee8e921d5d07U, 0xb877aa3236a4b449U, 0xe69594bec44de15bU,
  760. 0x901d7cf73ab0acd9U, 0xb424dc35095cd80fU, 0xe12e13424bb40e13U,
  761. 0x8cbccc096f5088cbU, 0xafebff0bcb24aafeU, 0xdbe6fecebdedd5beU,
  762. 0x89705f4136b4a597U, 0xabcc77118461cefcU, 0xd6bf94d5e57a42bcU,
  763. 0x8637bd05af6c69b5U, 0xa7c5ac471b478423U, 0xd1b71758e219652bU,
  764. 0x83126e978d4fdf3bU, 0xa3d70a3d70a3d70aU, 0xccccccccccccccccU,
  765. 0x8000000000000000U, 0xa000000000000000U, 0xc800000000000000U,
  766. 0xfa00000000000000U, 0x9c40000000000000U, 0xc350000000000000U,
  767. 0xf424000000000000U, 0x9896800000000000U, 0xbebc200000000000U,
  768. 0xee6b280000000000U, 0x9502f90000000000U, 0xba43b74000000000U,
  769. 0xe8d4a51000000000U, 0x9184e72a00000000U, 0xb5e620f480000000U,
  770. 0xe35fa931a0000000U, 0x8e1bc9bf04000000U, 0xb1a2bc2ec5000000U,
  771. 0xde0b6b3a76400000U, 0x8ac7230489e80000U, 0xad78ebc5ac620000U,
  772. 0xd8d726b7177a8000U, 0x878678326eac9000U, 0xa968163f0a57b400U,
  773. 0xd3c21bcecceda100U, 0x84595161401484a0U, 0xa56fa5b99019a5c8U,
  774. 0xcecb8f27f4200f3aU, 0x813f3978f8940984U, 0xa18f07d736b90be5U,
  775. 0xc9f2c9cd04674edeU, 0xfc6f7c4045812296U, 0x9dc5ada82b70b59dU,
  776. 0xc5371912364ce305U, 0xf684df56c3e01bc6U, 0x9a130b963a6c115cU,
  777. 0xc097ce7bc90715b3U, 0xf0bdc21abb48db20U, 0x96769950b50d88f4U,
  778. 0xbc143fa4e250eb31U, 0xeb194f8e1ae525fdU, 0x92efd1b8d0cf37beU,
  779. 0xb7abc627050305adU, 0xe596b7b0c643c719U, 0x8f7e32ce7bea5c6fU,
  780. 0xb35dbf821ae4f38bU, 0xe0352f62a19e306eU, 0x8c213d9da502de45U,
  781. 0xaf298d050e4395d6U, 0xdaf3f04651d47b4cU, 0x88d8762bf324cd0fU,
  782. 0xab0e93b6efee0053U, 0xd5d238a4abe98068U, 0x85a36366eb71f041U,
  783. 0xa70c3c40a64e6c51U, 0xd0cf4b50cfe20765U, 0x82818f1281ed449fU,
  784. 0xa321f2d7226895c7U, 0xcbea6f8ceb02bb39U, 0xfee50b7025c36a08U,
  785. 0x9f4f2726179a2245U, 0xc722f0ef9d80aad6U, 0xf8ebad2b84e0d58bU,
  786. 0x9b934c3b330c8577U, 0xc2781f49ffcfa6d5U, 0xf316271c7fc3908aU,
  787. 0x97edd871cfda3a56U, 0xbde94e8e43d0c8ecU, 0xed63a231d4c4fb27U,
  788. 0x945e455f24fb1cf8U, 0xb975d6b6ee39e436U, 0xe7d34c64a9c85d44U,
  789. 0x90e40fbeea1d3a4aU, 0xb51d13aea4a488ddU, 0xe264589a4dcdab14U,
  790. 0x8d7eb76070a08aecU, 0xb0de65388cc8ada8U, 0xdd15fe86affad912U,
  791. 0x8a2dbf142dfcc7abU, 0xacb92ed9397bf996U, 0xd7e77a8f87daf7fbU,
  792. 0x86f0ac99b4e8dafdU, 0xa8acd7c0222311bcU, 0xd2d80db02aabd62bU,
  793. 0x83c7088e1aab65dbU, 0xa4b8cab1a1563f52U, 0xcde6fd5e09abcf26U,
  794. 0x80b05e5ac60b6178U, 0xa0dc75f1778e39d6U, 0xc913936dd571c84cU,
  795. 0xfb5878494ace3a5fU, 0x9d174b2dcec0e47bU, 0xc45d1df942711d9aU,
  796. 0xf5746577930d6500U, 0x9968bf6abbe85f20U, 0xbfc2ef456ae276e8U,
  797. 0xefb3ab16c59b14a2U, 0x95d04aee3b80ece5U, 0xbb445da9ca61281fU,
  798. 0xea1575143cf97226U, 0x924d692ca61be758U, 0xb6e0c377cfa2e12eU,
  799. 0xe498f455c38b997aU, 0x8edf98b59a373fecU, 0xb2977ee300c50fe7U,
  800. 0xdf3d5e9bc0f653e1U, 0x8b865b215899f46cU, 0xae67f1e9aec07187U,
  801. 0xda01ee641a708de9U, 0x884134fe908658b2U, 0xaa51823e34a7eedeU,
  802. 0xd4e5e2cdc1d1ea96U, 0x850fadc09923329eU, 0xa6539930bf6bff45U,
  803. 0xcfe87f7cef46ff16U, 0x81f14fae158c5f6eU, 0xa26da3999aef7749U,
  804. 0xcb090c8001ab551cU, 0xfdcb4fa002162a63U, 0x9e9f11c4014dda7eU,
  805. 0xc646d63501a1511dU, 0xf7d88bc24209a565U, 0x9ae757596946075fU,
  806. 0xc1a12d2fc3978937U, 0xf209787bb47d6b84U, 0x9745eb4d50ce6332U,
  807. 0xbd176620a501fbffU, 0xec5d3fa8ce427affU, 0x93ba47c980e98cdfU,
  808. 0xb8a8d9bbe123f017U, 0xe6d3102ad96cec1dU, 0x9043ea1ac7e41392U,
  809. 0xb454e4a179dd1877U, 0xe16a1dc9d8545e94U, 0x8ce2529e2734bb1dU,
  810. 0xb01ae745b101e9e4U, 0xdc21a1171d42645dU, 0x899504ae72497ebaU,
  811. 0xabfa45da0edbde69U, 0xd6f8d7509292d603U, 0x865b86925b9bc5c2U,
  812. 0xa7f26836f282b732U, 0xd1ef0244af2364ffU, 0x8335616aed761f1fU,
  813. 0xa402b9c5a8d3a6e7U, 0xcd036837130890a1U, 0x802221226be55a64U,
  814. 0xa02aa96b06deb0fdU, 0xc83553c5c8965d3dU, 0xfa42a8b73abbf48cU,
  815. 0x9c69a97284b578d7U, 0xc38413cf25e2d70dU, 0xf46518c2ef5b8cd1U,
  816. 0x98bf2f79d5993802U, 0xbeeefb584aff8603U, 0xeeaaba2e5dbf6784U,
  817. 0x952ab45cfa97a0b2U, 0xba756174393d88dfU, 0xe912b9d1478ceb17U,
  818. 0x91abb422ccb812eeU, 0xb616a12b7fe617aaU, 0xe39c49765fdf9d94U,
  819. 0x8e41ade9fbebc27dU, 0xb1d219647ae6b31cU, 0xde469fbd99a05fe3U,
  820. 0x8aec23d680043beeU, 0xada72ccc20054ae9U, 0xd910f7ff28069da4U,
  821. 0x87aa9aff79042286U, 0xa99541bf57452b28U, 0xd3fa922f2d1675f2U,
  822. 0x847c9b5d7c2e09b7U, 0xa59bc234db398c25U, 0xcf02b2c21207ef2eU,
  823. 0x8161afb94b44f57dU, 0xa1ba1ba79e1632dcU, 0xca28a291859bbf93U,
  824. 0xfcb2cb35e702af78U, 0x9defbf01b061adabU, 0xc56baec21c7a1916U,
  825. 0xf6c69a72a3989f5bU, 0x9a3c2087a63f6399U, 0xc0cb28a98fcf3c7fU,
  826. 0xf0fdf2d3f3c30b9fU, 0x969eb7c47859e743U, 0xbc4665b596706114U,
  827. 0xeb57ff22fc0c7959U, 0x9316ff75dd87cbd8U, 0xb7dcbf5354e9beceU,
  828. 0xe5d3ef282a242e81U, 0x8fa475791a569d10U, 0xb38d92d760ec4455U,
  829. 0xe070f78d3927556aU, 0x8c469ab843b89562U, 0xaf58416654a6babbU,
  830. 0xdb2e51bfe9d0696aU, 0x88fcf317f22241e2U, 0xab3c2fddeeaad25aU,
  831. 0xd60b3bd56a5586f1U, 0x85c7056562757456U, 0xa738c6bebb12d16cU,
  832. 0xd106f86e69d785c7U, 0x82a45b450226b39cU, 0xa34d721642b06084U,
  833. 0xcc20ce9bd35c78a5U, 0xff290242c83396ceU, 0x9f79a169bd203e41U,
  834. 0xc75809c42c684dd1U, 0xf92e0c3537826145U, 0x9bbcc7a142b17ccbU,
  835. 0xc2abf989935ddbfeU, 0xf356f7ebf83552feU, 0x98165af37b2153deU,
  836. 0xbe1bf1b059e9a8d6U, 0xeda2ee1c7064130cU, 0x9485d4d1c63e8be7U,
  837. 0xb9a74a0637ce2ee1U, 0xe8111c87c5c1ba99U, 0x910ab1d4db9914a0U,
  838. 0xb54d5e4a127f59c8U, 0xe2a0b5dc971f303aU, 0x8da471a9de737e24U,
  839. 0xb10d8e1456105dadU, 0xdd50f1996b947518U, 0x8a5296ffe33cc92fU,
  840. 0xace73cbfdc0bfb7bU, 0xd8210befd30efa5aU, 0x8714a775e3e95c78U,
  841. 0xa8d9d1535ce3b396U, 0xd31045a8341ca07cU, 0x83ea2b892091e44dU,
  842. 0xa4e4b66b68b65d60U, 0xce1de40642e3f4b9U, 0x80d2ae83e9ce78f3U,
  843. 0xa1075a24e4421730U, 0xc94930ae1d529cfcU, 0xfb9b7cd9a4a7443cU,
  844. 0x9d412e0806e88aa5U, 0xc491798a08a2ad4eU, 0xf5b5d7ec8acb58a2U,
  845. 0x9991a6f3d6bf1765U, 0xbff610b0cc6edd3fU, 0xeff394dcff8a948eU,
  846. 0x95f83d0a1fb69cd9U, 0xbb764c4ca7a4440fU, 0xea53df5fd18d5513U,
  847. 0x92746b9be2f8552cU, 0xb7118682dbb66a77U, 0xe4d5e82392a40515U,
  848. 0x8f05b1163ba6832dU, 0xb2c71d5bca9023f8U, 0xdf78e4b2bd342cf6U,
  849. 0x8bab8eefb6409c1aU, 0xae9672aba3d0c320U, 0xda3c0f568cc4f3e8U,
  850. 0x8865899617fb1871U, 0xaa7eebfb9df9de8dU, 0xd51ea6fa85785631U,
  851. 0x8533285c936b35deU, 0xa67ff273b8460356U, 0xd01fef10a657842cU,
  852. 0x8213f56a67f6b29bU, 0xa298f2c501f45f42U, 0xcb3f2f7642717713U,
  853. 0xfe0efb53d30dd4d7U, 0x9ec95d1463e8a506U, 0xc67bb4597ce2ce48U,
  854. 0xf81aa16fdc1b81daU, 0x9b10a4e5e9913128U, 0xc1d4ce1f63f57d72U,
  855. 0xf24a01a73cf2dccfU, 0x976e41088617ca01U, 0xbd49d14aa79dbc82U,
  856. 0xec9c459d51852ba2U, 0x93e1ab8252f33b45U, 0xb8da1662e7b00a17U,
  857. 0xe7109bfba19c0c9dU, 0x906a617d450187e2U, 0xb484f9dc9641e9daU,
  858. 0xe1a63853bbd26451U, 0x8d07e33455637eb2U, 0xb049dc016abc5e5fU,
  859. 0xdc5c5301c56b75f7U, 0x89b9b3e11b6329baU, 0xac2820d9623bf429U,
  860. 0xd732290fbacaf133U, 0x867f59a9d4bed6c0U, 0xa81f301449ee8c70U,
  861. 0xd226fc195c6a2f8cU, 0x83585d8fd9c25db7U, 0xa42e74f3d032f525U,
  862. 0xcd3a1230c43fb26fU, 0x80444b5e7aa7cf85U, 0xa0555e361951c366U,
  863. 0xc86ab5c39fa63440U, 0xfa856334878fc150U, 0x9c935e00d4b9d8d2U,
  864. 0xc3b8358109e84f07U, 0xf4a642e14c6262c8U, 0x98e7e9cccfbd7dbdU,
  865. 0xbf21e44003acdd2cU, 0xeeea5d5004981478U, 0x95527a5202df0ccbU,
  866. 0xbaa718e68396cffdU, 0xe950df20247c83fdU, 0x91d28b7416cdd27eU,
  867. 0xb6472e511c81471dU, 0xe3d8f9e563a198e5U, 0x8e679c2f5e44ff8fU,
  868. };
  869. const int16_t kPower10ExponentTable[] = {
  870. -1200, -1196, -1193, -1190, -1186, -1183, -1180, -1176, -1173, -1170, -1166,
  871. -1163, -1160, -1156, -1153, -1150, -1146, -1143, -1140, -1136, -1133, -1130,
  872. -1127, -1123, -1120, -1117, -1113, -1110, -1107, -1103, -1100, -1097, -1093,
  873. -1090, -1087, -1083, -1080, -1077, -1073, -1070, -1067, -1063, -1060, -1057,
  874. -1053, -1050, -1047, -1043, -1040, -1037, -1034, -1030, -1027, -1024, -1020,
  875. -1017, -1014, -1010, -1007, -1004, -1000, -997, -994, -990, -987, -984,
  876. -980, -977, -974, -970, -967, -964, -960, -957, -954, -950, -947,
  877. -944, -940, -937, -934, -931, -927, -924, -921, -917, -914, -911,
  878. -907, -904, -901, -897, -894, -891, -887, -884, -881, -877, -874,
  879. -871, -867, -864, -861, -857, -854, -851, -847, -844, -841, -838,
  880. -834, -831, -828, -824, -821, -818, -814, -811, -808, -804, -801,
  881. -798, -794, -791, -788, -784, -781, -778, -774, -771, -768, -764,
  882. -761, -758, -754, -751, -748, -744, -741, -738, -735, -731, -728,
  883. -725, -721, -718, -715, -711, -708, -705, -701, -698, -695, -691,
  884. -688, -685, -681, -678, -675, -671, -668, -665, -661, -658, -655,
  885. -651, -648, -645, -642, -638, -635, -632, -628, -625, -622, -618,
  886. -615, -612, -608, -605, -602, -598, -595, -592, -588, -585, -582,
  887. -578, -575, -572, -568, -565, -562, -558, -555, -552, -549, -545,
  888. -542, -539, -535, -532, -529, -525, -522, -519, -515, -512, -509,
  889. -505, -502, -499, -495, -492, -489, -485, -482, -479, -475, -472,
  890. -469, -465, -462, -459, -455, -452, -449, -446, -442, -439, -436,
  891. -432, -429, -426, -422, -419, -416, -412, -409, -406, -402, -399,
  892. -396, -392, -389, -386, -382, -379, -376, -372, -369, -366, -362,
  893. -359, -356, -353, -349, -346, -343, -339, -336, -333, -329, -326,
  894. -323, -319, -316, -313, -309, -306, -303, -299, -296, -293, -289,
  895. -286, -283, -279, -276, -273, -269, -266, -263, -259, -256, -253,
  896. -250, -246, -243, -240, -236, -233, -230, -226, -223, -220, -216,
  897. -213, -210, -206, -203, -200, -196, -193, -190, -186, -183, -180,
  898. -176, -173, -170, -166, -163, -160, -157, -153, -150, -147, -143,
  899. -140, -137, -133, -130, -127, -123, -120, -117, -113, -110, -107,
  900. -103, -100, -97, -93, -90, -87, -83, -80, -77, -73, -70,
  901. -67, -63, -60, -57, -54, -50, -47, -44, -40, -37, -34,
  902. -30, -27, -24, -20, -17, -14, -10, -7, -4, 0, 3,
  903. 6, 10, 13, 16, 20, 23, 26, 30, 33, 36, 39,
  904. 43, 46, 49, 53, 56, 59, 63, 66, 69, 73, 76,
  905. 79, 83, 86, 89, 93, 96, 99, 103, 106, 109, 113,
  906. 116, 119, 123, 126, 129, 132, 136, 139, 142, 146, 149,
  907. 152, 156, 159, 162, 166, 169, 172, 176, 179, 182, 186,
  908. 189, 192, 196, 199, 202, 206, 209, 212, 216, 219, 222,
  909. 226, 229, 232, 235, 239, 242, 245, 249, 252, 255, 259,
  910. 262, 265, 269, 272, 275, 279, 282, 285, 289, 292, 295,
  911. 299, 302, 305, 309, 312, 315, 319, 322, 325, 328, 332,
  912. 335, 338, 342, 345, 348, 352, 355, 358, 362, 365, 368,
  913. 372, 375, 378, 382, 385, 388, 392, 395, 398, 402, 405,
  914. 408, 412, 415, 418, 422, 425, 428, 431, 435, 438, 441,
  915. 445, 448, 451, 455, 458, 461, 465, 468, 471, 475, 478,
  916. 481, 485, 488, 491, 495, 498, 501, 505, 508, 511, 515,
  917. 518, 521, 524, 528, 531, 534, 538, 541, 544, 548, 551,
  918. 554, 558, 561, 564, 568, 571, 574, 578, 581, 584, 588,
  919. 591, 594, 598, 601, 604, 608, 611, 614, 617, 621, 624,
  920. 627, 631, 634, 637, 641, 644, 647, 651, 654, 657, 661,
  921. 664, 667, 671, 674, 677, 681, 684, 687, 691, 694, 697,
  922. 701, 704, 707, 711, 714, 717, 720, 724, 727, 730, 734,
  923. 737, 740, 744, 747, 750, 754, 757, 760, 764, 767, 770,
  924. 774, 777, 780, 784, 787, 790, 794, 797, 800, 804, 807,
  925. 810, 813, 817, 820, 823, 827, 830, 833, 837, 840, 843,
  926. 847, 850, 853, 857, 860, 863, 867, 870, 873, 877, 880,
  927. 883, 887, 890, 893, 897, 900, 903, 907, 910, 913, 916,
  928. 920, 923, 926, 930, 933, 936, 940, 943, 946, 950, 953,
  929. 956, 960,
  930. };
  931. } // namespace
  932. ABSL_NAMESPACE_END
  933. } // namespace absl