123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158 |
- # Copyright 2020 Google Inc. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Python benchmarking utilities.
- Example usage:
- import google_benchmark as benchmark
- @benchmark.register
- def my_benchmark(state):
- ... # Code executed outside `while` loop is not timed.
- while state:
- ... # Code executed within `while` loop is timed.
- if __name__ == '__main__':
- benchmark.main()
- """
- from absl import app
- from google_benchmark import _benchmark
- from google_benchmark._benchmark import (
- Counter,
- kNanosecond,
- kMicrosecond,
- kMillisecond,
- kSecond,
- oNone,
- o1,
- oN,
- oNSquared,
- oNCubed,
- oLogN,
- oNLogN,
- oAuto,
- oLambda,
- )
- __all__ = [
- "register",
- "main",
- "Counter",
- "kNanosecond",
- "kMicrosecond",
- "kMillisecond",
- "kSecond",
- "oNone",
- "o1",
- "oN",
- "oNSquared",
- "oNCubed",
- "oLogN",
- "oNLogN",
- "oAuto",
- "oLambda",
- ]
- __version__ = "0.2.0"
- class __OptionMaker:
- """A stateless class to collect benchmark options.
- Collect all decorator calls like @option.range(start=0, limit=1<<5).
- """
- class Options:
- """Pure data class to store options calls, along with the benchmarked function."""
- def __init__(self, func):
- self.func = func
- self.builder_calls = []
- @classmethod
- def make(cls, func_or_options):
- """Make Options from Options or the benchmarked function."""
- if isinstance(func_or_options, cls.Options):
- return func_or_options
- return cls.Options(func_or_options)
- def __getattr__(self, builder_name):
- """Append option call in the Options."""
- # The function that get returned on @option.range(start=0, limit=1<<5).
- def __builder_method(*args, **kwargs):
- # The decorator that get called, either with the benchmared function
- # or the previous Options
- def __decorator(func_or_options):
- options = self.make(func_or_options)
- options.builder_calls.append((builder_name, args, kwargs))
- # The decorator returns Options so it is not technically a decorator
- # and needs a final call to @regiser
- return options
- return __decorator
- return __builder_method
- # Alias for nicer API.
- # We have to instantiate an object, even if stateless, to be able to use __getattr__
- # on option.range
- option = __OptionMaker()
- def register(undefined=None, *, name=None):
- """Register function for benchmarking."""
- if undefined is None:
- # Decorator is called without parenthesis so we return a decorator
- return lambda f: register(f, name=name)
- # We have either the function to benchmark (simple case) or an instance of Options
- # (@option._ case).
- options = __OptionMaker.make(undefined)
- if name is None:
- name = options.func.__name__
- # We register the benchmark and reproduce all the @option._ calls onto the
- # benchmark builder pattern
- benchmark = _benchmark.RegisterBenchmark(name, options.func)
- for name, args, kwargs in options.builder_calls[::-1]:
- getattr(benchmark, name)(*args, **kwargs)
- # return the benchmarked function because the decorator does not modify it
- return options.func
- def _flags_parser(argv):
- argv = _benchmark.Initialize(argv)
- return app.parse_flags_with_usage(argv)
- def _run_benchmarks(argv):
- if len(argv) > 1:
- raise app.UsageError("Too many command-line arguments.")
- return _benchmark.RunSpecifiedBenchmarks()
- def main(argv=None):
- return app.run(_run_benchmarks, argv=argv, flags_parser=_flags_parser)
- # Methods for use with custom main function.
- initialize = _benchmark.Initialize
- run_benchmarks = _benchmark.RunSpecifiedBenchmarks
|