123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272 |
- #!/usr/bin/env python3
- #
- # Copyright 2017 gRPC authors.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """ Computes the diff between two bm runs and outputs significant results """
- import argparse
- import collections
- import json
- import os
- import subprocess
- import sys
- sys.path.append(os.path.join(os.path.dirname(sys.argv[0]), '..'))
- import bm_constants
- import bm_json
- import bm_speedup
- import tabulate
- verbose = False
- def _median(ary):
- assert (len(ary))
- ary = sorted(ary)
- n = len(ary)
- if n % 2 == 0:
- return (ary[(n - 1) // 2] + ary[(n - 1) // 2 + 1]) / 2.0
- else:
- return ary[n // 2]
- def _args():
- argp = argparse.ArgumentParser(
- description='Perform diff on microbenchmarks')
- argp.add_argument('-t',
- '--track',
- choices=sorted(bm_constants._INTERESTING),
- nargs='+',
- default=sorted(bm_constants._INTERESTING),
- help='Which metrics to track')
- argp.add_argument('-b',
- '--benchmarks',
- nargs='+',
- choices=bm_constants._AVAILABLE_BENCHMARK_TESTS,
- default=bm_constants._AVAILABLE_BENCHMARK_TESTS,
- help='Which benchmarks to run')
- argp.add_argument(
- '-l',
- '--loops',
- type=int,
- default=20,
- help=
- 'Number of times to loops the benchmarks. Must match what was passed to bm_run.py'
- )
- argp.add_argument('-r',
- '--regex',
- type=str,
- default="",
- help='Regex to filter benchmarks run')
- argp.add_argument('--counters', dest='counters', action='store_true')
- argp.add_argument('--no-counters', dest='counters', action='store_false')
- argp.set_defaults(counters=True)
- argp.add_argument('-n', '--new', type=str, help='New benchmark name')
- argp.add_argument('-o', '--old', type=str, help='Old benchmark name')
- argp.add_argument('-v',
- '--verbose',
- type=bool,
- help='Print details of before/after')
- args = argp.parse_args()
- global verbose
- if args.verbose:
- verbose = True
- assert args.new
- assert args.old
- return args
- def _maybe_print(str):
- if verbose:
- print(str)
- class Benchmark:
- def __init__(self):
- self.samples = {
- True: collections.defaultdict(list),
- False: collections.defaultdict(list)
- }
- self.final = {}
- self.speedup = {}
- def add_sample(self, track, data, new):
- for f in track:
- if f in data:
- self.samples[new][f].append(float(data[f]))
- def process(self, track, new_name, old_name):
- for f in sorted(track):
- new = self.samples[True][f]
- old = self.samples[False][f]
- if not new or not old:
- continue
- mdn_diff = abs(_median(new) - _median(old))
- _maybe_print('%s: %s=%r %s=%r mdn_diff=%r' %
- (f, new_name, new, old_name, old, mdn_diff))
- s = bm_speedup.speedup(new, old, 1e-5)
- self.speedup[f] = s
- if abs(s) > 3:
- if mdn_diff > 0.5:
- self.final[f] = '%+d%%' % s
- return self.final.keys()
- def skip(self):
- return not self.final
- def row(self, flds):
- return [self.final[f] if f in self.final else '' for f in flds]
- def speedup(self, name):
- if name in self.speedup:
- return self.speedup[name]
- return None
- def _read_json(filename, badjson_files, nonexistant_files):
- stripped = ".".join(filename.split(".")[:-2])
- try:
- with open(filename) as f:
- r = f.read()
- return json.loads(r)
- except IOError as e:
- if stripped in nonexistant_files:
- nonexistant_files[stripped] += 1
- else:
- nonexistant_files[stripped] = 1
- return None
- except ValueError as e:
- print(r)
- if stripped in badjson_files:
- badjson_files[stripped] += 1
- else:
- badjson_files[stripped] = 1
- return None
- def fmt_dict(d):
- return ''.join([" " + k + ": " + str(d[k]) + "\n" for k in d])
- def diff(bms, loops, regex, track, old, new, counters):
- benchmarks = collections.defaultdict(Benchmark)
- badjson_files = {}
- nonexistant_files = {}
- for bm in bms:
- for loop in range(0, loops):
- for line in subprocess.check_output([
- 'bm_diff_%s/opt/%s' % (old, bm), '--benchmark_list_tests',
- '--benchmark_filter=%s' % regex
- ]).splitlines():
- line = line.decode('UTF-8')
- stripped_line = line.strip().replace("/", "_").replace(
- "<", "_").replace(">", "_").replace(", ", "_")
- js_new_opt = _read_json(
- '%s.%s.opt.%s.%d.json' % (bm, stripped_line, new, loop),
- badjson_files, nonexistant_files)
- js_old_opt = _read_json(
- '%s.%s.opt.%s.%d.json' % (bm, stripped_line, old, loop),
- badjson_files, nonexistant_files)
- if counters:
- js_new_ctr = _read_json(
- '%s.%s.counters.%s.%d.json' %
- (bm, stripped_line, new, loop), badjson_files,
- nonexistant_files)
- js_old_ctr = _read_json(
- '%s.%s.counters.%s.%d.json' %
- (bm, stripped_line, old, loop), badjson_files,
- nonexistant_files)
- else:
- js_new_ctr = None
- js_old_ctr = None
- for row in bm_json.expand_json(js_new_ctr, js_new_opt):
- name = row['cpp_name']
- if name.endswith('_mean') or name.endswith('_stddev'):
- continue
- benchmarks[name].add_sample(track, row, True)
- for row in bm_json.expand_json(js_old_ctr, js_old_opt):
- name = row['cpp_name']
- if name.endswith('_mean') or name.endswith('_stddev'):
- continue
- benchmarks[name].add_sample(track, row, False)
- really_interesting = set()
- for name, bm in benchmarks.items():
- _maybe_print(name)
- really_interesting.update(bm.process(track, new, old))
- fields = [f for f in track if f in really_interesting]
- # figure out the significance of the changes... right now we take the 95%-ile
- # benchmark delta %-age, and then apply some hand chosen thresholds
- histogram = []
- for bm in benchmarks.values():
- if bm.skip():
- continue
- d = bm.speedup['cpu_time']
- if d is None:
- continue
- histogram.append(d)
- histogram.sort()
- print("histogram of speedups: ", histogram)
- if len(histogram) == 0:
- significance = 0
- else:
- delta = histogram[int(len(histogram) * 0.95)]
- mul = 1
- if delta < 0:
- delta = -delta
- mul = -1
- if delta < 2:
- significance = 0
- elif delta < 5:
- significance = 1
- elif delta < 10:
- significance = 2
- else:
- significance = 3
- significance *= mul
- headers = ['Benchmark'] + fields
- rows = []
- for name in sorted(benchmarks.keys()):
- if benchmarks[name].skip():
- continue
- rows.append([name] + benchmarks[name].row(fields))
- note = None
- if len(badjson_files):
- note = 'Corrupt JSON data (indicates timeout or crash): \n%s' % fmt_dict(
- badjson_files)
- if len(nonexistant_files):
- if note:
- note += '\n\nMissing files (indicates new benchmark): \n%s' % fmt_dict(
- nonexistant_files)
- else:
- note = '\n\nMissing files (indicates new benchmark): \n%s' % fmt_dict(
- nonexistant_files)
- if rows:
- return tabulate.tabulate(rows, headers=headers,
- floatfmt='+.2f'), note, significance
- else:
- return None, note, 0
- if __name__ == '__main__':
- args = _args()
- diff, note = diff(args.benchmarks, args.loops, args.regex, args.track,
- args.old, args.new, args.counters)
- print('%s\n%s' % (note, diff if diff else "No performance differences"))
|