|
@@ -0,0 +1,182 @@
|
|
|
+/*
|
|
|
+ * ====================================================
|
|
|
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
|
+ *
|
|
|
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
|
+ * Permission to use, copy, modify, and distribute this
|
|
|
+ * software is freely granted, provided that this notice
|
|
|
+ * is preserved.
|
|
|
+ * ====================================================
|
|
|
+ */
|
|
|
+
|
|
|
+/* __ieee754_exp(x)
|
|
|
+ * Returns the exponential of x.
|
|
|
+ *
|
|
|
+ * Method
|
|
|
+ * 1. Argument reduction:
|
|
|
+ * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
|
|
|
+ * Given x, find r and integer k such that
|
|
|
+ *
|
|
|
+ * x = k*ln2 + r, |r| <= 0.5*ln2.
|
|
|
+ *
|
|
|
+ * Here r will be represented as r = hi-lo for better
|
|
|
+ * accuracy.
|
|
|
+ *
|
|
|
+ * 2. Approximation of exp(r) by a special rational function on
|
|
|
+ * the interval [0,0.34658]:
|
|
|
+ * Write
|
|
|
+ * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
|
|
|
+ * We use a special Reme algorithm on [0,0.34658] to generate
|
|
|
+ * a polynomial of degree 5 to approximate R. The maximum error
|
|
|
+ * of this polynomial approximation is bounded by 2**-59. In
|
|
|
+ * other words,
|
|
|
+ * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
|
|
|
+ * (where z=r*r, and the values of P1 to P5 are listed below)
|
|
|
+ * and
|
|
|
+ * | 5 | -59
|
|
|
+ * | 2.0+P1*z+...+P5*z - R(z) | <= 2
|
|
|
+ * | |
|
|
|
+ * The computation of exp(r) thus becomes
|
|
|
+ * 2*r
|
|
|
+ * exp(r) = 1 + -------
|
|
|
+ * R - r
|
|
|
+ * r*R1(r)
|
|
|
+ * = 1 + r + ----------- (for better accuracy)
|
|
|
+ * 2 - R1(r)
|
|
|
+ * where
|
|
|
+ * 2 4 10
|
|
|
+ * R1(r) = r - (P1*r + P2*r + ... + P5*r ).
|
|
|
+ *
|
|
|
+ * 3. Scale back to obtain exp(x):
|
|
|
+ * From step 1, we have
|
|
|
+ * exp(x) = 2^k * exp(r)
|
|
|
+ *
|
|
|
+ * Special cases:
|
|
|
+ * exp(INF) is INF, exp(NaN) is NaN;
|
|
|
+ * exp(-INF) is 0, and
|
|
|
+ * for finite argument, only exp(0)=1 is exact.
|
|
|
+ *
|
|
|
+ * Accuracy:
|
|
|
+ * according to an error analysis, the error is always less than
|
|
|
+ * 1 ulp (unit in the last place).
|
|
|
+ *
|
|
|
+ * Misc. info.
|
|
|
+ * For IEEE double
|
|
|
+ * if x > 7.09782712893383973096e+02 then exp(x) overflow
|
|
|
+ * if x < -7.45133219101941108420e+02 then exp(x) underflow
|
|
|
+ *
|
|
|
+ * Constants:
|
|
|
+ * The hexadecimal values are the intended ones for the following
|
|
|
+ * constants. The decimal values may be used, provided that the
|
|
|
+ * compiler will convert from decimal to binary accurately enough
|
|
|
+ * to produce the hexadecimal values shown.
|
|
|
+ */
|
|
|
+
|
|
|
+#include "math_libm.h"
|
|
|
+#include "math_private.h"
|
|
|
+
|
|
|
+static const double
|
|
|
+one = 1.0,
|
|
|
+halF[2] = {0.5,-0.5,},
|
|
|
+huge = 1.0e+300,
|
|
|
+twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/
|
|
|
+o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
|
|
|
+u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
|
|
|
+ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
|
|
|
+ -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
|
|
|
+ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
|
|
|
+ -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
|
|
|
+invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
|
|
|
+P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
|
|
|
+P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
|
|
|
+P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
|
|
|
+P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
|
|
|
+P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
|
|
|
+
|
|
|
+double __ieee754_exp(double x) /* default IEEE double exp */
|
|
|
+{
|
|
|
+ double y;
|
|
|
+ double hi = 0.0;
|
|
|
+ double lo = 0.0;
|
|
|
+ double c;
|
|
|
+ double t;
|
|
|
+ int32_t k=0;
|
|
|
+ int32_t xsb;
|
|
|
+ u_int32_t hx;
|
|
|
+
|
|
|
+ GET_HIGH_WORD(hx,x);
|
|
|
+ xsb = (hx>>31)&1; /* sign bit of x */
|
|
|
+ hx &= 0x7fffffff; /* high word of |x| */
|
|
|
+
|
|
|
+ /* filter out non-finite argument */
|
|
|
+ if(hx >= 0x40862E42) { /* if |x|>=709.78... */
|
|
|
+ if(hx>=0x7ff00000) {
|
|
|
+ u_int32_t lx;
|
|
|
+ GET_LOW_WORD(lx,x);
|
|
|
+ if(((hx&0xfffff)|lx)!=0)
|
|
|
+ return x+x; /* NaN */
|
|
|
+ else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
|
|
|
+ }
|
|
|
+ if(x > o_threshold) return huge*huge; /* overflow */
|
|
|
+ if(x < u_threshold) return twom1000*twom1000; /* underflow */
|
|
|
+ }
|
|
|
+
|
|
|
+ /* argument reduction */
|
|
|
+ if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
|
|
+ if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
|
|
|
+ hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
|
|
|
+ } else {
|
|
|
+ k = invln2*x+halF[xsb];
|
|
|
+ t = k;
|
|
|
+ hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
|
|
|
+ lo = t*ln2LO[0];
|
|
|
+ }
|
|
|
+ x = hi - lo;
|
|
|
+ }
|
|
|
+ else if(hx < 0x3e300000) { /* when |x|<2**-28 */
|
|
|
+ if(huge+x>one) return one+x;/* trigger inexact */
|
|
|
+ }
|
|
|
+ else k = 0;
|
|
|
+
|
|
|
+ /* x is now in primary range */
|
|
|
+ t = x*x;
|
|
|
+ c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
|
|
+ if(k==0) return one-((x*c)/(c-2.0)-x);
|
|
|
+ else y = one-((lo-(x*c)/(2.0-c))-hi);
|
|
|
+ if(k >= -1021) {
|
|
|
+ u_int32_t hy;
|
|
|
+ GET_HIGH_WORD(hy,y);
|
|
|
+ SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */
|
|
|
+ return y;
|
|
|
+ } else {
|
|
|
+ u_int32_t hy;
|
|
|
+ GET_HIGH_WORD(hy,y);
|
|
|
+ SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */
|
|
|
+ return y*twom1000;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * wrapper exp(x)
|
|
|
+ */
|
|
|
+#ifndef _IEEE_LIBM
|
|
|
+double exp(double x)
|
|
|
+{
|
|
|
+ static const double o_threshold = 7.09782712893383973096e+02; /* 0x40862E42, 0xFEFA39EF */
|
|
|
+ static const double u_threshold = -7.45133219101941108420e+02; /* 0xc0874910, 0xD52D3051 */
|
|
|
+
|
|
|
+ double z = __ieee754_exp(x);
|
|
|
+ if (_LIB_VERSION == _IEEE_)
|
|
|
+ return z;
|
|
|
+ if (isfinite(x)) {
|
|
|
+ if (x > o_threshold)
|
|
|
+ return __kernel_standard(x, x, 6); /* exp overflow */
|
|
|
+ if (x < u_threshold)
|
|
|
+ return __kernel_standard(x, x, 7); /* exp underflow */
|
|
|
+ }
|
|
|
+ return z;
|
|
|
+}
|
|
|
+#else
|
|
|
+strong_alias(__ieee754_exp, exp)
|
|
|
+#endif
|
|
|
+libm_hidden_def(exp)
|