#pragma once #include #include #include #include #include #if __cplusplus > 199711L #include #endif #include namespace matplotlibcpp { namespace detail { struct _interpreter { PyObject *s_python_function_show; PyObject *s_python_function_save; PyObject *s_python_function_figure; PyObject *s_python_function_plot; PyObject *s_python_function_hist; PyObject *s_python_function_subplot; PyObject *s_python_function_legend; PyObject *s_python_function_xlim; PyObject *s_python_function_ylim; PyObject *s_python_function_title; PyObject *s_python_function_axis; PyObject *s_python_function_xlabel; PyObject *s_python_function_ylabel; PyObject *s_python_function_grid; PyObject *s_python_empty_tuple; PyObject *s_python_function_annotate; /* For now, _interpreter is implemented as a singleton since its currently not possible to have multiple independent embedded python interpreters without patching the python source code or starting a separate process for each. http://bytes.com/topic/python/answers/793370-multiple-independent-python-interpreters-c-c-program */ static _interpreter& get() { static _interpreter ctx; return ctx; } private: _interpreter() { char name[] = "plotting"; // silence compiler warning about const strings Py_SetProgramName(name); // optional but recommended Py_Initialize(); PyObject* pyplotname = PyString_FromString("matplotlib.pyplot"); PyObject* pylabname = PyString_FromString("pylab"); if(!pyplotname || !pylabname) { throw std::runtime_error("couldnt create string"); } PyObject* pymod = PyImport_Import(pyplotname); Py_DECREF(pyplotname); if(!pymod) { throw std::runtime_error("Error loading module matplotlib.pyplot!"); } PyObject* pylabmod = PyImport_Import(pylabname); Py_DECREF(pylabname); if(!pymod) { throw std::runtime_error("Error loading module pylab!"); } s_python_function_show = PyObject_GetAttrString(pymod, "show"); s_python_function_figure = PyObject_GetAttrString(pymod, "figure"); s_python_function_plot = PyObject_GetAttrString(pymod, "plot"); s_python_function_hist = PyObject_GetAttrString(pymod,"hist"); s_python_function_subplot = PyObject_GetAttrString(pymod, "subplot"); s_python_function_legend = PyObject_GetAttrString(pymod, "legend"); s_python_function_ylim = PyObject_GetAttrString(pymod, "ylim"); s_python_function_title = PyObject_GetAttrString(pymod, "title"); s_python_function_axis = PyObject_GetAttrString(pymod, "axis"); s_python_function_xlabel = PyObject_GetAttrString(pymod, "xlabel"); s_python_function_ylabel = PyObject_GetAttrString(pymod, "ylabel"); s_python_function_grid = PyObject_GetAttrString(pymod, "grid"); s_python_function_xlim = PyObject_GetAttrString(pymod, "xlim"); s_python_function_save = PyObject_GetAttrString(pylabmod, "savefig"); s_python_function_annotate = PyObject_GetAttrString(pymod,"annotate"); if( !s_python_function_show || !s_python_function_figure || !s_python_function_plot || !s_python_function_subplot || !s_python_function_legend || !s_python_function_ylim || !s_python_function_title || !s_python_function_axis || !s_python_function_xlabel || !s_python_function_ylabel || !s_python_function_grid || !s_python_function_xlim || !s_python_function_save || !s_python_function_annotate ) { throw std::runtime_error("Couldn't find required function!"); } if( !PyFunction_Check(s_python_function_show) || !PyFunction_Check(s_python_function_figure) || !PyFunction_Check(s_python_function_plot) || !PyFunction_Check(s_python_function_subplot) || !PyFunction_Check(s_python_function_legend) || !PyFunction_Check(s_python_function_annotate) || !PyFunction_Check(s_python_function_ylim) || !PyFunction_Check(s_python_function_title) || !PyFunction_Check(s_python_function_axis) || !PyFunction_Check(s_python_function_xlabel) || !PyFunction_Check(s_python_function_ylabel) || !PyFunction_Check(s_python_function_grid) || !PyFunction_Check(s_python_function_xlim) || !PyFunction_Check(s_python_function_save) ) { throw std::runtime_error("Python object is unexpectedly not a PyFunction."); } s_python_empty_tuple = PyTuple_New(0); } ~_interpreter() { Py_Finalize(); } }; } bool annotate(std::string annotation, double x, double y) { PyObject * xy = PyTuple_New(2); PyObject * str = PyString_FromString(annotation.c_str()); PyTuple_SetItem(xy,0,PyFloat_FromDouble(x)); PyTuple_SetItem(xy,1,PyFloat_FromDouble(y)); PyObject* kwargs = PyDict_New(); PyDict_SetItemString(kwargs, "xy", xy); PyObject* args = PyTuple_New(1); PyTuple_SetItem(args, 0, str); PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_annotate, args, kwargs); Py_DECREF(xy); Py_DECREF(args); Py_DECREF(kwargs); if(res) Py_DECREF(res); return res; } template bool plot(const std::vector &x, const std::vector &y, const std::map& keywords) { assert(x.size() == y.size()); // using python lists PyObject* xlist = PyList_New(x.size()); PyObject* ylist = PyList_New(y.size()); for(size_t i = 0; i < x.size(); ++i) { PyList_SetItem(xlist, i, PyFloat_FromDouble(x.at(i))); PyList_SetItem(ylist, i, PyFloat_FromDouble(y.at(i))); } // construct positional args PyObject* args = PyTuple_New(2); PyTuple_SetItem(args, 0, xlist); PyTuple_SetItem(args, 1, ylist); Py_DECREF(xlist); Py_DECREF(ylist); // construct keyword args PyObject* kwargs = PyDict_New(); for(std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) { PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); } PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, args, kwargs); Py_DECREF(args); Py_DECREF(kwargs); if(res) Py_DECREF(res); return res; } template< typename Numeric> bool hist(const std::vector& y, long bins=10,std::string color="b", double alpha=1.0){ PyObject* ylist = PyList_New(y.size()); PyObject* kwargs = PyDict_New(); PyDict_SetItemString(kwargs, "bins", PyLong_FromLong(bins)); PyDict_SetItemString(kwargs, "color", PyString_FromString(color.c_str())); PyDict_SetItemString(kwargs, "alpha", PyFloat_FromDouble(alpha)); for(size_t i = 0; i < y.size(); ++i) { PyList_SetItem(ylist, i, PyFloat_FromDouble(y.at(i))); } PyObject* plot_args = PyTuple_New(1); PyTuple_SetItem(plot_args, 0, ylist); PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_hist, plot_args, kwargs); Py_DECREF(ylist); Py_DECREF(plot_args); Py_DECREF(kwargs); if(res) Py_DECREF(res); return res; } template< typename Numeric> bool named_hist(std::string label,const std::vector& y, long bins=10,std::string color="b", double alpha=1.0){ PyObject* ylist = PyList_New(y.size()); PyObject* kwargs = PyDict_New(); PyDict_SetItemString(kwargs, "label", PyString_FromString(label.c_str())); PyDict_SetItemString(kwargs, "bins", PyLong_FromLong(bins)); PyDict_SetItemString(kwargs, "color", PyString_FromString(color.c_str())); PyDict_SetItemString(kwargs, "alpha", PyFloat_FromDouble(alpha)); for(size_t i = 0; i < y.size(); ++i) { PyList_SetItem(ylist, i, PyFloat_FromDouble(y.at(i))); } PyObject* plot_args = PyTuple_New(1); PyTuple_SetItem(plot_args, 0, ylist); PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_hist, plot_args, kwargs); Py_DECREF(ylist); Py_DECREF(plot_args); Py_DECREF(kwargs); if(res) Py_DECREF(res); return res; } template bool plot(const std::vector& x, const std::vector& y, const std::string& s = "") { assert(x.size() == y.size()); PyObject* xlist = PyList_New(x.size()); PyObject* ylist = PyList_New(y.size()); PyObject* pystring = PyString_FromString(s.c_str()); for(size_t i = 0; i < x.size(); ++i) { PyList_SetItem(xlist, i, PyFloat_FromDouble(x.at(i))); PyList_SetItem(ylist, i, PyFloat_FromDouble(y.at(i))); } PyObject* plot_args = PyTuple_New(3); PyTuple_SetItem(plot_args, 0, xlist); PyTuple_SetItem(plot_args, 1, ylist); PyTuple_SetItem(plot_args, 2, pystring); PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_plot, plot_args); Py_DECREF(xlist); Py_DECREF(ylist); Py_DECREF(plot_args); if(res) Py_DECREF(res); return res; } template bool named_plot(const std::string& name, const std::vector& y, const std::string& format = "") { PyObject* kwargs = PyDict_New(); PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); PyObject* ylist = PyList_New(y.size()); PyObject* pystring = PyString_FromString(format.c_str()); for(size_t i = 0; i < y.size(); ++i) { PyList_SetItem(ylist, i, PyFloat_FromDouble(y.at(i))); } PyObject* plot_args = PyTuple_New(2); PyTuple_SetItem(plot_args, 0, ylist); PyTuple_SetItem(plot_args, 1, pystring); PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, plot_args, kwargs); Py_DECREF(kwargs); Py_DECREF(ylist); Py_DECREF(plot_args); if(res) Py_DECREF(res); return res; } template bool named_plot(const std::string& name, const std::vector& x, const std::vector& y, const std::string& format = "") { PyObject* kwargs = PyDict_New(); PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); PyObject* xlist = PyList_New(x.size()); PyObject* ylist = PyList_New(y.size()); PyObject* pystring = PyString_FromString(format.c_str()); for(size_t i = 0; i < x.size(); ++i) { PyList_SetItem(xlist, i, PyFloat_FromDouble(x.at(i))); PyList_SetItem(ylist, i, PyFloat_FromDouble(y.at(i))); } PyObject* plot_args = PyTuple_New(3); PyTuple_SetItem(plot_args, 0, xlist); PyTuple_SetItem(plot_args, 1, ylist); PyTuple_SetItem(plot_args, 2, pystring); PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, plot_args, kwargs); Py_DECREF(kwargs); Py_DECREF(xlist); Py_DECREF(ylist); Py_DECREF(plot_args); if(res) Py_DECREF(res); return res; } template bool plot(const std::vector& y, const std::string& format = "") { std::vector x(y.size()); for(size_t i=0; i void ylim(Numeric left, Numeric right) { PyObject* list = PyList_New(2); PyList_SetItem(list, 0, PyFloat_FromDouble(left)); PyList_SetItem(list, 1, PyFloat_FromDouble(right)); PyObject* args = PyTuple_New(1); PyTuple_SetItem(args, 0, list); PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_ylim, args); if(!res) throw std::runtime_error("Call to ylim() failed."); Py_DECREF(list); Py_DECREF(args); Py_DECREF(res); } template void xlim(Numeric left, Numeric right) { PyObject* list = PyList_New(2); PyList_SetItem(list, 0, PyFloat_FromDouble(left)); PyList_SetItem(list, 1, PyFloat_FromDouble(right)); PyObject* args = PyTuple_New(1); PyTuple_SetItem(args, 0, list); PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_xlim, args); if(!res) throw std::runtime_error("Call to xlim() failed."); Py_DECREF(list); Py_DECREF(args); Py_DECREF(res); } double * xlim() { PyObject* args = PyTuple_New(0); PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_xlim, args); PyObject * left = PyTuple_GetItem(res,0); PyObject * right = PyTuple_GetItem(res,1); double * arr = new double[2]; arr[0] = PyFloat_AsDouble(left); arr[1] = PyFloat_AsDouble(right); if(!res) throw std::runtime_error("Call to xlim() failed."); Py_DECREF(res); return arr; } double * ylim() { PyObject* args = PyTuple_New(0); PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_ylim, args); PyObject * left = PyTuple_GetItem(res,0); PyObject * right = PyTuple_GetItem(res,1); double * arr = new double[2]; arr[0] = PyFloat_AsDouble(left); arr[1] = PyFloat_AsDouble(right); if(!res) throw std::runtime_error("Call to ylim() failed."); Py_DECREF(res); return arr; } inline void subplot(long nrows, long ncols, long plot_number) { // construct positional args PyObject* args = PyTuple_New(3); PyTuple_SetItem(args, 0, PyFloat_FromDouble(nrows)); PyTuple_SetItem(args, 1, PyFloat_FromDouble(ncols)); PyTuple_SetItem(args, 2, PyFloat_FromDouble(plot_number)); PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_subplot, args); if(!res) throw std::runtime_error("Call to subplot() failed."); Py_DECREF(args); Py_DECREF(res); } inline void title(const std::string &titlestr) { PyObject* pytitlestr = PyString_FromString(titlestr.c_str()); PyObject* args = PyTuple_New(1); PyTuple_SetItem(args, 0, pytitlestr); PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_title, args); if(!res) throw std::runtime_error("Call to title() failed."); // if PyDeCRFF, the function doesn't work on Mac OS } inline void axis(const std::string &axisstr) { PyObject* str = PyString_FromString(axisstr.c_str()); PyObject* args = PyTuple_New(1); PyTuple_SetItem(args, 0, str); PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_axis, args); if(!res) throw std::runtime_error("Call to title() failed."); // if PyDeCRFF, the function doesn't work on Mac OS } inline void xlabel(const std::string &str) { PyObject* pystr = PyString_FromString(str.c_str()); PyObject* args = PyTuple_New(1); PyTuple_SetItem(args, 0, pystr); PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_xlabel, args); if(!res) throw std::runtime_error("Call to xlabel() failed."); // if PyDeCRFF, the function doesn't work on Mac OS } inline void ylabel(const std::string &str) { PyObject* pystr = PyString_FromString(str.c_str()); PyObject* args = PyTuple_New(1); PyTuple_SetItem(args, 0, pystr); PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_ylabel, args); if(!res) throw std::runtime_error("Call to ylabel() failed."); // if PyDeCRFF, the function doesn't work on Mac OS } inline void grid(bool flag) { PyObject* pyflag = flag ? Py_True : Py_False; PyObject* args = PyTuple_New(1); PyTuple_SetItem(args, 0, pyflag); PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_grid, args); if(!res) throw std::runtime_error("Call to grid() failed."); // if PyDeCRFF, the function doesn't work on Mac OS } inline void show() { PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_show, detail::_interpreter::get().s_python_empty_tuple); if(!res) throw std::runtime_error("Call to show() failed."); Py_DECREF(res); } inline void save(const std::string& filename) { PyObject* pyfilename = PyString_FromString(filename.c_str()); PyObject* args = PyTuple_New(1); PyTuple_SetItem(args, 0, pyfilename); PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_save, args); if(!res) throw std::runtime_error("Call to save() failed."); Py_DECREF(pyfilename); Py_DECREF(args); Py_DECREF(res); } #if __cplusplus > 199711L // C++11-exclusive content starts here (variadic plot() and initializer list support) namespace detail { template using is_function = typename std::is_function>>::type; template struct is_callable_impl; template struct is_callable_impl { typedef is_function type; }; // a non-object is callable iff it is a function template struct is_callable_impl { struct Fallback { void operator()(); }; struct Derived : T, Fallback { }; template struct Check; template static std::true_type test( ... ); // use a variadic function to make sure (1) it accepts everything and (2) its always the worst match template static std::false_type test( Check* ); public: typedef decltype(test(nullptr)) type; typedef decltype(&Fallback::operator()) dtype; static constexpr bool value = type::value; }; // an object is callable iff it defines operator() template struct is_callable { // dispatch to is_callable_impl or is_callable_impl depending on whether T is of class type or not typedef typename is_callable_impl::value, T>::type type; }; template struct plot_impl { }; template<> struct plot_impl { template bool operator()(const IterableX& x, const IterableY& y, const std::string& format) { // 2-phase lookup for distance, begin, end using std::distance; using std::begin; using std::end; auto xs = distance(begin(x), end(x)); auto ys = distance(begin(y), end(y)); assert(xs == ys && "x and y data must have the same number of elements!"); PyObject* xlist = PyList_New(xs); PyObject* ylist = PyList_New(ys); PyObject* pystring = PyString_FromString(format.c_str()); auto itx = begin(x), ity = begin(y); for(size_t i = 0; i < xs; ++i) { PyList_SetItem(xlist, i, PyFloat_FromDouble(*itx++)); PyList_SetItem(ylist, i, PyFloat_FromDouble(*ity++)); } PyObject* plot_args = PyTuple_New(3); PyTuple_SetItem(plot_args, 0, xlist); PyTuple_SetItem(plot_args, 1, ylist); PyTuple_SetItem(plot_args, 2, pystring); PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_plot, plot_args); Py_DECREF(xlist); Py_DECREF(ylist); Py_DECREF(plot_args); if(res) Py_DECREF(res); return res; } }; template<> struct plot_impl { template bool operator()(const Iterable& ticks, const Callable& f, const std::string& format) { //std::cout << "Callable impl called" << std::endl; if(begin(ticks) == end(ticks)) return true; // We could use additional meta-programming to deduce the correct element type of y, // but all values have to be convertible to double anyways std::vector y; for(auto x : ticks) y.push_back(f(x)); return plot_impl()(ticks,y,format); } }; } // recursion stop for the above template bool plot() { return true; } template bool plot(const A& a, const B& b, const std::string& format, Args... args) { return detail::plot_impl::type>()(a,b,format) && plot(args...); } /* * This group of plot() functions is needed to support initializer lists, i.e. calling * plot( {1,2,3,4} ) */ bool plot(const std::vector& x, const std::vector& y, const std::string& format = "") { return plot(x,y,format); } bool plot(const std::vector& y, const std::string& format = "") { return plot(y,format); } bool plot(const std::vector& x, const std::vector& y, const std::map& keywords) { return plot(x,y,keywords); } bool named_plot(const std::string& name, const std::vector& x, const std::vector& y, const std::string& format = "") { return named_plot(name,x,y,format); } #endif }